JPH0518587A - Controlling method for air conditioner - Google Patents

Controlling method for air conditioner

Info

Publication number
JPH0518587A
JPH0518587A JP3172557A JP17255791A JPH0518587A JP H0518587 A JPH0518587 A JP H0518587A JP 3172557 A JP3172557 A JP 3172557A JP 17255791 A JP17255791 A JP 17255791A JP H0518587 A JPH0518587 A JP H0518587A
Authority
JP
Japan
Prior art keywords
compressor
pressure
temperature
overload
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3172557A
Other languages
Japanese (ja)
Inventor
Tomio Mogi
富雄 茂木
Kimio Nagasawa
侯夫 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3172557A priority Critical patent/JPH0518587A/en
Publication of JPH0518587A publication Critical patent/JPH0518587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent a high temperature of brine after a holiday, and prevent an overload protector from operating in a temporary overload state by lowering capacity of a compressor when a refrigerant pressure becomes a high load state before reaching an overload state, and eliminating the low capacity operation within a predetermined time. CONSTITUTION:Pressure switches 25, 26 detects low and high pressures of a compressor 1, and operate when it exceeds the set value to protect against low and high pressures. A pressure switch 27 detects a high pressure of the compressor 1, and operates when it becomes a predetermined pressure or higher. The predetermined pressure is a lower value than the set value of the switch 26 and when the compressor 1 becomes an overload, and protects against a high load by the operation of the switch 27 by the value of the high load state before the compressor 1 becomes an overload. Since the compressor is operated with the low capacity for a predetermined time when the compressor becomes the high load state, the compressor does not reach the overload even if brine temperature is raised after a holiday, etc., thereby preventing stop of the operation due to the operation of an overload protector.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍サイクルで冷却され
たブラインを被調和室に循環させて空調を行なう空気調
和機に関し、空気調和機の運転停止中に配管中のブライ
ンの温度が室温又は外気温まで上昇した際の圧縮機の運
転保護に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner in which brine cooled in a refrigeration cycle is circulated in a room to be conditioned for air conditioning, and the temperature of the brine in the pipe is room temperature or when the operation of the air conditioner is stopped. It concerns the operational protection of the compressor when it reaches the outside temperature.

【0002】[0002]

【従来の技術】このような従来の空気調和機の従来技術
としては特公昭58−33457号公報に記載されてい
るようなものがあった。この公報に記載されたものは、
冷凍サイクルの低圧側に圧力スイッチを設け、この圧力
スイッチを利用して低圧圧力がスイッチの作動圧力より
低いときは低圧保護動作を無効にし、低圧圧力がスイッ
チの作動圧力より高い時は水熱交換器の凍結防止動作を
無効にするものであった。
2. Description of the Related Art As a conventional technique of such a conventional air conditioner, there is one disclosed in Japanese Patent Publication No. 58-33457. What is described in this publication is
A pressure switch is provided on the low-pressure side of the refrigeration cycle.Using this pressure switch, the low-pressure protection operation is disabled when the low-pressure pressure is lower than the operating pressure of the switch, and water heat exchange is performed when the low-pressure pressure is higher than the operating pressure of the switch. It was intended to invalidate the freeze prevention operation of the vessel.

【0003】このように成すことによって、暖房シーズ
ン中であって装置を運転させていない時、水温が異常に
低下していても凍結防止動作が動作せず暖房運転の開始
を可能にするものであった。
By doing so, during the heating season and when the device is not operated, even if the water temperature is abnormally lowered, the antifreezing operation does not operate and the heating operation can be started. there were.

【0004】[0004]

【発明が解決しようとする課題】以上のような従来の技
術は暖房運転時の運転開始に関するものであるがこの動
作は冷房運転時の運転開始に応用することができる。す
なわち、冷房シーズン中であって休日等に空調運転を行
なわず、水温が室温又は外気温まで高くなっている時の
運転開始時に、過負荷保護動作を無効にして運転開始時
の過負荷保護動作による運転不能を防止するものが考え
られるが、実際に過負荷保護動作が行なわれる時は圧縮
機が最大能力で運転し過電流が流れる状態であるので、
この過負荷保護動作を無効にすると圧縮機が焼損してし
まう問題点を有するものであった。
The above-mentioned conventional technique relates to the start of operation during the heating operation, but this operation can be applied to the start of operation during the cooling operation. That is, during the cooling season, the air-conditioning operation is not performed on holidays, and the overload protection operation is disabled at the start of operation when the water temperature rises to room temperature or outside temperature. Although it is possible to prevent inoperability due to, the compressor is operating at maximum capacity and overcurrent flows when the overload protection operation is actually performed.
If this overload protection operation is invalidated, there is a problem that the compressor burns out.

