JPH05186234A - Production of quartz glass member for excimer laser - Google Patents

Production of quartz glass member for excimer laser

Info

Publication number
JPH05186234A
JPH05186234A JP3182858A JP18285891A JPH05186234A JP H05186234 A JPH05186234 A JP H05186234A JP 3182858 A JP3182858 A JP 3182858A JP 18285891 A JP18285891 A JP 18285891A JP H05186234 A JPH05186234 A JP H05186234A
Authority
JP
Japan
Prior art keywords
quartz glass
glass
temperature
transparent
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3182858A
Other languages
Japanese (ja)
Other versions
JP2835540B2 (en
Inventor
Hiroyuki Nishimura
裕幸 西村
Akira Fujinoki
朗 藤ノ木
Toshikatsu Matsutani
利勝 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP3182858A priority Critical patent/JP2835540B2/en
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to DE69219445T priority patent/DE69219445T2/en
Priority to KR1019930700573A priority patent/KR0165695B1/en
Priority to EP92913798A priority patent/EP0546196B1/en
Priority to DE199292913798T priority patent/DE546196T1/en
Priority to US07/977,397 priority patent/US5364433A/en
Priority to PCT/JP1992/000821 priority patent/WO1993000307A1/en
Publication of JPH05186234A publication Critical patent/JPH05186234A/en
Priority to US08/286,538 priority patent/US5523266A/en
Application granted granted Critical
Publication of JP2835540B2 publication Critical patent/JP2835540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain the subject quartz glass member excellent in ultraviolet ray resistance by producing a porous preform of silica glass, heating the resultant preform at a high vacuum degree, producing transparent quartz glass, homogenizing and forming the quartz glass and subjecting the formed glass to annealing treatment. CONSTITUTION:A volatile silicon compound (e.g. silicon tetrachloride) is subjected to flame hydrolysis with an oxyhydrogen flame and produced fine particulate silica is deposited on a heat-resistant substrate to provide a porous preform of silica glass, which is subsequently heated at 1350-1700 deg.C at a high vacuum degree of 2 >=1X10<-2>Torr to form a transparent quartz glass. The resultant quartz glass is then subjected to homogenizing treatment at >=1600 deg.C temperature to form highly homogeneous quartz glass without any striae in at least one direction. The obtained quartz glass is subsequently heated to at least >=1500 deg.C in a heating furnace, formed by its own weight, subjected to annealing treatment at 800-1250 deg.C and then slowly cooled to afford the objective quartz glass capable of solving problems related to the deterioration in light transmittance within an ultraviolet region caused by irradiation with the strong ultraviolet rays.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線、特にエキシマ
レーザーの照射に対して優れた安定性を有する光学用石
英ガラス部材の製造方法に関する。また、本発明は、半
導体チップ製造用のエキシマレーザーを用いたリソグラ
フィー用のステッパーレンズ、その他エキシマレーザー
光に使用される光学部材に好適に使用される石英ガラス
部材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical quartz glass member having excellent stability against irradiation with ultraviolet rays, especially excimer laser. The present invention also relates to a stepper lens for lithography using an excimer laser for manufacturing a semiconductor chip, and a method for manufacturing a quartz glass member which is preferably used as an optical member used for excimer laser light.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴い、ウエハ
ー上に集積回路パターンを描画する光リソグラフィー技
術においても、サブミクロン単位の描画技術が要求され
ており、より微細な線幅描画を行うために、露光系の光
源の短波長化が進められてきている。このため、例え
ば、リソグラフィー用のステッパーレンズには、優れた
均質性と優れた紫外線の透過性、及び紫外線照射に対し
て強い耐性が要求されている。ところが、従来の一般的
な光学ガラスを用いたレンズでは紫外線の透過性が極め
て悪く、例えば、使用波長が365nm(i線)より短
い波長領域では光透過率が急激に減少し、実質上使用す
ることが困難であった。また、光吸収によるレンズの発
熱によって、レンズの焦点距離やその他の特性を狂わせ
る要因となっている。このようなことから、紫外線透過
材料として、石英ガラスが用いられてきた。
2. Description of the Related Art In recent years, with the high integration of LSIs, a submicron drawing technique is required for an optical lithography technique for drawing an integrated circuit pattern on a wafer, and finer line width drawing is performed. Therefore, the wavelength of the light source of the exposure system has been shortened. Therefore, for example, a stepper lens for lithography is required to have excellent homogeneity, excellent ultraviolet ray transmittance, and strong resistance to ultraviolet ray irradiation. However, in the lens using the conventional general optical glass, the transmittance of ultraviolet rays is extremely poor, and for example, the light transmittance sharply decreases in the wavelength region where the wavelength used is shorter than 365 nm (i-line), and the lens is practically used. Was difficult. In addition, the heat generation of the lens due to the light absorption causes the focal length of the lens and other characteristics to be disturbed. For this reason, quartz glass has been used as an ultraviolet transmitting material.

【0003】しかしながら、天然の水晶を原料とした石
英ガラスは、250nm以下の波長領域の光透過性が悪
く、また、紫外線の照射によって、紫外線領域に新たな
光の吸収を生じて、紫外線領域における光の透過性は更
に低下する。この石英ガラスにおける光の吸収は、石英
ガラス中の不純物に起因するために、紫外線領域で使用
される光学部材には、不純物含有量の少ない合成石英ガ
ラス(合成シリカガラス)が用いられている。この合成
石英ガラスは、通常、紫外線吸収の原因となる金属不純
物の混入を避けるために、高純度のシリコン化合物、例
えば四塩化けい素(SiCl4)などの蒸気を、直接酸
水素炎中に導入して、火炎加水分解させてガラス微粒子
を直接回転する耐熱性基体上に堆積・溶融ガラス化させ
て、透明なガラスとして製造されている。
However, quartz glass made from natural quartz has a poor light transmittance in the wavelength region of 250 nm or less, and when irradiated with ultraviolet rays, it absorbs new light in the ultraviolet region, so that in the ultraviolet region. The light transmission is further reduced. Since the absorption of light in this quartz glass is due to impurities in the quartz glass, synthetic quartz glass (synthetic silica glass) having a low impurity content is used for the optical member used in the ultraviolet region. In this synthetic quartz glass, a vapor of a high-purity silicon compound, for example, silicon tetrachloride (SiCl 4 ) is usually introduced directly into an oxyhydrogen flame in order to avoid mixing of metallic impurities which cause ultraviolet absorption. Then, it is flame-hydrolyzed to deposit glass fine particles directly on a rotating heat-resistant substrate and melted to be vitrified to produce a transparent glass.

【0004】このようにして製造された透明な合成石英
ガラス部材は、190nm程度の短波長領域まで良好な
光透過性を示し、紫外線レーザー光、例えば具体的には
前記i線の他に、KrF(248nm),XeCl(3
08nm),XeBr(282nm),XeF(35
1、353nm),ArF(193nm)等のエキシマ
レーザー光及びYAGの4倍高調波(250nm)等に
ついての透過材料として用いられてきた。
The transparent synthetic quartz glass member produced in this manner exhibits good light transmittance up to a short wavelength region of about 190 nm, and in addition to ultraviolet laser light, such as the above-mentioned i-line, KrF. (248 nm), XeCl (3
08 nm), XeBr (282 nm), XeF (35
1, 353 nm), ArF (193 nm) and other excimer laser beams, and YAG fourth harmonics (250 nm) and the like have been used as transmission materials.

