JPH05184350A - System for automatic counting of bacterial cell suspending in air - Google Patents

System for automatic counting of bacterial cell suspending in air

Info

Publication number
JPH05184350A
JPH05184350A JP563292A JP563292A JPH05184350A JP H05184350 A JPH05184350 A JP H05184350A JP 563292 A JP563292 A JP 563292A JP 563292 A JP563292 A JP 563292A JP H05184350 A JPH05184350 A JP H05184350A
Authority
JP
Japan
Prior art keywords
air
bacteria
condensed water
collecting
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP563292A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ota
利行 大田
Tomoyuki Enomoto
榎本  智之
Masahiko Ikeshita
匡彦 池下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP563292A priority Critical patent/JPH05184350A/en
Publication of JPH05184350A publication Critical patent/JPH05184350A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Ventilation (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To shorten the necessary determination time and improve the determination accuracy by collecting suspending bacterial cells from circulating air of a clean room and extracting and determining ATP. CONSTITUTION:Circulating air 4 of a clean room 3 is compressed and the suspending bacterial cells are made to be attached to the surface of mist particles in a humidifier 5. The mist is condensed with a turbine 6 and the condensed water 8 is separated from the clean air 10 by a centrifugal separator 9. A boiling tris buffer 11 is added to the condensed water, ATP is extracted under heating in a reaction tube 12, and the specimen liquid is transferred through a cooling tube 13 to a determination cuvette 14 and irradiated with a KrF laser 15 to form AMT and pyrophosphoric acid. The generated fluorescent light 17 is passed through a filter 21 and introduced into a photomultiplier tube 22 and the number of bacterial cells is calculated from the intensity of the fluorescent light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はバイオクリーンルーム
内の空中浮遊菌の菌数測定に適用される空中浮遊細菌の
自動計測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic measuring system for airborne bacteria, which is applied to measure the number of airborne bacteria in a bioclean room.

【0002】[0002]

【従来の技術】空気中にはさまざまな微生物が数多く浮
遊しているが、その大部分は土壌、動植物の腐植***
物、衣服の細片等塵埃に付着して存在している。従っ
て、空中菌の数はそれら塵埃量に比例する。従来の空中
浮遊細菌の計測方法には、浮遊細菌の自然落下を利用し
た空中落下菌試験が用いられていた。この空中落下菌試
験は、普通寒天平板培地上に一定時間内に落下した菌を
補集し、培養後発生した集落数をもって表わすものであ
り、下記に説明する。
2. Description of the Related Art A large number of various microorganisms are suspended in the air, but most of them are present on soil, humus excrement of animals and plants, and dust such as small pieces of clothes. Therefore, the number of airborne bacteria is proportional to the amount of dust. As a conventional method for measuring airborne bacteria, an airborne bacteria test using free fall of airborne bacteria has been used. This drop-in-air test is performed by collecting the bacteria that have fallen on a regular agar plate medium within a certain period of time and expressing the number of colonies generated after culturing, which will be described below.

【0003】普通寒天培地を調製し、オートクレーブ殺
菌を例えば120℃で15分間行なう。この寒天培地が
注入された殺菌ペトリ皿3枚を試験対象とする場所に設
置し、同時にふたを取って任意時間、例えば5分間露出
静置する。
An ordinary agar medium is prepared, and autoclave sterilization is carried out, for example, at 120 ° C. for 15 minutes. Three sterilized Petri dishes in which this agar medium has been injected are set at the test target locations, the lids are removed at the same time, and the plates are left to stand for an arbitrary time, for example, 5 minutes.

【0004】露出静置後、上記普通寒天培地を恒温機中
にて2〜3日間培養し、発生したコロニー(集落)数を
肉眼で計数する。そして、各培地のコロニー数を平均し
てペトリ皿一枚当りの落下菌数とする。
After the exposure and standing, the ordinary agar medium was cultured in a thermostat for 2 to 3 days, and the number of colonies (colts) generated was visually counted. Then, the number of colonies in each medium is averaged to obtain the number of dropped bacteria per Petri dish.