【0005】このような問題点に対して本発明は圧縮機
が焼損することなく高負荷時の運転開始を可能にした制
御方法を提供するものである。
In order to solve such a problem, the present invention provides a control method capable of starting operation under high load without burning the compressor.

【0006】[0006]

【課題を解決するための手段】本発明の制御方法は能力
可変型の圧縮機を用いて冷凍サイクルを構成し、この冷
凍サイクルで冷却されたブラインを被調和室に循環させ
るように成し、このブラインの温度に基づいて圧縮機の
能力を変えるように成すと共に圧縮機の過負荷保護が行
なえる空気調和機において、冷凍サイクル中の冷媒圧力
を検出する圧力検出器を備え、この冷媒圧力が圧縮機の
過負荷状態に至る前の高負荷状態を示す圧力に成った際
に圧縮機の能力を低下させると共に、この低能力運転を
所定時間内に解除するものである。
According to the control method of the present invention, a refrigerating cycle is constituted by using a variable capacity compressor, and brine cooled in this refrigerating cycle is circulated to a room to be conditioned, In an air conditioner that is configured to change the capacity of the compressor based on the temperature of the brine and can perform overload protection of the compressor, a pressure detector that detects the refrigerant pressure during the refrigeration cycle is provided, and this refrigerant pressure is When the pressure reaches a high load state before reaching the overload state of the compressor, the capacity of the compressor is reduced and the low capacity operation is canceled within a predetermined time.

【0007】[0007]

【作用】このように構成された制御方法を用いることに
よって、休日明け等に配管内のブラインの温度が室温又
は外気温まで上昇していても、空気調和機の運転開始時
に冷凍サイクル中の圧力を検出して圧縮機が過負荷状態
に至る前の高負荷状態を判断し、圧縮機の能力を低下さ
せて圧縮機が過負荷状態に至るのを防止することができ
る。
By using the control method configured as described above, even if the temperature of the brine in the pipe rises to the room temperature or the outside temperature after the holiday, the pressure in the refrigeration cycle at the start of the operation of the air conditioner Can be detected to determine the high load state before the compressor reaches the overload state, reduce the capacity of the compressor, and prevent the compressor from reaching the overload state.

【0008】[0008]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。図2は本発明の空気調和機の冷媒回路である。この
図2において冷房運転時は実線矢印の方向に流れる。す
なわち圧縮機1にて加圧された高温高圧の冷媒ガスはマ
フラ2にて消音され、四方弁3に流入する。四方弁は操
作盤のスイッチによる冷房/暖房の切換えおよび暖房運
転中の除霜信号などにより自動的に切り換えられる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a refrigerant circuit of the air conditioner of the present invention. In FIG. 2, during cooling operation, the current flows in the direction of the solid arrow. That is, the high-temperature and high-pressure refrigerant gas pressurized by the compressor 1 is silenced by the muffler 2 and flows into the four-way valve 3. The four-way valve is automatically switched by switching between cooling / heating by a switch on the operation panel and a defrost signal during heating operation.

【0009】四方弁に流入した冷媒ガスは実線矢印に従
って空気熱交換器4(2分割されている)に流入する。
この空気熱交換器4では送風機(図示せず)によって供
給される外気と熱交換され、冷媒の熱は外気中に放散し
冷媒は高圧の液冷媒となって逆止弁6(実線の方向にの
み冷媒が流れる)を通って受液器7に溜められる。
The refrigerant gas flowing into the four-way valve flows into the air heat exchanger 4 (divided into two) according to the solid arrow.
In this air heat exchanger 4, heat is exchanged with the outside air supplied by a blower (not shown), the heat of the refrigerant is dissipated into the outside air, and the refrigerant becomes a high-pressure liquid refrigerant, which is a check valve 6 (in the direction of the solid line). Only the refrigerant flows) and is stored in the liquid receiver 7.

【0010】受液器5では内部の高圧冷媒とこの受液器
内を貫通する液分離管13内の低温低圧冷媒と熱交換し
て冷媒がさらに冷却される。
In the liquid receiver 5, the high pressure refrigerant inside and the low temperature low pressure refrigerant in the liquid separation pipe 13 penetrating the inside of the liquid receiver exchange heat with each other to further cool the refrigerant.