【0005】また、原料としての四塩化けい素の一層の
高純度化と共に、酸水素燃焼炎による火炎加水分解の工
程を改善することによって、金属不純物元素が0.1p
pm以下の高純度石英ガラスを合成し、かつ前記火炎加
水分解の条件を調節することによって製造される合成石
英ガラス中に所定濃度のOH基が含まれるようにし、こ
れによって耐レーザー性に優れた光学用の石英ガラス部
材を得る試みがなされている(特開平1−167258
号公報)。
[0005] Further, by further improving the purity of silicon tetrachloride as a raw material and improving the process of flame hydrolysis by an oxyhydrogen combustion flame, metal impurity elements of 0.1 p
Synthetic silica glass produced by synthesizing high-purity quartz glass of pm or less and adjusting the conditions of the flame hydrolysis allows a predetermined concentration of OH groups to be contained, thereby providing excellent laser resistance. Attempts have been made to obtain a quartz glass member for optics (JP-A-1-167258).
Publication).

【0006】しかしながら、これらの方法は一応効果は
あるものの、未だ十分とはいえない。また、製造工程の
制御に困難を伴う技術的、経済的不利がある。ところ
で、合成石英ガラスに紫外線を照射することによって新
たに生じる紫外線領域における光の吸収は、専ら、石英
ガラス中の固有欠陥から光反応により、生じた常磁性欠
陥によるものと考えられている。このような常磁性欠陥
による光吸収は、これまでESRスペクトルなどで数多
く同定されており、例えば、E’センター(Si・)や
NBOHC(Si−O・)などがある。
[0006] However, although these methods have some effects, they are still not sufficient. In addition, there are technical and economic disadvantages that make it difficult to control the manufacturing process. By the way, it is considered that the absorption of light in the ultraviolet region newly generated by irradiating the synthetic quartz glass with ultraviolet rays is mainly due to the paramagnetic defect generated by the photoreaction from the intrinsic defect in the silica glass. Many light absorptions due to such paramagnetic defects have been identified so far by ESR spectra and the like, for example, E'center (Si.) And NBOHC (Si-O.).

【0007】以上のように、常磁性欠陥は、一般的に
は、光学的吸収帯を有している。したがって、石英ガラ
スに紫外線を照射した場合、石英ガラスの常磁性欠陥に
よる紫外線領域で問題となる吸収帯は、例えば、E’セ
ンターの215nmと、まだ正確に同定されていない
が、260nmがある。これらの吸収帯は比較的ブロー
ドでかつ、強い吸収を生じるときがあり、例えば、Ar
Fレーザー(193nm)やKrFレーザー(248n
m)の透過材料として用いる場合には大きな問題となっ
ている。常磁性欠陥の原因となる石英ガラス中の固有欠
陥は、例えばSiOHやSiClなどのSiO2以外の
構造をしたものや、Si−Si,Si−O−O−Siな
どの酸素欠損、酸素過剰の構造をしたものである。この
ような理由から、エキシマレーザーに使用される合成石
英ガラスには、より強い耐紫外線性が要求されている。
本発明は、エキシマレーザーに使用される合成石英ガラ
スにおいて、強い紫外線照射にともなって生じる紫外線
領域における光透過率の低下に係る問題点を解決するこ
とを目的としている。
As described above, the paramagnetic defect generally has an optical absorption band. Therefore, when the quartz glass is irradiated with ultraviolet rays, a problematic absorption band in the ultraviolet region due to the paramagnetic defects of the quartz glass is, for example, 215 nm at the E ′ center, which is 260 nm although it has not been accurately identified yet. These absorption bands are relatively broad and can give rise to strong absorption, eg Ar
F laser (193nm) and KrF laser (248n
There is a big problem when it is used as the transparent material of m). The intrinsic defects in quartz glass that cause paramagnetic defects are, for example, those having a structure other than SiO 2 such as SiOH and SiCl, oxygen vacancies such as Si—Si and Si—O—O—Si, and excess oxygen. It has a structure. For such a reason, stronger ultraviolet resistance is required for the synthetic quartz glass used for the excimer laser.
It is an object of the present invention to solve a problem in synthetic quartz glass used for an excimer laser, which is associated with a decrease in light transmittance in the ultraviolet region caused by strong ultraviolet irradiation.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために、ガラス中のOH濃度及び不純物濃
度に着目し、極力これらがガラス中に含有されない製造
法を確立することによって、耐紫外線性の優れた石英ガ
ラスが得られることを見いだし、本発明に到達したもの
である。本発明は、エキシマレーザーに光学部材として
使用される合成石英ガラスにおいて、強い紫外線照射に
伴って生じる紫外線領域における光透過率の低下を極力
低減した合成石英ガラスの製造方法を提供するものであ
り、特に、エキシマレーザー用のステッパーレンズに好
適に使用しうる光学用石英ガラス部材の製造方法を提供
するものである。
In order to solve the above-mentioned problems, the inventors of the present invention pay attention to the OH concentration and the impurity concentration in the glass and establish a manufacturing method in which these are not contained in the glass as much as possible. It was found that a quartz glass having excellent ultraviolet resistance can be obtained by the above, and the present invention has been achieved. The present invention provides a synthetic quartz glass used as an optical member for an excimer laser, a method for producing synthetic quartz glass in which a decrease in light transmittance in an ultraviolet region caused by strong ultraviolet irradiation is reduced as much as possible, In particular, the present invention provides a method for producing an optical quartz glass member that can be suitably used as a stepper lens for an excimer laser.

【0009】即ち、本発明は、揮発性けい素化合物を、
酸水素炎により火炎加水分解し、生成する微粒子シリカ
を耐熱性基体上に堆積させてシリカガラスの多孔質母材
を製造し、該シリカガラスの多孔質母材を1×10-2
ール以上の高真空度で加熱して、透明な石英ガラスを形
成し、該透明石英ガラスを均質化処理することにより、
少なくとも一方向に脈理を有しない高均質石英ガラスを
形成し、該高均質石英ガラスを成形後アニール処理する
ことを特徴とするエキシマレーザ用石英ガラス部材の製
造方法にある。
That is, the present invention provides a volatile silicon compound,
Flame-hydrolyzed by an oxyhydrogen flame, the resulting fine particle silica is deposited on a heat-resistant substrate to produce a porous base material of silica glass, and the porous base material of silica glass is 1 × 10 −2 Torr or more. By heating at a high degree of vacuum to form transparent quartz glass and homogenizing the transparent quartz glass,
A method of manufacturing a quartz glass member for an excimer laser, which comprises forming a highly homogeneous quartz glass having no striae in at least one direction, and annealing the highly homogeneous quartz glass after molding.