【0005】落下菌数の評価は、A(30以下)、B
(31〜74)、C(75〜150)、D(151〜2
99)、E(300以下)に分けられ、室内では30以
下ならば良好、150以上では不適当とされる。
Evaluation of the number of fallen bacteria is A (30 or less), B
(31 to 74), C (75 to 150), D (151 to 2)
99) and E (300 or less). Indoors, 30 or less is good, and 150 or more is inappropriate.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来の空
中浮遊細菌の計測方法では、細菌による空気汚染度を検
出するのに長時間必要とするため、製造又は加工等を行
なう試験対象場所においては適切な対応をとることが困
難となる。
However, in the above-mentioned conventional method for measuring airborne bacteria, it takes a long time to detect the degree of air pollution by bacteria. It will be difficult to take appropriate measures.

【0007】又、医薬品工場等では高いクリーン度が要
求されるが、通常このような高いクリーン度を要求され
る場所では空中落下菌が少なく、従来のペトリ皿を用い
る培養法では、ペトリ皿の開放時間を指数的に増加しな
ければ十分な測定精度が得られない。更に、ペトリ皿の
設置場所によっては空気流れ分布等が異なるため測定に
影響を与え、測定値の信頼性が低下する。
[0007] In pharmaceutical factories and the like, high cleanliness is required, but normally, in places where such high cleanliness is required, airborne bacteria are small, and in the conventional culture method using a Petri dish, the Sufficient measurement accuracy cannot be obtained unless the opening time is increased exponentially. Further, the air flow distribution and the like differ depending on the installation location of the Petri dish, which affects the measurement and reduces the reliability of the measured value.

【0008】この発明は上記実情に鑑みてなされたもの
で、測定の自動化を行ない、菌数測定に要する時間を短
縮し、更に測定精度を向上し得る空中浮遊細菌の自動計
測システムを提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an automatic measurement system for airborne bacteria that can automate the measurement, shorten the time required for measuring the number of bacteria, and further improve the measurement accuracy. With the goal.

【0009】[0009]

【課題を解決するための手段】この発明に係る空中浮遊
細菌の自動計測システムは、測定対象とする空気中の浮
遊細菌を液滴に付着させて補集液とする補集手段と、こ
の補集手段より生成された上記補集液に沸騰トリス緩衝
液を添加して検液を生成する検液生成手段と、この検液
生成手段により生成された検液を励起させる励起手段
と、この励起手段により発光した蛍光の蛍光量を計測す
る蛍光量計測手段と、この蛍光量計測手段により計測さ
れた蛍光量から測定対象である上記空気中の浮遊細菌を
算出する算出手段とを具備することを特徴とする。
An automatic measuring system for airborne bacteria according to the present invention comprises a collecting means for adhering airborne bacteria in the air to be measured to a droplet to form a collecting liquid, and a collecting means for collecting the collecting liquid. A test solution generating means for generating a test solution by adding a boiling Tris buffer solution to the collecting solution generated by the collecting means, an excitation means for exciting the test solution generated by the test solution generating means, and this excitation A fluorescence amount measuring means for measuring the fluorescence amount of the fluorescence emitted by the means, and a calculating means for calculating the floating bacteria in the air which is a measurement target from the fluorescence amount measured by the fluorescence amount measuring means. Characterize.

【0010】[0010]

【作用】クリーンルームの循環エアは、コンプレッサに
より圧縮された後、加湿器で噴霧される。これにより循
環エア中の浮遊細菌は、噴霧表面に付着する。噴霧は膨
脹タービンによって凝縮水となり、この凝縮水は遠心分
離器により清浄エアと分離される。この清浄エアはクリ
ーンルームに返送される。
The circulating air in the clean room is compressed by the compressor and then sprayed by the humidifier. As a result, airborne bacteria in the circulating air adhere to the spray surface. The mist becomes condensed water by the expansion turbine, and this condensed water is separated from the clean air by the centrifugal separator. This clean air is returned to the clean room.