【0011】この冷却された冷媒はサイトグラス8、ド
ライヤ9、膨張弁10、逆止弁11を順に通過して水熱
交換器12へ流入する。膨張弁10は絞り作用により液
冷媒を低圧の気液混合冷媒に変える。従って、水熱交換
器12へはこの気液混合冷媒が流入する。また、膨張弁
10の絞り量は水熱交換器12で蒸発した後の低温低圧
冷媒の温度が一定になるように調節される。この温度は
圧縮機1へ吸込まれる冷媒の温度をセンサ14で検出し
た際の温度である。
The cooled refrigerant passes through the sight glass 8, the dryer 9, the expansion valve 10 and the check valve 11 in this order and flows into the water heat exchanger 12. The expansion valve 10 changes the liquid refrigerant into a low-pressure gas-liquid mixed refrigerant by the throttling action. Therefore, the gas-liquid mixed refrigerant flows into the water heat exchanger 12. Further, the expansion amount of the expansion valve 10 is adjusted so that the temperature of the low-temperature low-pressure refrigerant after being evaporated in the water heat exchanger 12 becomes constant. This temperature is the temperature when the temperature of the refrigerant sucked into the compressor 1 is detected by the sensor 14.

【0012】水熱交換器12では冷媒が蒸発する際にブ
ライン(例えば水又は不凍液など)を冷却する。この冷
却されたブラインは水出口15からブライン配管を通っ
て夫々の被調和室に設けられたファンコイルを通って再
び水入口16から水熱交換器12へ戻って来る。17は
温度センサでありファンコイルから戻って来るブライン
の温度を検出する。このブラインの温度が設定温度にな
るように圧縮機の能力が制御される。圧縮機の能力を変
える手段としてはインバータ装置を用いるもの、容量制
御装置を用いるもの、極数変換機を用いるもの、アンロ
ーダ機構を用いるものなどがある。温度センサ17の検
出する温度は通常5度〜20度の範囲が正常の値とされ
各々の保護装置の設定が行なわれている。
The water heat exchanger 12 cools the brine (eg, water or antifreeze) when the refrigerant evaporates. The cooled brine returns from the water outlet 15 to the water heat exchanger 12 again through the brine pipe, the fan coil provided in each of the controlled chambers, and the water inlet 16. A temperature sensor 17 detects the temperature of the brine returning from the fan coil. The capacity of the compressor is controlled so that the temperature of the brine becomes the set temperature. As means for changing the capacity of the compressor, there are one that uses an inverter device, one that uses a capacity control device, one that uses a pole number converter, and one that uses an unloader mechanism. The temperature detected by the temperature sensor 17 is normally in the range of 5 to 20 degrees and the normal value is set for each protection device.

【0013】18は温度センサであり、水出口15から
流出するブラインの温度を検出する。この温度が所定温
度(2度〜3度)になった時に水熱交換器12の凍結を
判断して圧縮機1の運転を停止する。
A temperature sensor 18 detects the temperature of the brine flowing out from the water outlet 15. When this temperature reaches a predetermined temperature (2 to 3 degrees), the water heat exchanger 12 is judged to be frozen and the operation of the compressor 1 is stopped.

【0014】水熱交換器12を出た冷媒は四方弁3によ
って実線矢印の方向に流出され液分離管13を通った
後、再び圧縮機に吸込まれる。液分離管13では、未蒸
発の状態で戻った一部の液冷媒が受液器7内の高圧冷媒
と熱交換を行ない適度に加熱された状態の冷媒になる。
The refrigerant discharged from the water heat exchanger 12 flows out in the direction of the solid arrow by the four-way valve 3, passes through the liquid separation pipe 13, and is sucked into the compressor again. In the liquid separation pipe 13, a part of the liquid refrigerant that has returned in the non-evaporated state exchanges heat with the high-pressure refrigerant in the liquid receiver 7 and becomes a properly heated refrigerant.