【0010】本発明において、石英ガラスの原料として
は、金属不純物の混入を少なくするために、例えば、メ
チルトリメトキシシラン〔Si(CH3)(OC
33〕、テトラメトキシシラン〔Si(CH3)(O
CH33〕等のアルキルポリアルコキシシラン若しくは
アルコキシシラン又はその他のシラン化合物或は四塩化
けい素等の揮発性無機けい素化合物などの揮発性けい素
化合物が使用される。
In the present invention, as a raw material for quartz glass, for example, methyltrimethoxysilane [Si (CH 3 ) (OC) is used in order to reduce mixing of metal impurities.
H 3) 3], tetramethoxysilane [Si (CH 3) (O
CH 3 ) 3 ] or other alkylpolyalkoxysilanes or alkoxysilanes or other silane compounds or volatile silicon compounds such as volatile inorganic silicon compounds such as silicon tetrachloride are used.

【0011】本発明において、揮発性けい素化合物は、
揮発させて、直接火炎加水分解法により、加水分解され
て、微粒子状のシリカガラスを生成し、このシリカガラ
スを耐熱性基体上に堆積させて、合成シリカガラスの棒
状の多孔質母材、所謂スートを製造する。本発明におい
て、合成シリカガラスの多孔質母材は、例えば、気相軸
付け法(VAD法)及び外付けCVD法で製造でき、も
とより、本発明における合成シリカガラスの多孔質母材
は、合成シリカガラスの多孔質集合体であれば足りるの
で、これらの製造方法に限定されるものではない。
In the present invention, the volatile silicon compound is
It is volatilized and hydrolyzed by a direct flame hydrolysis method to produce fine particle silica glass, and this silica glass is deposited on a heat-resistant substrate, and a rod-shaped porous base material of synthetic silica glass, so-called Produce soot. In the present invention, the porous base material of the synthetic silica glass can be produced by, for example, a vapor phase axial method (VAD method) and an external CVD method. Since a porous aggregate of silica glass is sufficient, it is not limited to these production methods.

【0012】本発明において、この合成シリカガラスの
多孔質母材中には、酸水素炎により形成されるOH基が
混入しているので、OH基による固有欠陥の生成を避け
るために、合成シリカガラス中のOH基の除去が行われ
る。従来、例えば光ファイバー用のガラスでは、ガラス
中のOH基を極力減少させるために、多孔質のシリカガ
ラスの合成段階又は透明ガラス化の段階で、塩素ガス
(Cl2)を脱水剤とし、塩素ガス中で熱処理する方法
が行われている。しかし、この方法では、OHを低減さ
せても、ガラス中に塩素が残留してしまう。また不活性
ガス中で熱処理するとしても、常圧で処理する限り、ガ
ラス中にガスが溶け込んで、何れも固有欠陥を生成す
る。
In the present invention, since the OH groups formed by the oxyhydrogen flame are mixed in the porous base material of the synthetic silica glass, synthetic silica glass is mixed in order to avoid the generation of inherent defects. The OH groups in the glass are removed. Conventionally, for example, in glass for optical fibers, in order to reduce OH groups in the glass as much as possible, chlorine gas (Cl 2 ) is used as a dehydrating agent in the step of synthesizing porous silica glass or the step of forming transparent glass, and chlorine gas is used. The method of heat treatment is performed in the inside. However, in this method, chlorine remains in the glass even if OH is reduced. Even if the heat treatment is carried out in an inert gas, as long as the heat treatment is carried out under normal pressure, the gas is dissolved in the glass, and in each case, intrinsic defects are generated.

【0013】そこで、本発明においては、前記合成シリ
カガラスを、1×10-2トール以上の高真空度即ち1×
10-2トール以下の圧力の雰囲気中で、例えば1350
乃至1700℃の温度範囲内の温度に加熱して、透明ガ
ラス化が行なわれる。この合成シリカガラスの透明ガラ
ス化の処理の真空度及び加熱温度は、合成シリカガラス
に含有されるOH基及び金属不純物を、揮散し除去でき
るように選ばれ、多孔質母材の大きさ及び透明化処理時
間に関連して、上記温度範囲内でできる限り低い温度域
とするのが好ましい。
Therefore, in the present invention, the synthetic silica glass is provided with a high vacuum degree of 1 × 10 −2 Torr or more, that is, 1 × 10 −2 Torr.
In an atmosphere with a pressure of 10 -2 torr or less, for example, 1350
Transparent vitrification is performed by heating to a temperature within a temperature range of 1700 ° C. to 1700 ° C. The vacuum degree and the heating temperature for the transparent vitrification treatment of the synthetic silica glass are selected so that the OH groups and metal impurities contained in the synthetic silica glass can be volatilized and removed, and the size and the transparency of the porous base material can be reduced. With respect to the chemical treatment time, it is preferable to set the temperature range as low as possible within the above temperature range.

【0014】上記合成シリカガラスの多孔質母材の透明
ガラス化は、該母材のシリカガラス微粒子の表面のシラ
ノール基(SiOH)の脱水縮合反応が、次の反応式の
ように起こり、透明ガラス化が起こる。 2SiOH→SiOSi+H2O この反応で生成する水分子は、石英ガラス微粒子間から
外部に拡散することによって除去されるので、OH基の
除去には、石英ガラス微粒子間から外部に拡散する時間
が必要である。
The transparent vitrification of the porous base material of the synthetic silica glass is carried out by the dehydration condensation reaction of silanol groups (SiOH) on the surface of the silica glass fine particles of the base material as shown in the following reaction formula. Is happening. 2SiOH → SiOSi + H 2 O Water molecules generated by this reaction are removed by diffusing from between the quartz glass fine particles to the outside. Therefore, removal of the OH group requires time to diffuse to the outside from the quartz glass fine particles. is there.

【0015】したがって、この反応の際に、ガラス化温
度が1700℃以上であると、石英ガラス表面におい
て、石英ガラス微粒子間の焼結反応が早く進行して、上
記の脱水縮合反応が十分に完結しない中に、前記多孔質
母材が透明ガラス化されて、石英ガラス中にOH基が除
去されずに残留することとなる。一方、上記の脱水縮合
反応は、焼結温度よりも低い温度、例えば、800℃程
度の温度でも進行するので、石英ガラスからOH基を除
去するには、石英ガラスの微粒子間の焼結が進行しない
間に、上記の脱水縮合反応を完結させ、OH基の拡散除
去を行うようにすることが必要である。
Therefore, when the vitrification temperature is 1700 ° C. or higher during this reaction, the sintering reaction between the quartz glass particles progresses rapidly on the surface of the quartz glass, and the above dehydration condensation reaction is sufficiently completed. In the meanwhile, the porous base material is vitrified transparently, and the OH groups remain in the quartz glass without being removed. On the other hand, the above dehydration condensation reaction proceeds even at a temperature lower than the sintering temperature, for example, at a temperature of about 800 ° C. Therefore, in order to remove the OH group from the quartz glass, sintering between the fine particles of the quartz glass proceeds. While not doing so, it is necessary to complete the above dehydration condensation reaction to diffuse and remove OH groups.