【0011】浮遊細菌を含む上記凝縮水に沸騰トリス緩
衝液を添加して反応管においてATP(アデノシン3リ
ン酸)を抽出する。ATPが抽出された凝縮水は、冷却
管により常温まで冷却され、測定キュベットに連続的に
送液される。
A boiling Tris buffer is added to the condensed water containing floating bacteria to extract ATP (adenosine triphosphate) in a reaction tube. The condensed water from which ATP has been extracted is cooled to room temperature by a cooling pipe and continuously sent to the measurement cuvette.

【0012】測定キュベットには、KrFレーザから励
起光が照射され、これによりATPが励起し、ATPが
脱リン化され、AMP(アデノシン1リン酸)とピロリ
ン酸を形成する。この際、フォトンが放出され、ピーク
波長が562nmの蛍光を発する。この蛍光は、光電子
倍増管に送られ、蛍光量を測定され、これより菌数が算
出される。
The measurement cuvette is irradiated with excitation light from a KrF laser, which excites ATP and dephosphorizes ATP, forming AMP (adenosine monophosphate) and pyrophosphate. At this time, photons are emitted and fluorescence with a peak wavelength of 562 nm is emitted. This fluorescence is sent to a photomultiplier tube, the amount of fluorescence is measured, and the number of bacteria is calculated from this.

【0013】[0013]

【実施例】以下、図面を参照してこの発明の一実施例を
説明する。この発明に係る空中浮遊細菌の自動計測シス
テムの構成を図1に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of an automatic measurement system for airborne bacteria according to the present invention.

【0014】コンプレッサ1はモータ2を駆動すること
により作動し、医薬品工場等のクリーンルーム3におい
て循環された空気を循環エア4として取込み、これを圧
縮後、加湿器5に送出する。加湿器5は、上記循環エア
4に対して噴霧を行ない、循環エア4中の浮遊細菌を噴
霧表面に付着させ、タービン6に送る。
The compressor 1 operates by driving a motor 2, takes in the air circulated in a clean room 3 such as a pharmaceutical factory as circulation air 4, compresses it, and sends it to a humidifier 5. The humidifier 5 sprays the circulating air 4 to attach the floating bacteria in the circulating air 4 to the surface of the spray, and sends it to the turbine 6.

【0015】タービン6はモータ7を駆動することによ
り作動し、表面に浮遊細菌を付着した上記噴霧を断熱膨
脹させて凝縮水8とする。遠心分離器9は、遠心分離を
用いて凝縮水8と清浄エア10とを分離し、清浄エア1
0のみを再びクリーンルーム3に送る。凝縮水8には沸
騰トリス緩衝液11が添加され、反応管12に送液され
る。反応管12は、この沸騰トリス緩衝液11を添加さ
れた凝縮水8からATP(アデノシン3リン酸)を加熱
抽出し、検液とする。
The turbine 6 operates by driving a motor 7 to adiabatically expand the above-mentioned spray having floating bacteria adhered to the surface thereof to form condensed water 8. The centrifuge 9 separates the condensed water 8 and the clean air 10 by using centrifugal separation,
Only 0 is sent to the clean room 3 again. The boiling Tris buffer 11 is added to the condensed water 8 and sent to the reaction tube 12. The reaction tube 12 heat-extracts ATP (adenosine triphosphate) from the condensed water 8 to which the boiling Tris buffer solution 11 has been added to obtain a test solution.

【0016】冷却管13は、上記ATPが抽出された検
液を常温まで冷却し、測定キュベット14に連続的に送
液する。測定キュベット14にはKrFレーザ15から
レンズ16を介して励起光が照射され、上記検液にAM
T(アデノシン1リン酸)とピロリン酸を生成させる。
この際、検液からフォトンが放出されピーク波長562
nmの蛍光17を発する。
The cooling pipe 13 cools the test liquid from which ATP has been extracted to room temperature and continuously feeds it to the measurement cuvette 14. The measurement cuvette 14 is irradiated with the excitation light from the KrF laser 15 through the lens 16, and the test solution is AM
It produces T (adenosine monophosphate) and pyrophosphate.
At this time, photons are emitted from the test solution and the peak wavelength 562 is reached.
Fluorescent light 17 of nm is emitted.