【0015】暖房運転時は冷媒が点線矢印の方向に流れ
る。すなわち、圧縮機1を出た高温高圧の冷媒ガスは四
方弁3により水熱交換器12へ導かれ、ファンコイルか
らの循環ブラインと熱交換して暖房用の温水を作り出
す。従って、冷媒は水熱交換器12で凝縮して高圧の液
冷媒となり逆止弁19を通って受液器7へ流入する。
During the heating operation, the refrigerant flows in the direction of the dotted arrow. That is, the high-temperature and high-pressure refrigerant gas that has exited the compressor 1 is guided to the water heat exchanger 12 by the four-way valve 3 and exchanges heat with the circulating brine from the fan coil to produce hot water for heating. Therefore, the refrigerant condenses in the water heat exchanger 12 to become a high-pressure liquid refrigerant and flows into the liquid receiver 7 through the check valve 19.

【0016】受液器を出た液冷媒は膨張弁10、逆止弁
20、空気熱交換器4、四方弁3、液分離管13を通っ
て再び圧縮機に吸込まれる。
The liquid refrigerant discharged from the liquid receiver passes through the expansion valve 10, the check valve 20, the air heat exchanger 4, the four-way valve 3 and the liquid separation pipe 13 and is sucked into the compressor again.

【0017】21は温度センサであり、圧縮機1の吐出
冷媒の温度を検出する。この温度が異常に高くなった時
は異常と判断し圧縮機の保護動作を行なう。
A temperature sensor 21 detects the temperature of the refrigerant discharged from the compressor 1. When this temperature becomes abnormally high, it is judged as abnormal and the compressor is protected.

【0018】22は温度センサであり、空気熱交換器4
と熱交換される外気の温度を検出する。この温度が低い
時はファンによる空気熱交換器4への送風量を減らして
空気熱交換器4による冷媒の熱交換量を一定に保つ。
Reference numeral 22 denotes a temperature sensor, which is an air heat exchanger 4
Detects the temperature of the outside air that is heat-exchanged with. When this temperature is low, the amount of air blown to the air heat exchanger 4 by the fan is reduced to keep the heat exchange amount of the refrigerant by the air heat exchanger 4 constant.

【0019】23,24は温度センサであり、空気熱交
換器4の温度を検出する。暖房運転時はこの温度の変化
で空気熱交換器4の着霜を判断して除霜運転の制御を行
なう。
Reference numerals 23 and 24 denote temperature sensors, which detect the temperature of the air heat exchanger 4. During the heating operation, the defrosting operation is controlled by determining the frost formation of the air heat exchanger 4 based on this temperature change.

【0020】25,26は圧力スイッチであり、圧縮機
1の低圧圧力、高圧圧力を検出し、圧力が夫々の設定値
を越えた時に動作する。これら圧力スイッチが動作する
ことによって低圧保護、高圧保護が行なわれる。
Numerals 25 and 26 are pressure switches, which detect the low pressure and high pressure of the compressor 1 and operate when the pressures exceed their respective set values. By operating these pressure switches, low pressure protection and high pressure protection are performed.

【0021】27は圧力スイッチであり、圧縮機1の高
圧圧力を検出し、圧力が所定圧力以上になった時動作す
る。所定圧力は圧力スイッチ26の設定値及び圧縮機1
が過負荷状態になった時の圧力より低い値であり、圧縮
機1が過負荷状態に至る前の高負荷状態を示す値であ
る。この圧力スイッチ27が動作することによって高負
荷保護が行なわれる。
A pressure switch 27 detects the high pressure of the compressor 1 and operates when the pressure exceeds a predetermined pressure. The predetermined pressure is the set value of the pressure switch 26 and the compressor 1.
Is a value lower than the pressure at the time of overload, and is a value indicating a high load state before the compressor 1 reaches the overload state. By operating this pressure switch 27, high load protection is performed.

【0022】高負荷保護は圧縮機1の能力を低下させる
運転であり、低能力で運転することによって圧縮機1が
その低能力に対して過負荷に至る電流が流れても圧縮機
の最大能力時の最大電流を越えることはない。
The high load protection is an operation for reducing the capacity of the compressor 1. By operating at a low capacity, even if a current leading to an overload flows to the compressor 1 due to its low capacity, the maximum capacity of the compressor is obtained. The maximum current of time is not exceeded.