【0016】そこで、石英ガラスからOH基を除去する
のに、例えば、800乃至1200℃の温度範囲内の温
度に一定時間保持して、上記の脱水縮合反応を促進させ
た後、より高い温度に加熱して、石英ガラス微粒子間の
焼結を行って、透明ガラス化を行うという、二段階の透
明ガラス化を行うことができる。また、ゾーンメルト法
の場合には、上記の脱水縮合反応をできるだけ緩やかに
行うような条件でガラス化することが必要である。即
ち、加熱領域の移動をできるだけゆっくりと行うか、加
熱温度をできるだけ低温で行うべきである。一般的に
は、大きな多孔質石英ガラス母材になるほど、加熱領域
の移動は遅くする方が好ましい。
Therefore, in order to remove the OH group from the quartz glass, for example, the temperature is kept within a temperature range of 800 to 1200 ° C. for a certain period of time to accelerate the dehydration condensation reaction, and then to a higher temperature. It is possible to perform two-step transparent vitrification, that is, heating and sintering between the quartz glass fine particles to perform transparent vitrification. Further, in the case of the zone melt method, it is necessary to vitrify under such conditions that the above dehydration condensation reaction is carried out as gently as possible. That is, the heating area should be moved as slowly as possible or the heating temperature should be as low as possible. In general, the larger the porous quartz glass base material, the slower the movement of the heating region.

【0017】透明ガラス化時の脱水縮合反応により生成
する水(H2O)を、できるだけ早く拡散させて、外部
に放出させるには、少なくとも10-2トール以上の高真
空雰囲気をガラス化処理中に保持することが必要なこと
が分かった。ここで重要なことは、脱水縮合反応時及び
透明ガラス化反応時には、10-2トール以上の高真空度
に保つことが必要である。なお、処理されるシリカガラ
スの多孔質母材が大きい場合には、生成するH2Oの量
もかなり多くなるため、使用する真空排気装置は、到達
真空度の高いものより、排気速度の高いものが有効であ
る。
In order to diffuse the water (H 2 O) produced by the dehydration condensation reaction during transparent vitrification as quickly as possible and release it to the outside, a high-vacuum atmosphere of at least 10 -2 Torr or more is under vitrification treatment. I found it necessary to hold on. What is important here is that it is necessary to maintain a high vacuum degree of 10 -2 Torr or more during the dehydration condensation reaction and the transparent vitrification reaction. If the porous base material of the silica glass to be treated is large, the amount of H 2 O produced will be considerably large, and therefore the vacuum evacuation device used will have a higher evacuation speed than that having a high ultimate vacuum. Things are effective.

【0018】このようにして製造された合成石英ガラス
は、OH濃度が低濃度であり、つまり合成石英ガラス中
のOHの含有量が50ppm以下、好ましくは、30p
pm以下であり、金属不純物の含有量も極めて少なく、
高純度の透明石英ガラスである。
The synthetic quartz glass produced in this manner has a low OH concentration, that is, the OH content in the synthetic quartz glass is 50 ppm or less, preferably 30 p.
pm or less, the content of metal impurities is extremely low,
It is a high-purity transparent quartz glass.

【0019】CVD法により製造された石英ガラスは、
その製造時の温度変化によって、耐熱性基体上のシリカ
ガラス微粒子堆積体に密度の揺らぎを生じるが、この揺
らぎが、透明ガラス化後に脈理として残留するので、通
常CVD法により製造された透明石英ガラスは、脈理を
有していることが一般的である。しかし、ステッパーレ
ンズ等の光学用部材とするには、この脈理を除去しなけ
ればならない。そこで、本発明においては、前記高純度
の透明石英ガラスを、例えば、米国特許第2,904,
713号、米国特許第3,128,166号、米国特許
第3,128,169号、米国特許第3,485,61
3号等に開示された方法により処理して、脈理を除去す
る必要がある。
The quartz glass produced by the CVD method is
A change in temperature during the production causes fluctuations in the density of the silica glass fine particle deposits on the heat-resistant substrate, but since these fluctuations remain as striae after transparent vitrification, transparent quartz that is usually manufactured by the CVD method is used. Glass generally has striae. However, this striae must be removed to form an optical member such as a stepper lens. Therefore, in the present invention, the high-purity transparent quartz glass is used, for example, in US Pat.
713, US Pat. No. 3,128,166, US Pat. No. 3,128,169, US Pat. No. 3,485,61.
It is necessary to remove the striae by treating with the method disclosed in No. 3 or the like.

【0020】例えば、脈理のある棒状の透明石英ガラス
を旋盤で保持し、棒状の透明石英ガラスを局部にバーナ
ーもしくは電気加熱の方法で、少なくとも軟化点以上に
加熱し、旋盤を回転させ、脈理が消えるまで棒状の石英
ガラスを捻る方法がある。この方法においては、脈理を
除去する際に、棒状の石英ガラスの加熱位置を順次移動
することによって、最終的には棒状のガラス体全体が均
質化される。この際の加熱温度は、石英ガラスの軟化点
以上にすることが必要であり、例えば1600℃以上で
ある。もちろん、石英ガラス上の加熱位置の移動速度な
どは、処理する石英ガラス部材の形状や重さによって適
当に選択されるものである。
For example, a rod-shaped transparent quartz glass having a striae is held by a lathe, and the rod-shaped transparent quartz glass is locally heated by a burner or an electric heating method to at least a softening point or higher, and the lathe is rotated to rotate the pulse. There is a method of twisting rod-shaped quartz glass until the reason disappears. In this method, when the striae are removed, the heating position of the rod-shaped quartz glass is sequentially moved so that the entire rod-shaped glass body is finally homogenized. The heating temperature at this time needs to be equal to or higher than the softening point of the quartz glass, and is, for example, 1600 ° C. or higher. Of course, the moving speed of the heating position on the quartz glass is appropriately selected depending on the shape and weight of the quartz glass member to be processed.

【0021】脈理が除去された透明石英ガラスは、次
に、最終的な製品、例えばステッパーレンズ等に使用す
るために適した形状、サイズに成形される。この成形
は、一般に、所望の形状のルツボ内に脈理を除去した透
明石英ガラスを入れ、これを加熱炉で少なくとも150
0℃以上に加熱し、石英ガラスの自重で成形する。この
場合、従来法と同様に、カーボン製のルツボが一般に使
用される。また、加熱炉も、従来法と同様に、カーボン
ヒータ仕様のものが使用される。このため、成形雰囲気
は、真空、もしくはHe,N2などの不活性ガス中で行
う。加熱温度、加熱時間などの条件は、所望する成形体
のサイズや形状に応じて適宜選択される。
The striae-cleared transparent quartz glass is then formed into a shape and size suitable for use in a final product such as a stepper lens. This molding is generally carried out by placing a clear quartz glass free of striae in a crucible having a desired shape and heating it at least 150 in a heating furnace.
It is heated to 0 ° C or higher and molded by the weight of quartz glass. In this case, as in the conventional method, a crucible made of carbon is generally used. Further, as the heating furnace, one having a carbon heater specification is used as in the conventional method. Therefore, the molding atmosphere is vacuum or an inert gas such as He or N 2 . Conditions such as heating temperature and heating time are appropriately selected according to the desired size and shape of the molded body.