【0017】上記測定キュベット14の近傍にはレンズ
18が付設され、蛍光17を集光する。更に、レンズ1
8による集光部近傍には、スリット19及びレンズ20
が設けられ、蛍光17をフィルタ21に送出する。フィ
ルタ21は、特定の波長のみを通過させ、光電子倍増管
22に出力する。光度計・記録計23は、この光電子倍
増管22の出力から蛍光量を計測積算し、この蛍光量か
ら菌数を算出する。
A lens 18 is attached in the vicinity of the measuring cuvette 14 to collect the fluorescent light 17. Furthermore, lens 1
A slit 19 and a lens 20 are provided in the vicinity of the light condensing part by 8.
Is provided and sends the fluorescent light 17 to the filter 21. The filter 21 passes only a specific wavelength and outputs it to the photomultiplier tube 22. The photometer / recorder 23 measures and integrates the fluorescence amount from the output of the photomultiplier tube 22, and calculates the number of bacteria from this fluorescence amount.

【0018】次に上記実施例の動作を説明する。クリー
ンルーム3中の循環エア4は、コンプレッサ1によって
圧縮された後、加湿器5にて加湿される。これにより、
注入された噴霧表面に循環エア4中の浮遊細菌が付着さ
れる。更に膨脹タービン6における断熱膨脹によって凝
縮水8が生成され、これを遠心分離器9で清浄エア10
と分離される。清浄エア10はクリーンルーム3に返送
される。
Next, the operation of the above embodiment will be described. The circulating air 4 in the clean room 3 is compressed by the compressor 1 and then humidified by the humidifier 5. This allows
Suspended bacteria in the circulating air 4 adhere to the injected spray surface. Further, adiabatic expansion in the expansion turbine 6 produces condensed water 8, which is then separated by a centrifugal separator 9 into clean air 10
And separated. The clean air 10 is returned to the clean room 3.

【0019】上記分離された凝縮水8は、沸騰トリス緩
衝液11が添加されて反応管12に送液される。沸騰ト
リス緩衝液11が添加された凝縮水8は、反応管12に
おいてATPを加熱抽出され、検液とされる。検液は、
冷却管13に送液されて常温まで冷却され、更に測定キ
ュベット14に連続的に送液される。
The condensed water 8 thus separated is added with the boiling Tris buffer 11 and sent to the reaction tube 12. The condensed water 8 to which the boiling Tris buffer solution 11 has been added has ATP heated and extracted in the reaction tube 12 to be used as a test solution. The test solution is
The liquid is sent to the cooling pipe 13, cooled to room temperature, and further continuously sent to the measurement cuvette 14.

【0020】測定キュベット14に送られた検液には、
KrFレーザ15からの励起光が照射され、これにより
AMTとピロリン酸を生成する。この際、上記検液より
フォトンが放出され、ピーク波長562nmの蛍光17
が発光される。この蛍光17は、レンズ17によって集
光されてスリット19に照射され、更に、レンズ20を
介してフィルタ21に送られる。このフィルタ21によ
り、上記蛍光17は特定の波長のみが通過し、光電子倍
増管22に入力される。光電子倍増管22及び光度計・
記録計23は上記フィルタ21を通過した蛍光から蛍光
量を計測積算してこの蛍光量から菌数を算出する。
The test liquid sent to the measurement cuvette 14 includes
Excitation light from the KrF laser 15 is irradiated to generate AMT and pyrophosphate. At this time, photons are emitted from the test solution and fluorescence 17 having a peak wavelength of 562 nm is emitted.
Is emitted. The fluorescent light 17 is condensed by the lens 17, irradiated on the slit 19, and further sent to the filter 21 via the lens 20. Only a specific wavelength of the fluorescent light 17 passes through the filter 21 and is input to the photomultiplier tube 22. Photomultiplier tube 22 and photometer
The recorder 23 measures and integrates the fluorescence amount from the fluorescence that has passed through the filter 21 and calculates the number of bacteria from this fluorescence amount.

