JPH05183535A - Synchronization acquisition system for speead spectrum signal - Google Patents

Synchronization acquisition system for speead spectrum signal

Info

Publication number
JPH05183535A
JPH05183535A JP36062291A JP36062291A JPH05183535A JP H05183535 A JPH05183535 A JP H05183535A JP 36062291 A JP36062291 A JP 36062291A JP 36062291 A JP36062291 A JP 36062291A JP H05183535 A JPH05183535 A JP H05183535A
Authority
JP
Japan
Prior art keywords
multiplier
synchronization
spread
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36062291A
Other languages
Japanese (ja)
Other versions
JP2570042B2 (en
Inventor
Yukinobu Ishigaki
行信 石垣
Takahisa Matsumoto
卓久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP36062291A priority Critical patent/JP2570042B2/en
Publication of JPH05183535A publication Critical patent/JPH05183535A/en
Application granted granted Critical
Publication of JP2570042B2 publication Critical patent/JP2570042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance synchronization detection performance considerably in the synchronization acquisition system for a spread spectrum signal (SS signal). CONSTITUTION:An SS signal is fed to a multiplier 9 via an input filter 2 and multiplied with a spread code, an envelope of the multiplier output is detected to device asynchronization/synchronization and the synchronization acquisition is detected based, on a correlation output level and a VCO 7 generates a clock signal based on the detection signal and the spread code generated based on the clock signal is outputted to the multiplier 9 through a feedback loop, and in the sliding correlation synchronization acquisition system, a correction filter 15 correcting the effect of the transmission characteristic of the input filter and a reciprocal number processing circuit 16 converting the spread code passing through the filter into a reciprocal spread code are provided between the multiplier 9 and a spread code generator 8, and means 10-14 suppressing spread noise in a multiplier output are provided between the multiplier 9 and an envelope detector 5 and a corrected spread code and a reciprocal spread code are fed to the spread noise suppression means to implement synchronization acquisition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスペクトル拡散(以下
“SS”と略記する)信号の同期捕捉方式に係り、特
に、SS信号の同期捕捉における同期検出性能を大幅に
高められるようにした、SS信号のスライディング相関
型の同期捕捉方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spread spectrum (hereinafter abbreviated as "SS") signal synchronization acquisition system, and in particular, it is capable of significantly improving the synchronization detection performance in SS signal synchronization acquisition. The present invention relates to a sliding correlation type synchronization acquisition method of a signal.

【0002】[0002]

【技術的背景】近年になり、SS通信において、SS技
術による多元接続法を用いた移動体通信が実用域に達し
て来ている。その主な理由は、電波資源は有限なので周
波数を有効に利用する必要があり、これに対してSS信
号は技術の進歩により周波数利用効率の向上に寄与でき
ることが立証されつつあること等による。特に、SS信
号は広い周波数帯域に拡散されて、変調波のパワースペ
クトル密度が非常に小さいので、他の従来の通信電波等
に与える影響は少なく、従って、既存の通信周波数帯で
の混用が可能になるため、その面でのメリットも大き
い。これらの理由により、SSによる無線通信も身近な
ものに成りつつあり、今後の移動体間通信応用など、そ
の将来性や発展性も非常に高く期待されている。
TECHNICAL BACKGROUND In recent years, in SS communication, mobile communication using the multiple access method by SS technology has reached a practical range. The main reason for this is that it is necessary to effectively use the frequency because the radio wave resource is finite, whereas it is being proved that the SS signal can contribute to the improvement of the frequency utilization efficiency due to the progress of the technology. In particular, the SS signal is spread over a wide frequency band and the power spectrum density of the modulated wave is very small, so it has little effect on other conventional communication radio waves, etc. Therefore, it can be mixed in existing communication frequency bands. Therefore, the merit in that respect is also great. For these reasons, wireless communication by SS is becoming familiar, and it is expected that its future potential and developability will be very high in future applications such as mobile communication.