【0022】一般的に光学材料は歪が5nm/cm以下
であることが要求されるので、本発明においては、成形
された透明石英ガラスは、その成形歪をアニール処理に
より除去することが必要である。この成形歪みの除去
は、成形された透明石英ガラスを、石英ガラスの歪点よ
りも高い温度まで加熱し、その後、該透明石英ガラスを
徐冷することにより行われる。
Generally, the optical material is required to have a strain of 5 nm / cm or less. Therefore, in the present invention, it is necessary to remove the molding strain of the molded transparent quartz glass by annealing. is there. The removal of the molding strain is performed by heating the molded transparent quartz glass to a temperature higher than the strain point of the quartz glass, and then gradually cooling the transparent quartz glass.

【0023】一般に、合成石英ガラスの歪点は約102
5℃であるので、本発明においては、成形された透明石
英ガラスは、成形歪みをほぼ完全に除去させるために、
1100℃乃至1250℃の範囲内の温度まで加熱し、
徐冷される。徐冷はできるだけゆっくり行われるのが好
ましい。本発明においては、アニール処理は石英ガラス
中の屈折率分布の均一化にも貢献している。
Generally, the strain point of synthetic quartz glass is about 102.
Since the temperature is 5 ° C., in the present invention, the molded transparent quartz glass has a
Heat to a temperature in the range of 1100 ° C to 1250 ° C,
Slowly cooled. The slow cooling is preferably performed as slowly as possible. In the present invention, the annealing treatment also contributes to making the refractive index distribution in the quartz glass uniform.

【0024】石英ガラスの屈折率は、主に、OH基や塩
素などの不純物含有量と仮想温度(fictive temperatu
re)により決定される。これらのうち、OH基は数10
ppm以下なので無視でき、その他の不純物も合成石英の
場合、実質的に無視することができるので、アニール処
理の際の仮想温度の設定が重要である。つまり、均一な
屈折率分布を得るためには、処理するガラス成形体全体
の仮想温度を均一にしなければならない。この為、一旦
徐冷点以上の温度に石英ガラスを加熱したのち、一定時
間その温度で保持してガラス内部の温度分布を均一に
し、その後できるだけゆっくりと降温する。これは、石
英ガラス全体で、できるだけ温度差を生じないようにす
るためである。この場合、もし、この降温スピードを速
くすると、石英ガラス中の任意の位置で温度差が生じ、
その結果、異なる仮想温度が設定され、均一な屈折率分
布が得られない。
The refractive index of quartz glass is mainly determined by the content of impurities such as OH groups and chlorine and the fictive temperatu.
re). Of these, the number of OH groups is 10
Since it is less than ppm, it can be ignored, and other impurities can be substantially ignored in the case of synthetic quartz. Therefore, it is important to set the fictive temperature during the annealing process. That is, in order to obtain a uniform refractive index distribution, it is necessary to make the fictive temperature of the entire glass molded body to be processed uniform. Therefore, once the quartz glass is heated to a temperature equal to or higher than the annealing point, it is kept at that temperature for a certain time to make the temperature distribution inside the glass uniform, and then the temperature is lowered as slowly as possible. This is for minimizing the temperature difference in the entire quartz glass. In this case, if this cooling rate is increased, a temperature difference will occur at any position in the quartz glass,
As a result, different fictive temperatures are set, and a uniform refractive index distribution cannot be obtained.

【0025】本発明においては、上記のアニール処理に
おける加熱温度は1200℃程度であり、加熱時間及び
降温スピードは処理する素材の大きさや形状を考慮し
て、適当に選ばれる。一般的に、大きな素材ほど加熱時
間を長くし、かつ、降温スピードを遅くするのが好まし
い。
In the present invention, the heating temperature in the above annealing treatment is about 1200 ° C., and the heating time and the temperature lowering speed are appropriately selected in consideration of the size and shape of the material to be treated. In general, it is preferable that the larger the material, the longer the heating time and the slower the cooling rate.

【0026】本発明においては、揮発性ケイ素化合物
を、酸水素炎により火炎加水分解し、生成する微粒子シ
リカを耐熱性基体上に堆積させてシリカガラスの多孔質
母材を製造し、該シリカガラスの多孔質母材を1×10
-2トール以上の高真空度で加熱して、透明な石英ガラス
を形成し、該透明石英ガラスを均質化処理することによ
り、少なくとも一方向、好ましくは三方向に脈理を有し
ない高均質石英ガラスを形成し、該高均質石英ガラスを
成形後アニール処理するので、得られる石英ガラス部材
は、紫外線照射によって生成する常磁性欠陥のもとにな
る固有欠陥、例えばSiOHや塩素などのその他の不純
物濃度が低減され、結果的に常磁性欠陥の生成は抑制さ
れる。
In the present invention, a volatile silicon compound is flame-hydrolyzed by an oxyhydrogen flame, and the resulting fine particle silica is deposited on a heat resistant substrate to produce a porous base material of silica glass. 1 x 10 of porous matrix
-Highly homogeneous quartz having no striae in at least one direction, preferably in three directions, by forming a transparent quartz glass by heating at a high degree of vacuum of 2 Torr or more and homogenizing the transparent quartz glass. Since the glass is formed and the highly homogeneous quartz glass is annealed after being molded, the obtained quartz glass member has inherent defects that cause paramagnetic defects generated by ultraviolet irradiation, for example, other impurities such as SiOH and chlorine. The concentration is reduced, and as a result, generation of paramagnetic defects is suppressed.

【0027】以上のように本発明により製造されたエキ
シマレーザー用石英ガラス部材は、均質性がよく、か
つ、耐エキシマレーザー性に優れており、殊に、エキシ
マレーザーを光源とするステッパーレンズ用の石英ガラ
スとして好適であり、また、紫外線照射に伴う紫外線領
域の吸収の増加を抑制することができる。
The quartz glass member for excimer laser manufactured according to the present invention as described above has good homogeneity and excellent excimer laser resistance, and is particularly suitable for stepper lenses using an excimer laser as a light source. It is suitable as quartz glass, and can also suppress an increase in absorption in the ultraviolet region due to ultraviolet irradiation.