【0021】次に上記実施例の動作を具体的数値を用い
て説明する。クリーンルーム3中の循環エア4に液体培
養した枯草菌を103 〜106 個/ft3 air(クラス、
1,000 〜1,000,000 )になるように噴霧注入する。この
循環エア4は、コンプレッサ1にて1.8Kg/cm 2 に圧
縮され、加湿器5で絶対温度2.73wt%まで加湿され
た後、膨脹タービン6で常圧まで減圧される。これによ
って凝縮水8が発生する。
Next, the operation of the above embodiment will be described using specific numerical values. 10 3 of liquid-cultured Bacillus subtilis in the circulating air 4 in the clean room 3 ~ 10 6 Pieces / ft 3 air (class,
Spray injection so that the amount becomes 1,000 to 1,000,000). This circulating air 4 is 1.8 kg / cm 2 in the compressor 1. And is humidified by the humidifier 5 to an absolute temperature of 2.73 wt%, and then decompressed by the expansion turbine 6 to a normal pressure. As a result, condensed water 8 is generated.

【0022】その後、上記循環エア4は、遠心分離器9
にて凝縮水8と清浄エア10に分離される。上記数値条
件の下で凝縮水8は、約0.73cc/ft3 air補集され
た。ここで、上記処理前後における浮遊微粒子の濃度計
測結果の一例を図2に示す。通常、細菌は0.5μm以
上の大きさを有することから、同図より98%以上の細
菌が凝縮水8中に補集されていることになる。
Thereafter, the circulating air 4 is supplied to the centrifugal separator 9
Is separated into condensed water 8 and clean air 10. Under the above numerical conditions, the condensed water 8 is about 0.73cc / ft 3 air was collected. Here, an example of the results of measuring the concentration of suspended particulates before and after the above processing is shown in FIG. Normally, since the bacteria have a size of 0.5 μm or more, it can be understood from the figure that 98% or more of the bacteria are collected in the condensed water 8.

【0023】次に、上記凝縮水8を1lに対し、トリス
緩衝液11を3mlを加え、反応管12において温度1
05℃で5分間加熱抽出を行ない、ATPが抽出された
凝縮水8を常温まで冷却し、石英製測定キュベット14
に定量送液する。この測定キュベット14には、波長2
49nmを有するKrFレーザ15から励起光が照射さ
れ、蛍光17を発光させる。この蛍光17は、フィルタ
21によって波長390nmのみの蛍光を光電子倍増管
22に送られ、蛍光量を計測積算し、この蛍光量から菌
数が算出される。
Next, 3 ml of Tris buffer 11 was added to 1 liter of the condensed water 8 and the temperature was adjusted to 1 in the reaction tube 12.
Heat extraction is performed at 05 ° C. for 5 minutes, the condensed water 8 from which ATP is extracted is cooled to room temperature, and a quartz measurement cuvette 14 is used.
To a fixed amount. This measurement cuvette 14 has a wavelength of 2
Excitation light is emitted from the KrF laser 15 having a wavelength of 49 nm, and fluorescence 17 is emitted. This fluorescent light 17 is sent to the photomultiplier tube 22 by the filter 21 and only has a wavelength of 390 nm, the fluorescent amount is measured and integrated, and the number of bacteria is calculated from this fluorescent amount.

【0024】予め菌濃度が既知である凝縮水8を用いて
発光量を計測した場合の相関関係を図3に示す。更に、
この検定曲線を用いて、蛍光量測定値から求めた菌濃度
と、実際の循環エア4に注入した菌濃度の関係を図4に
示す。同図から分かるように、計測値は実際の注入値に
比較し、多少の誤差はあるが実用上は問題のない精度で
ある。尚、上述した空中浮遊細菌の自動計測システムを
応用することにより、清涼飲料等の飲料水中の菌数計測
も可能である。
FIG. 3 shows the correlation when the amount of luminescence is measured using the condensed water 8 of which the bacterial concentration is known in advance. Furthermore,
FIG. 4 shows the relationship between the bacterial concentration obtained from the fluorescence amount measurement value and the actual bacterial concentration injected into the circulating air 4 using this calibration curve. As can be seen from the figure, the measured value has a slight error compared with the actual injection value, but the accuracy is practically no problem. It is also possible to measure the number of bacteria in drinking water such as soft drinks by applying the above-mentioned automatic measurement system of airborne bacteria.