【0023】図1はこの圧力スイッチが動作した際の高
圧保護の主な動作を示すフローチャートである。このフ
ローチャートにおいて、ステップS1でチラー運転(圧
縮機、空気熱交換器用の送風機、水熱交換器で冷却又は
加熱されたブラインの循環用ポンプなどの運転)を開始
する。ステップS2でP0>Pが判断された時はステッ
プS3へ進む。P0は圧力スイッチ27の検出する圧
力、Pは圧力スイッチ27の動作する所定圧力に対応し
ている。この所定圧力は例えば22kg/cm2程度で
ある。
FIG. 1 is a flow chart showing the main operation of high pressure protection when this pressure switch operates. In this flowchart, a chiller operation (operation of a compressor, a blower for an air heat exchanger, a circulation pump for brine cooled or heated by a water heat exchanger, etc.) is started in step S1. When P 0 > P is determined in step S2, the process proceeds to step S3. P 0 corresponds to the pressure detected by the pressure switch 27, and P corresponds to the predetermined pressure at which the pressure switch 27 operates. This predetermined pressure is, for example, about 22 kg / cm 2 .

【0024】ステップS3ではタイマT1がタイムUP
しているか否かの判断を行なう。タイマT1がタイムU
Pしている時はステップS4へ進みタイマT1とタイマ
T2とをリセットし再計時を開始する。次いでステップ
S5で圧縮機1の能力を100%から75%に減らす。
In step S3, the timer T1 sets the time UP.
Judge whether or not. Timer T1 is time U
When it is P, the process proceeds to step S4, and the timers T1 and T2 are reset and the time counting is started again. Next, in step S5, the capacity of the compressor 1 is reduced from 100% to 75%.

【0025】次にステップS6、ステップS7でタイマ
T2がタイムUPしたか又は圧力P 0がP0<Pになった
か否かの判断を行なう。ステップS6、ステップ7の条
件を満たした時はステップS8へ進み圧縮機の能力を1
00%に戻すものである。
Next, in steps S6 and S7, a timer is used.
T2 time up or pressure P 0Is P0<It became P
Determine whether or not. Step S6, Step 7
When the conditions are satisfied, the process proceeds to step S8 and the compressor capacity is set to 1
It will be returned to 00%.

【0026】このような動作を行なうことによって、圧
縮機が高負荷運転になった際には最大T2時間の間低能
力で運転が行なわれるので、休日明けなどでブラインの
温度が室温さらには外気温まで上昇していた時にも圧縮
機が過負荷に至らずこのブラインの温度上昇による負荷
の一時的な増加を吸収して、運転開始に過負荷保護装置
が動作して運転が中断するのを防止することができるも
のである。
By performing such an operation, when the compressor is operated under a high load, the operation is performed with a low capacity for a maximum of T2 hours, so that the temperature of the brine is kept at room temperature or outside even after a holiday. Even when the temperature is rising, the compressor does not overload and absorbs the temporary increase in load due to the temperature rise of the brine, and the overload protection device operates at the start of operation to stop the operation. It can be prevented.

【0027】図3は冷房運転を行なう際の具体的な電気
回路を示す要部電気回路図である。この図において、l
1,l2は電源母線である。30は運転スイッチ、31は
ブライン循環用のポンプ、32は圧縮機駆動用のリレー
であり高圧スイッチ26、低圧スイッチ25、常開接片
33を介して母線l1,l2間に接続されている。
FIG. 3 is a main part electric circuit diagram showing a specific electric circuit when performing the cooling operation. In this figure, l
Reference numerals 1 and 12 are power source buses. Reference numeral 30 is an operation switch, 31 is a pump for circulating brine, 32 is a relay for driving a compressor, and is connected between the bus lines l 1 and l 2 via a high-voltage switch 26, a low-voltage switch 25, and a normally-open contact piece 33. There is.

【0028】34は4段のサーモスタットで温度センサ
17の検出する水温と設定値との差に応じて接片35〜
38が動作する。図3に示す状態は水温と設定値との温
度差が大きい時の状態であり、この温度差が小さくなる
に連れて順に接片38、接片37、接片36、接片35
と切り換わって来るものである。例えば設定値を7度に
設定した場合、水温が7度以下で接片35が切り換わ
り、7.5度以下で接片36が切り換わり、8.5度以
下で接片37が切り換わり、10度以下で接片38が切
り換わるものである。
Reference numeral 34 is a four-stage thermostat, and depending on the difference between the water temperature detected by the temperature sensor 17 and the set value, the contact pieces 35 to 35 are provided.
38 operates. The state shown in FIG. 3 is a state in which the temperature difference between the water temperature and the set value is large, and as the temperature difference becomes smaller, the contact piece 38, the contact piece 37, the contact piece 36, and the contact piece 35 are sequentially arranged.
It will be switched to. For example, when the set value is set to 7 degrees, the contact piece 35 is switched when the water temperature is 7 degrees or lower, the contact piece 36 is switched when the water temperature is 7.5 degrees or lower, and the contact piece 37 is switched when the water temperature is 8.5 degrees or lower. The contact piece 38 is switched at 10 degrees or less.