【0028】[0028]

【実施例】本発明の実施態様について、以下、例を挙げ
て説明するが、本発明は、以下の説明及び例示によっ
て、何等制限されるものではない。 例1.四塩化けい素を蒸留処理して不純物を除去した
後、これを原料として、CVD法で外形150mm,長
さ600mmの円柱状の多孔質石英ガラス母材を作製し
た。該多孔質石英ガラス母材を、カーボンヒーター仕様
の真空炉にいれ、10-5トールまで真空排気した。この
後、ヒーターを昇温し、母材を加熱した。加熱条件は8
00℃まで10℃/min.で、800〜1400℃で
は1℃/min.の昇温速度で加熱し、1400℃に達
した時点で加熱をストップし、自然冷却した。外径10
5mm,長さ550mmの円柱状の透明ガラス体が得ら
れた。得られた透明ガラス体のOH濃度は約25ppm
であった。
EXAMPLES The embodiments of the present invention will be described below with reference to examples, but the present invention is not limited to the following descriptions and examples. Example 1. After removing impurities by distilling silicon tetrachloride, a cylindrical porous quartz glass base material having an outer diameter of 150 mm and a length of 600 mm was produced by the CVD method using this as a raw material. The porous quartz glass base material was placed in a vacuum furnace with a carbon heater specification and evacuated to 10 −5 Torr. After that, the heater was heated to heat the base material. The heating condition is 8
Up to 00 ° C, 10 ° C / min. At 800-1400 ° C, 1 ° C / min. The temperature was raised at a heating rate of 1, and when the temperature reached 1400 ° C, the heating was stopped and the mixture was naturally cooled. Outer diameter 10
A cylindrical transparent glass body having a length of 5 mm and a length of 550 mm was obtained. OH concentration of the obtained transparent glass body is about 25 ppm
Met.

【0029】該円柱状透明ガラス体の両端に石英ガラス
製の支持棒を取り付け、旋盤のチャックに固定した。プ
ロパンガスバーナーにより、上記の多孔質石英母材より
作製した透明ガラス部分を加熱し、旋盤を回転させ、該
透明ガラス部分を捻った。この時の作業温度は、約20
00℃であった。捻られた透明ガラス部分には3方向に
は脈理は観測されなかった。しかるのち、該透明石英ガ
ラス部分を切り出し、カーボンヒーター仕様の加熱炉で
成形し、外径250mm,長さ75mmの円柱状の成形
体を得た。この時の成形温度は約1700℃で、窒素ガ
ス雰囲気中で行った。
Support rods made of quartz glass were attached to both ends of the cylindrical transparent glass body and fixed to a chuck of a lathe. The transparent glass portion produced from the above-mentioned porous quartz preform was heated with a propane gas burner, the lathe was rotated, and the transparent glass portion was twisted. The working temperature at this time is about 20.
It was 00 ° C. No striae was observed in the twisted transparent glass portion in three directions. Then, the transparent quartz glass portion was cut out and molded in a heating furnace with a carbon heater specification to obtain a cylindrical molded body having an outer diameter of 250 mm and a length of 75 mm. The molding temperature at this time was about 1700 ° C., and the molding was performed in a nitrogen gas atmosphere.

【0030】該成形体を歪み取りのためのアニール熱処
理を行った。熱処理条件は、1100℃まで昇温したの
ち、0.1℃/min.で600℃まで降温した。熱処
理は大気中の雰囲気で行った。得られたガラス体の複屈
折は2nm/cm以下であり、屈折率分布も実質上均一
であり、屈折率の最大値と最小値の差は1×10-6以下
であった。
The molded body was subjected to annealing heat treatment for strain relief. The heat treatment condition was that the temperature was raised to 1100 ° C. and then 0.1 ° C./min. The temperature was lowered to 600 ° C. The heat treatment was performed in the atmosphere. The birefringence of the obtained glass body was 2 nm / cm or less, the refractive index distribution was substantially uniform, and the difference between the maximum and minimum values of the refractive index was 1 × 10 -6 or less.

【0031】紫外線照射に対する常磁性欠陥の生成を調
べるために、上記の透明石英ガラス成型体の一部を切り
出し、境面に研磨した10 × 10 × 40(mm)の
ガラス体に加工した。該石英ガラス体にArFレーザー
を照射し、193nmの光の透過率の変化を調べた。A
rFレーザーの照射条件は、エネルギー密度200mJ
/cm2・パルス、周波数100ヘルツで行った。図1
にArF照射パルス数に対する193nm吸収強度を示
した。なお、縦軸の吸収強度はサンプルの厚さ1cm当
りの吸光度(−Log(内部透過率))で示している。
In order to investigate the generation of paramagnetic defects due to ultraviolet irradiation, a part of the above-mentioned transparent quartz glass molded body was cut out and processed into a glass body of 10 × 10 × 40 (mm) which was polished on the boundary surface. The quartz glass body was irradiated with an ArF laser, and changes in the transmittance of light at 193 nm were examined. A
Irradiation condition of rF laser is energy density 200 mJ
/ Cm 2 · pulse, frequency 100 Hz. Figure 1
Shows the 193 nm absorption intensity with respect to the ArF irradiation pulse number. The absorption intensity on the vertical axis is represented by the absorbance (-Log (internal transmittance)) per 1 cm of the thickness of the sample.

【0032】例2.四塩化けい素を蒸留処理して不純物
を除去した後、これを原料として、CVD法で外形70
mm、長さ600mmの円柱状の多孔質石英ガラス母材
を作製した。該多孔質石英ガラス母材を、カーボンヒー
ター仕様の真空炉にいれ、10-5トールまで真空排気し
た。この後、ヒーターを昇温し、母材を加熱した。加熱
条件は800℃まで10℃/min.で、800〜14
00℃では1℃/min.の昇温速度で加熱し、140
0℃に達した時点で加熱ストップし、自然冷却した。外
径50mm,長さ550mmの円柱状の透明ガラス体が
得られた。得られた透明ガラス体のOH濃度は約15p
pmであった。
Example 2. After removing the impurities by subjecting silicon tetrachloride to a distillation treatment, using this as a raw material, the outer shape 70 is formed by the CVD method.
A cylindrical porous quartz glass base material having a size of mm and a length of 600 mm was produced. The porous quartz glass base material was placed in a vacuum furnace with a carbon heater specification and evacuated to 10 −5 Torr. After that, the heater was heated to heat the base material. Heating conditions are 10 ° C / min. Up to 800 ° C. So 800-14
At 00 ° C, 1 ° C / min. Heating at a heating rate of 140
When the temperature reached 0 ° C, the heating was stopped and the mixture was naturally cooled. A cylindrical transparent glass body having an outer diameter of 50 mm and a length of 550 mm was obtained. The obtained transparent glass body has an OH concentration of about 15 p.
It was pm.

【0033】該円柱状透明ガラス体を同様の方法で均質
化し、しかるのち、該透明石英ガラス部分を切り出し、
カーボンヒーター仕様の加熱炉で成形し、外径120m
m、長さ80mmの円柱状の成形体を得た。この時の成
形温度は約1700℃で、窒素ガス雰囲気中で行った。
The cylindrical transparent glass body was homogenized by the same method, and then the transparent quartz glass portion was cut out,
Molded in a heating furnace with carbon heater specifications, outer diameter 120 m
A columnar molded body having m and a length of 80 mm was obtained. The molding temperature at this time was about 1700 ° C., and the molding was performed in a nitrogen gas atmosphere.