【0025】[0025]

【発明の効果】以上詳記したようにこの発明によれば、
クリーンルームの循環エア中より直接浮遊細菌を補集
し、これよりATPを抽出・計量するので、抽出時間5
分、蛍光量測定1〜2分の合計計測所用時間が6〜7分
となる。これにより、従来に比べて計測所用時間が短縮
でき、リアルタイムでの評価が可能となる。又、各工程
が機器分析であるため自動化が可能であり、これにより
省力化ができる。
As described above in detail, according to the present invention,
Airborne bacteria are directly collected from the circulating air in the clean room, and ATP is extracted and weighed from this, so the extraction time is 5
Minutes, the total measurement time for measuring the amount of fluorescence for 1 to 2 minutes is 6 to 7 minutes. As a result, the time required for measurement can be shortened compared to the conventional method, and real-time evaluation becomes possible. Further, since each step is instrumental analysis, it can be automated, which can save labor.

【0026】更に、菌数の少ない空気を測定対象とする
場合でも、液滴補集による菌濃度工程や蛍光測定時間の
延長等により十分な測定精度を維持することができ、測
定が循環エア全体を対象にできるため、サンプル間のデ
ータの不一致がなく、上述したように各工程が機器分析
であるため従来の分析者間に生じるデータの不一致をも
解消することができる。
Further, even when air having a small number of bacteria is to be measured, sufficient measurement accuracy can be maintained due to the bacteria concentration process by collecting droplets and the extension of the fluorescence measurement time. Since there is no inconsistency in data between samples, and since each step is an instrumental analysis as described above, inconsistency in data that occurs between analysts in the related art can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る空中浮遊細菌の自動
計測システムのの構成を示すブロック図。
FIG. 1 is a block diagram showing the configuration of an automatic airborne bacteria measurement system according to an embodiment of the present invention.

【図2】同実施例における微粒子除去効果を示すグラ
フ。
FIG. 2 is a graph showing the effect of removing fine particles in the same example.

【図3】同実施例における菌濃度と発光量の関係を示す
グラフ。
FIG. 3 is a graph showing the relationship between bacterial concentration and luminescence amount in the same example.

【図4】同実施例における注入菌濃度と計測菌濃度の関
係を示すグラフ。
FIG. 4 is a graph showing the relationship between the concentration of injected bacteria and the concentration of measured bacteria in the same example.

【符号の説明】[Explanation of symbols]

1…コンプレッサ、2…モータ、3…クリーンルーム、
4…循環エア、5…加湿器、6…タービン、7…モー
タ、8…凝縮水、9…遠心分離器、10…清浄エア、1
1…沸騰トリス緩衝液、12…反応管、13…冷却管、
14…測定キュベット、15…KrFレーザ、16…レ
ンズ、17…蛍光、18…レンズ、19…スリット、2
0…レンズ、21…フィルタ、22…光電子倍増管、2
3…光度計・記録計。
1 ... Compressor, 2 ... Motor, 3 ... Clean room,
4 ... Circulating air, 5 ... Humidifier, 6 ... Turbine, 7 ... Motor, 8 ... Condensed water, 9 ... Centrifuge, 10 ... Clean air, 1
1 ... Boiling Tris buffer solution, 12 ... Reaction tube, 13 ... Cooling tube,
14 ... Measurement cuvette, 15 ... KrF laser, 16 ... Lens, 17 ... Fluorescence, 18 ... Lens, 19 ... Slit, 2
0 ... Lens, 21 ... Filter, 22 ... Photomultiplier tube, 2
3 Photometer / recorder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F24F 7/06 C 6925−3L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location F24F 7/06 C 6925-3L