【0029】従って、水温が7度以下では補助リレー3
9と送風機40の通電が遮断され圧縮機の運転が停止す
る。水温が7.5度以下7度以上ではアンローダ弁41
〜43(圧縮機の能力変更機構としてアンローダ弁を用
いている)が開き圧縮機の能力が25%になる。水温が
8.5度以下7.5度以上ではアンローダ弁42,43
が開き圧縮機の能力が50%になる。水温が10度以下
8.5度以上ではアンローダ弁43が開き圧縮機の能力
が75%になる。水温が10度以上ではアンローダ弁4
1〜43が閉じ圧縮機の能力が100%になる。
Therefore, when the water temperature is below 7 degrees, the auxiliary relay 3
9 and the blower 40 are de-energized to stop the operation of the compressor. Unloader valve 41 when water temperature is below 7.5 degrees and above 7 degrees
~ 43 (using an unloader valve as a compressor capacity change mechanism) opens up the compressor capacity to 25%. Unloader valves 42 and 43 when the water temperature is below 8.5 degrees and above 7.5 degrees
The capacity of the compressor becomes 50%. When the water temperature is 10 degrees or lower and 8.5 degrees or higher, the unloader valve 43 opens and the capacity of the compressor becomes 75%. Unloader valve 4 when the water temperature is 10 degrees or higher
1-43 are closed, and the capacity of the compressor is 100%.

【0030】44はタイマT1であり、所定時間後(約
5分)にタイマ接片45を閉じる。46はタイマT2で
あり所定時間後(約1時間)にタイマ接片47を開くも
のである。従って、冷凍サイクルが高負荷になり、圧力
スイッチ27が閉じるとタイマT1、タイマT2が計時
を開始し、タイマ接片45が閉じることによってアンロ
ーダ弁43が強制的に通電されて、圧縮機の能力が75
%に下がる。この後、圧力スイッチ27の接片が開いて
タイマ接片45が開くか、又は1時間後にタイマ接片4
7が開いて圧縮機の能力が100%に戻るものである。
この間、圧縮機は75%の能力で運転しているので冷凍
サイクル中の圧力が高圧スイッチの動作する圧力まで増
加することはない。
A timer T1 44 closes the timer contact piece 45 after a predetermined time (about 5 minutes). Reference numeral 46 denotes a timer T2, which opens the timer contact piece 47 after a predetermined time (about 1 hour). Therefore, when the refrigeration cycle becomes a heavy load and the pressure switch 27 is closed, the timer T1 and the timer T2 start timing, and the timer contact piece 45 is closed to forcibly energize the unloader valve 43 and the compressor capacity. Is 75
Fall to%. After this, the contact piece of the pressure switch 27 is opened and the timer contact piece 45 is opened, or after one hour, the timer contact piece 4 is opened.
7 opens and the capacity of the compressor returns to 100%.
During this time, since the compressor is operating at 75% capacity, the pressure during the refrigeration cycle does not increase to the pressure at which the high pressure switch operates.

【0031】[0031]

【発明の効果】以上のように本発明の制御方法を用いる
と、圧縮機の過負荷保護装置が作動するに至る前の高負
荷状態を示す冷媒圧力を検出して、圧縮機の運転能力を
長くとも所定時間の間低下させることにより、休日明け
などにブラインの温度が室温又は外気温度まで高くなっ
ている時に起きる運転開始時の一時的な過負荷状態で過
負荷保護装置が動作するのを防止でき、休日明けにも確
実に空調運転が開始できるものである。
As described above, when the control method of the present invention is used, the operating pressure of the compressor is detected by detecting the refrigerant pressure indicating a high load state before the compressor overload protection device is activated. By lowering the temperature for a long time at the longest, it is possible to prevent the overload protection device from operating in the temporary overload condition at the start of operation that occurs when the temperature of the brine rises to room temperature or the outside air temperature after the holiday. It is possible to prevent it, and to reliably start the air conditioning operation even after a holiday.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の主な動作を示すフローチャートであ
る。
FIG. 1 is a flowchart showing the main operation of the present invention.

【図2】本発明を用いた空気調和機の概略図である。FIG. 2 is a schematic view of an air conditioner using the present invention.