【0034】該成形体を歪み取りのためのアニール熱処
理を行った。熱処理条件は、1100℃まで昇温したの
ち、0.2℃/min.で600℃まで降温した。熱処
理は大気中の雰囲気で行った。得られたガラス体の複屈
折は、2nm/cm以下であり、屈折率分布も実質上均
一であり、屈折率の最大値と最小値の差は、0.8×1
-6であった。実施例1と同様の条件でArFレーザー
を照射し、結果をまとめて図1に示した。
The molded body was annealed and heat-treated for strain relief. The heat treatment condition was that the temperature was raised to 1100 ° C. and then 0.2 ° C./min. The temperature was lowered to 600 ° C. The heat treatment was performed in the atmosphere. The birefringence of the obtained glass body is 2 nm / cm or less, the refractive index distribution is substantially uniform, and the difference between the maximum value and the minimum value of the refractive index is 0.8 × 1.
It was 0 -6. IrF laser irradiation was performed under the same conditions as in Example 1, and the results are shown together in FIG.

【0035】比較例1.上記実施例1の場合と同様にし
て作製した多孔質石英ガラス母材を、カーボン仕様の炉
にいれ、Heガス雰囲気中で透明ガラス化した。加熱条
件は、1600℃まで10℃/min.で昇温し、16
00℃に達した時点で加熱をストップし、自然冷却し
た。得られた透明ガラス体のOH濃度は約300ppm
であった。しかるのち、実施例1と同じ条件で、均質化
工程、成形工程、アニール工程の処理を施した。複屈折
及び屈折率分布は、実施例1の場合とほぼ同じであっ
た。実施例1と同様の条件でArFレーザーを照射し、
結果をまとめて図1に示した。
Comparative Example 1. The porous quartz glass base material produced in the same manner as in the case of Example 1 above was placed in a carbon specification furnace to be transparent vitrified in a He gas atmosphere. The heating conditions are 10 ° C./min. To raise the temperature to 16
When the temperature reached 00 ° C, heating was stopped and the mixture was naturally cooled. The obtained transparent glass body has an OH concentration of about 300 ppm.
Met. Then, under the same conditions as in Example 1, the homogenization process, the molding process, and the annealing process were performed. The birefringence and refractive index distribution were almost the same as in Example 1. Irradiate with an ArF laser under the same conditions as in Example 1,
The results are summarized in Fig. 1.

【0036】比較例2.一般的に用いられている光学用
の合成石英ガラスについて、上記実施例1と同様の条件
でArFレーザーを照射し、評価した。これは、四塩化
けい素を直接火炎加水分解法(酸素・水素火炎によるダ
イレクト法)により合成した石英ガラスである。このガ
ラスのOH濃度は約900ppmであった。この石英ガ
ラスに実施例1と同じ条件で、均質化工程、成形工程、
アニール工程の処理を施した。複屈折及び屈折率分布
は、実施例1の場合とほぼ同じであった。実施例1と同
様の条件でArFレーザーを照射し、結果をまとめて図
1に示した。
Comparative Example 2. The commonly used optical synthetic quartz glass was irradiated with an ArF laser under the same conditions as in Example 1 above and evaluated. This is quartz glass obtained by synthesizing silicon tetrachloride by a direct flame hydrolysis method (a direct method using an oxygen / hydrogen flame). The OH concentration of this glass was about 900 ppm. Under the same conditions as in Example 1, this quartz glass was subjected to a homogenization step, a molding step,
An annealing process was performed. The birefringence and refractive index distribution were almost the same as in Example 1. IrF laser irradiation was performed under the same conditions as in Example 1, and the results are shown together in FIG.

【0037】実施例1、2と比較例1、2では、複屈
折、及び屈折率分布は、ほぼ同じ値を示した。しかしな
がら、ArFレーザー照射に対する耐性は図1の結果に
示されるように、実施例1、2の場合、吸光度の増加
が、他の比較例1、2と較べて著しく抑制されているこ
とが判る。特に比較例2と較べた場合、実施例1、2の
吸光度の増加は約4分の1に抑制されている。これは、
ArFレーザー照射にともなって生成する常磁性欠陥の
生成量が低いこと、及び真空雰囲気での透明ガラス化処
理に依ってより紫外線の照射に対して安定なガラスが作
製できることを示している。
In Examples 1 and 2 and Comparative Examples 1 and 2, the birefringence and the refractive index distribution showed almost the same value. However, as shown in the results of FIG. 1, the resistance to ArF laser irradiation shows that the increase in absorbance is significantly suppressed in Examples 1 and 2 as compared with the other Comparative Examples 1 and 2. In particular, when compared with Comparative Example 2, the increase in absorbance of Examples 1 and 2 is suppressed to about 1/4. this is,
It is shown that the amount of paramagnetic defects generated by ArF laser irradiation is low, and that glass that is more stable to ultraviolet irradiation can be produced by the transparent vitrification treatment in a vacuum atmosphere.

【0038】[0038]