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 測定対象とする空気中の浮遊細菌を液滴
に付着させて補集液とする補集手段と、 この補集手段より生成された上記補集液に沸騰トリス緩
衝液を添加して検液を生成する検液生成手段と、 この検液生成手段により生成された検液を励起させる励
起手段と、 この励起手段により発光した蛍光の蛍光量を計測する蛍
光量計測手段と、 この蛍光量計測手段により計測された蛍光量から測定対
象である上記空気中の浮遊細菌を算出する算出手段とを
具備することを特徴とする空中浮遊細菌の自動計測シス
テム。
1. A collecting means for adhering airborne bacteria in the air to be measured to droplets as a collecting solution, and a boiling Tris buffer solution added to the collecting solution generated by the collecting means. A test solution generating means for generating a test solution, an exciting means for exciting the test solution generated by the test solution generating means, and a fluorescence amount measuring means for measuring a fluorescence amount of fluorescence emitted by the exciting means, An automatic measurement system of airborne bacteria, comprising: a calculation unit for calculating the above-mentioned airborne bacteria as a measurement target from the fluorescence amount measured by the fluorescence amount measurement unit.
JP563292A 1992-01-16 1992-01-16 System for automatic counting of bacterial cell suspending in air Withdrawn JPH05184350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP563292A JPH05184350A (en) 1992-01-16 1992-01-16 System for automatic counting of bacterial cell suspending in air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP563292A JPH05184350A (en) 1992-01-16 1992-01-16 System for automatic counting of bacterial cell suspending in air

Publications (1)

Publication Number Publication Date
JPH05184350A true JPH05184350A (en) 1993-07-27

Family

ID=11616528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP563292A Withdrawn JPH05184350A (en) 1992-01-16 1992-01-16 System for automatic counting of bacterial cell suspending in air

Country Status (1)

Country Link
JP (1) JPH05184350A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU699575B2 (en) * 1994-03-18 1998-12-10 Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland, The Cellular material detection apparatus and method
US6297045B1 (en) 1998-08-04 2001-10-02 Japan As Represented By National Institute Of Animal Health, Ministry Of Agriculture, Forestry And Fishers, Director General Mastitis diagnosing apparatus
JP2006508371A (en) * 2002-08-26 2006-03-09 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Autonomous monitoring system for biological agents
KR100764693B1 (en) * 2006-03-27 2007-10-08 연세대학교 산학협력단 Simultaneous Measurement system for airborne bacteria and fine particles
JP2009017852A (en) * 2007-07-13 2009-01-29 Hitachi Plant Technologies Ltd Microorganism-measuring system
JP2009232744A (en) * 2008-03-27 2009-10-15 Hitachi Plant Technologies Ltd System for measuring microorganisms
JP2011047585A (en) * 2009-08-27 2011-03-10 Sharp Corp Refrigerator
KR101305905B1 (en) * 2011-07-04 2013-09-06 한국과학기술연구원 Apparatus and method for real-time separation and detection of airborne microbe
CN103645123A (en) * 2010-02-26 2014-03-19 夏普株式会社 Detection apparatus and method for detecting airborne biological particles
EP2910643B1 (en) * 2012-10-19 2018-02-28 Hitachi Plant Services Co., Ltd. Biological material collection method and biological material collection device
CN109072164A (en) * 2017-01-06 2018-12-21 株式会社爱瑞思 Microbial contamination checks system
KR20190030146A (en) * 2017-09-13 2019-03-21 영남대학교 산학협력단 Device and method for detecting airborne microorganism
WO2020032625A1 (en) * 2018-08-10 2020-02-13 연세대학교 산학협력단 Apparatus for real-time continuous measurement of suspended microorganisms