【図3】本発明の具体的な実施例を示す電気回路図であ
る。
FIG. 3 is an electric circuit diagram showing a specific embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 25 低圧スイッチ 26 高圧スイッチ 27 圧力スイッチ 1 Compressor 25 Low pressure switch 26 High pressure switch 27 Pressure switch

Claims (1)

【特許請求の範囲】 【請求項1】 能力可変型の圧縮機を用いて冷凍サイク
ルを構成し、この冷凍サイクルで冷却されたブラインを
被調和室に循環させるように成し、このブラインの温度
に基づいて圧縮機の能力を変えるように成すと共に圧縮
機の過負荷保護が行なえる空気調和機において、冷凍サ
イクル中の冷媒圧力を検出する圧力検出器を備え、この
冷媒圧力が圧縮機の過負荷状態に至る前の高負荷状態を
示す圧力に成った際に圧縮機の能力を低下させると共
に、この低能力運転を所定時間内に解除させることを特
徴とする空気調和機の制御方法。
Claim: What is claimed is: 1. A refrigeration cycle is constructed using a variable capacity compressor, and brine cooled in the refrigeration cycle is circulated to a room to be conditioned. In the air conditioner that can change the capacity of the compressor based on the above, and can protect the compressor from overload, a pressure detector that detects the refrigerant pressure during the refrigeration cycle is provided. A method for controlling an air conditioner, which comprises reducing the capacity of a compressor when the pressure reaches a high load state before reaching a load state and canceling the low capacity operation within a predetermined time.
JP3172557A 1991-07-12 1991-07-12 Controlling method for air conditioner Pending JPH0518587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3172557A JPH0518587A (en) 1991-07-12 1991-07-12 Controlling method for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3172557A JPH0518587A (en) 1991-07-12 1991-07-12 Controlling method for air conditioner

Publications (1)

Publication Number Publication Date
JPH0518587A true JPH0518587A (en) 1993-01-26

Family

ID=15944065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3172557A Pending JPH0518587A (en) 1991-07-12 1991-07-12 Controlling method for air conditioner

Country Status (1)

Country Link
JP (1) JPH0518587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618060A (en) * 1991-11-07 1994-01-25 Ebara Corp Air-conditioner
CN108917112A (en) * 2018-07-25 2018-11-30 宁波奥克斯电气股份有限公司 A kind of method and air conditioner that the outer machine grading control of frequency conversion is adaptive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618060A (en) * 1991-11-07 1994-01-25 Ebara Corp Air-conditioner
CN108917112A (en) * 2018-07-25 2018-11-30 宁波奥克斯电气股份有限公司 A kind of method and air conditioner that the outer machine grading control of frequency conversion is adaptive
CN108917112B (en) * 2018-07-25 2020-07-07 宁波奥克斯电气股份有限公司 Method for graded control self-adaption of variable frequency outdoor unit and air conditioner

Similar Documents

Publication Publication Date Title
JP3378724B2 (en) Defrosting control method for air conditioner
US6141978A (en) Method and apparatus for eliminating unnecessary defrost cycles in heat pump systems
EP0805312B1 (en) Control System for multiple-type air conditioner
KR20040050478A (en) A compressor driving method of air-conditioner having 4 compressor
US5732564A (en) Heat pump apparatus and method for stable operation with inhibition of foaming
JP3445861B2 (en) Air conditioner
JPH0518587A (en) Controlling method for air conditioner
JPH07243711A (en) Two-stage cooler
JP2002162126A (en) Air conditioner
JPH07305903A (en) Controller for freezer
JP4229546B2 (en) Air conditioner control device
JP2541172B2 (en) Operation control device for air conditioner
JP3334169B2 (en) Air conditioner
JPH05157431A (en) Control device for refrigerator
JPH0623880Y2 (en) Heat pump device
JP2859981B2 (en) Air conditioner
JP4404420B2 (en) Air conditioner control device
JPH02195145A (en) Device for controlling oil-recovery operation in air-conditioning apparatus
JPH0233110Y2 (en)
JPH0217370A (en) Operation control device for air conditioning device
JP2508381B2 (en) Operation control device for air conditioner
JP3754205B2 (en) Control valve operating method for air conditioner and air conditioner
JPS583014Y2 (en) refrigeration cycle
JPH01147261A (en) Protective device for refrigerator
JPH086950B2 (en) Operation control device for air conditioner