【発明の効果】本発明においては、高純度四塩化けい素
等の高純度揮発性けい素化合物を、酸水素炎により火炎
加水分解し、この分解により生成する微粒子シリカを耐
熱性基体上に堆積させてシリカガラスの多孔質母材を製
造し、該シリカガラスの多孔質母材を1×10-2トール
以上の高真空度で加熱して、透明な石英ガラスを形成
し、該透明石英ガラスを均質化処理することにより、少
なくとも一方向に脈理を有しない高均質石英ガラスを形
成し、該高均質石英ガラスを成形後アニール処理するの
で、従来の製法によるエキシマレーザー用石英ガラス部
材と比較して、不純物の混入を極力抑えることができ、
かつ、ガラスの固有欠陥濃度の低いガラスを作成するこ
とができる。その結果、本発明によると、従来の方法に
比して、紫外線照射に対して、常磁性欠陥の生成を抑制
することができ、耐紫外線性の優れた石英ガラスが得ら
れる。
INDUSTRIAL APPLICABILITY In the present invention, high-purity volatile silicon compounds such as high-purity silicon tetrachloride are subjected to flame hydrolysis by an oxyhydrogen flame, and fine particle silica produced by this decomposition is deposited on a heat-resistant substrate. To produce a porous base material of silica glass, and heat the porous base material of silica glass at a high vacuum degree of 1 × 10 -2 Torr or more to form transparent quartz glass, and the transparent quartz glass Is homogenized to form a highly homogeneous quartz glass having no striae in at least one direction, and the highly homogeneous quartz glass is annealed after being molded, so that it is compared with a conventional quartz glass member for excimer laser. Then, the mixture of impurities can be suppressed as much as possible,
In addition, it is possible to produce glass having a low intrinsic defect concentration of glass. As a result, according to the present invention, as compared with the conventional method, it is possible to suppress the generation of paramagnetic defects with respect to the irradiation of ultraviolet rays, and it is possible to obtain quartz glass having excellent ultraviolet resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び比較例におけるArFレー
ザ照射パルス数に対する193nmの光の吸収曲線を示
す図である。
FIG. 1 is a diagram showing absorption curves of 193 nm light with respect to the number of ArF laser irradiation pulses in Examples and Comparative Examples of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 揮発性けい素化合物を、酸水素炎により
火炎加水分解し、生成する微粒子シリカを耐熱性基体上
に堆積させてシリカガラスの多孔質母材を製造し、該シ
リカガラスの多孔質母材を1×10-2トール以上の高真
空度で加熱して、透明な石英ガラスを形成し、該透明石
英ガラスを均質化処理することにより、少なくとも一方
向に脈理を有しない高均質石英ガラスを形成し、該高均
質石英ガラスを成形後アニール処理することを特徴とす
るエキシマレーザー用石英ガラス部材の製造方法。
1. A volatile silicon compound is flame-hydrolyzed by an oxyhydrogen flame, and the resulting fine particle silica is deposited on a heat-resistant substrate to produce a porous base material of silica glass. The base material is heated at a high degree of vacuum of 1 × 10 -2 Torr or higher to form transparent quartz glass, and the transparent quartz glass is homogenized to obtain a high-strength material having no striae in at least one direction. A method for producing a quartz glass member for an excimer laser, which comprises forming a homogeneous quartz glass, shaping the highly homogeneous quartz glass, and then annealing the molded quartz glass.
【請求項2】 石英ガラスの均質化処理が1600℃以
上の温度で行われることを特徴とする請求項1に記載の
エキシマレーザー用石英ガラス部材の製造方法。
2. The method for producing a quartz glass member for an excimer laser according to claim 1, wherein the homogenizing treatment of the quartz glass is performed at a temperature of 1600 ° C. or higher.
【請求項3】 高均質の石英ガラスの成形が1500℃
以上の温度で行われることを特徴とする請求項1に記載
のエキシマレーザー用石英ガラス部材の製造方法。
3. Molding of highly homogeneous quartz glass is 1500 ° C.
The method for manufacturing a quartz glass member for excimer laser according to claim 1, wherein the method is performed at the above temperature.
【請求項4】 アニール処理が800℃乃至1250℃
の温度範囲の温度下で行われることを特徴とする請求項
1に記載のエキシマレーザー用成形ガラス部材の製造方
法。
4. The annealing treatment is 800 ° C. to 1250 ° C.
The method for producing a molded glass member for an excimer laser according to claim 1, wherein the method is performed at a temperature within the temperature range.
JP3182858A 1991-06-29 1991-06-29 Method of manufacturing quartz glass member for excimer laser Expired - Lifetime JP2835540B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP3182858A JP2835540B2 (en) 1991-06-29 1991-06-29 Method of manufacturing quartz glass member for excimer laser
KR1019930700573A KR0165695B1 (en) 1991-06-29 1992-06-29 Synthetic quartz glass optical member for excimer laser and production thereof
EP92913798A EP0546196B1 (en) 1991-06-29 1992-06-29 Synthetic quartz glass optical member for excimer laser and production thereof
DE199292913798T DE546196T1 (en) 1991-06-29 1992-06-29 SYNTHETIC GLASS OPTICAL ELEMENT FOR EXCIMER LASER AND ITS PRODUCTION.
DE69219445T DE69219445T2 (en) 1991-06-29 1992-06-29 SYNTHETIC OPTICAL ELEMENT MADE OF QUARTZ GLASS FOR EXCIMER LASER AND ITS PRODUCTION
US07/977,397 US5364433A (en) 1991-06-29 1992-06-29 Optical member of synthetic quartz glass for excimer lasers and method for producing same
PCT/JP1992/000821 WO1993000307A1 (en) 1991-06-29 1992-06-29 Synthetic quartz glass optical member for excimer laser and production thereof
US08/286,538 US5523266A (en) 1991-06-29 1994-08-05 Optical member of synthetic quartz glass for excimer lasers and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182858A JP2835540B2 (en) 1991-06-29 1991-06-29 Method of manufacturing quartz glass member for excimer laser

Publications (2)

Publication Number Publication Date
JPH05186234A true JPH05186234A (en) 1993-07-27
JP2835540B2 JP2835540B2 (en) 1998-12-14

Family

ID=16125684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182858A Expired - Lifetime JP2835540B2 (en) 1991-06-29 1991-06-29 Method of manufacturing quartz glass member for excimer laser

Country Status (1)

Country Link
JP (1) JP2835540B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000272925A (en) * 1998-12-28 2000-10-03 Pirelli Cavi & Syst Spa Production of silica by decomposition of organosilane
JP2005519301A (en) * 2002-03-05 2005-06-30 コーニング インコーポレイテッド Optical member and method for predicting performance of optical member and optical system
JP2006273659A (en) * 2005-03-29 2006-10-12 Asahi Glass Co Ltd Method for producing synthetic quartz glass and synthetic quartz glass for optical member
JP2010184860A (en) * 2009-01-19 2010-08-26 Shin-Etsu Chemical Co Ltd Method for producing synthetic quartz glass for excimer laser
JP2022526062A (en) * 2020-09-22 2022-05-23 中天科技精密材料有限公司 Low hydroxy group high purity quartz glass and its preparation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000272925A (en) * 1998-12-28 2000-10-03 Pirelli Cavi & Syst Spa Production of silica by decomposition of organosilane
JP2005519301A (en) * 2002-03-05 2005-06-30 コーニング インコーポレイテッド Optical member and method for predicting performance of optical member and optical system
JP2006273659A (en) * 2005-03-29 2006-10-12 Asahi Glass Co Ltd Method for producing synthetic quartz glass and synthetic quartz glass for optical member
JP2010184860A (en) * 2009-01-19 2010-08-26 Shin-Etsu Chemical Co Ltd Method for producing synthetic quartz glass for excimer laser
JP2022526062A (en) * 2020-09-22 2022-05-23 中天科技精密材料有限公司 Low hydroxy group high purity quartz glass and its preparation method
US11981594B2 (en) 2020-09-22 2024-05-14 Zhongtian Technology Advanced Materials Co., Ltd. Quartz glass with low content of hydroxyl and high purity and method for preparing the same

Also Published As

Publication number Publication date
JP2835540B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
EP0546196B1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
EP2178804B1 (en) Method of making fused silica having low oh and od levels
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
JP4763877B2 (en) Synthetic quartz glass optical material and optical member for F2 excimer laser
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JP2862001B2 (en) Manufacturing method of quartz glass optical member
JP2588447B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2003246641A (en) Quartz glass bland for optical member, manufacturing method thereof and application for the same
US9611169B2 (en) Doped ultra-low expansion glass and methods for making the same
JP2003176141A (en) Quartz glass base for optical apparatus, method of manufacturing the same and their use
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP4493060B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP4437886B2 (en) Quartz glass blank for optical members and use thereof
JP2001199735A (en) Quartz glass body for optical part and method for producing the same
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP2861512B2 (en) Manufacturing method of quartz glass optical member
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JPH0742133B2 (en) Synthetic quartz glass optical member for ultraviolet laser
JP2001247318A (en) Synthesized silica glass optical member ahd method for producing the same
US20020046580A1 (en) Synthetic quartz glass article and process of production
JP3368932B2 (en) Transparent quartz glass and its manufacturing method
JP2003238195A (en) Synthetic quartz glass member
JP4159852B2 (en) Synthetic quartz glass material for optical components

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 13