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789778B1 (en) * 1994-03-18 2001-05-30 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Cellular material detection apparatus and method
AU699575B2 (en) * 1994-03-18 1998-12-10 Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland, The Cellular material detection apparatus and method
US6297045B1 (en) 1998-08-04 2001-10-02 Japan As Represented By National Institute Of Animal Health, Ministry Of Agriculture, Forestry And Fishers, Director General Mastitis diagnosing apparatus
JP2006508371A (en) * 2002-08-26 2006-03-09 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Autonomous monitoring system for biological agents
KR100764693B1 (en) * 2006-03-27 2007-10-08 연세대학교 산학협력단 Simultaneous Measurement system for airborne bacteria and fine particles
JP2009017852A (en) * 2007-07-13 2009-01-29 Hitachi Plant Technologies Ltd Microorganism-measuring system
JP2009232744A (en) * 2008-03-27 2009-10-15 Hitachi Plant Technologies Ltd System for measuring microorganisms
JP2011047585A (en) * 2009-08-27 2011-03-10 Sharp Corp Refrigerator
CN103645123A (en) * 2010-02-26 2014-03-19 夏普株式会社 Detection apparatus and method for detecting airborne biological particles
KR101305905B1 (en) * 2011-07-04 2013-09-06 한국과학기술연구원 Apparatus and method for real-time separation and detection of airborne microbe
EP2910643B1 (en) * 2012-10-19 2018-02-28 Hitachi Plant Services Co., Ltd. Biological material collection method and biological material collection device
US9988663B2 (en) 2012-10-19 2018-06-05 Hitachi, Ltd. Method for collecting biological material and device for collecting biological material
CN109072164A (en) * 2017-01-06 2018-12-21 株式会社爱瑞思 Microbial contamination checks system
KR20190104258A (en) * 2017-01-06 2019-09-09 가부시키가이샤 에아렉크스 Microbial contamination inspection system
EP3567097A4 (en) * 2017-01-06 2020-08-26 Airex Co., Ltd. Microorganism contamination inspection system
CN109072164B (en) * 2017-01-06 2023-02-10 株式会社爱瑞思 Microbial contamination inspection system
KR20190030146A (en) * 2017-09-13 2019-03-21 영남대학교 산학협력단 Device and method for detecting airborne microorganism
WO2020032625A1 (en) * 2018-08-10 2020-02-13 연세대학교 산학협력단 Apparatus for real-time continuous measurement of suspended microorganisms

Similar Documents

Publication Publication Date Title
JPH05184350A (en) System for automatic counting of bacterial cell suspending in air
RU2142016C1 (en) Method and device for determination of presence and/or quantity of cellular material in gas medium
JP4033754B2 (en) Method and apparatus for detection of the presence of microorganisms and determination of their physiological state
Cheng Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy
EP2758767B1 (en) Systems for characterizing an aerosol particle flow
Górny Microbial aerosols: sources, properties, health effects, exposure assessment—a review
Kanaani et al. Performance of UVAPS with respect to detection of airborne fungi
US8628953B2 (en) Capturing carrier, capturing device, analysis system using the same, and method for capturing and testing microorganisms
US5389544A (en) Method for counting living cells of microbes and apparatus therefor
Kanaani et al. Performance assessment of UVAPS: Influence of fungal spore age and air exposure
CN113984730A (en) Remote sensing bioaerosol pollution alarm method based on cloud fluorescence data analysis
US20210310927A1 (en) Real time continuous measurement apparatus for airborne microbial
An et al. Recent progress in online detection methods of bioaerosols
JP2735901B2 (en) Method for measuring the number of living cells, dead cells, and particles other than microorganism cells of microorganisms
JP6223844B2 (en) Microorganism measurement system and control method thereof
JP2734489B2 (en) Method and apparatus for counting microbial living cells
Moschandreas et al. Measurement of indoor bioaerosol levels by a direct counting method
Rebane et al. Real-time monitoring of hydrogen peroxide vapour decontamination of bacterial spores by means of UV fluorimetry.
JPS6016598A (en) Detection of amount of bacteria in air
CA2518053C (en) Method for detecting micro-organisms in an electrocoating process
EP4143533A1 (en) Airborne bacteria detection system
Yoon et al. Analysis of correlation between atmospheric fluorescent particles and biomaterials
EP4279605A1 (en) Viable cell count measurement method and viable cell count measurement device
JP2592114B2 (en) Microbial cell viability discrimination method
CN116698675A (en) Cloud droplet surface tension measurement method and system in aerosol activation cloud forming process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408