【0003】[0003]

【従来の技術】SS通信においては、同期(周波数同
調)捕捉と同期保持の両機能を関連させて用いている。
同期捕捉は同期引き込みとも言われ、同期ポイントを捜
して見つかり次第、同期保持に切り換えることで同期が
成立し、SS送受信が達成される。ここで、従来方式に
よるスライディング相関型同期捕捉について、図1のブ
ロック構成図と共に説明する。
2. Description of the Related Art In SS communication, both functions of synchronization (frequency tuning) acquisition and synchronization holding are used in association with each other.
The synchronization acquisition is also called synchronization pull-in, and the synchronization is established by switching to the synchronization holding as soon as the search is made for the synchronization point, and the SS transmission / reception is achieved. Here, the sliding correlation type synchronous acquisition by the conventional method will be described with reference to the block diagram of FIG.

【0004】SS信号S(t)は入力端子Inより入力フィル
タ2を介して乗算器9に供給される。一方、クロック発
生器としてのVCO(電圧制御発振器)7より出力され
るクロック周波数は、入力されるSS信号S(t)の拡散変
調時(送信側)のクロック周波数よりもやや高めの周波
数に設定され、このクロックを拡散符号発生器(PN
G)8に供給される。このクロックを基に、拡散符号発
生器8では拡散符号P(t)を生成して乗算器(乗算型相関
器)9に供給する。この拡散符号P(t)は受信側のPNG
で生成される拡散符号P(t)に比べ、実際には時間τの遅
れを有するP(t+τ)であり、これをP(t)の文字Pの上に
Λ(ハット)を付けて表現するが、ここでは使用可能文
字の制約上から、便宜上“ρ(t) ”で表記することにす
る。
The SS signal S (t) is supplied from the input terminal In to the multiplier 9 via the input filter 2. On the other hand, the clock frequency output from the VCO (voltage controlled oscillator) 7 as the clock generator is set to a frequency slightly higher than the clock frequency at the time of spread modulation of the input SS signal S (t) (transmission side). This clock is used as a spread code generator (PN
G) is supplied to 8. Based on this clock, the spreading code generator 8 generates the spreading code P (t) and supplies it to the multiplier (multiplication correlator) 9. This spreading code P (t) is the PNG of the receiving side.
Compared to the spreading code P (t) generated in, it is actually P (t + τ) with a delay of time τ. Add this to the letter P of P (t) by adding Λ (hat). It is expressed, but here, for the sake of convenience, it will be expressed as “ρ (t)” in view of the restriction of usable characters.

【0005】乗算器9はスライディング相関用であり、
この乗算器9からの乗算出力はρ(t)*S(t) として得ら
れるが、このままでは瞬間的に符号の一致する状態が生
じるのみで、同期状態には至っていない。従って、瞬間
的に符号の一致する時刻を捕らえて同期保持を行わせる
ようにすれば、同期が成立する。このようにして得られ
る乗算出力を、それに含まれる不要な拡散ノイズを除去
するためのローパスフィルタ(低域濾波器;以下“LP
F”とも記す)4及びエンベロープ検出回路(積分回路
を含む)5を介して同期判定回路6に供給し、同期判定
回路6で瞬間的に符号の一致する時刻に出力が最大とな
るような相関出力が得られるが、この相関出力において
スレシュホールド点(図2のSHL)を設けて検出させてい
る。
The multiplier 9 is for sliding correlation,
The multiplication output from the multiplier 9 is obtained as ρ (t) * S (t), but if it remains as it is, only the state where the codes coincide instantaneously occurs and the synchronized state is not reached. Therefore, the synchronization is established by instantaneously capturing the time when the codes coincide with each other and holding the synchronization. The multiplication output thus obtained is a low-pass filter (low-pass filter; hereinafter referred to as “LP”) for removing unnecessary diffusion noise included in the multiplication output.
F ”) and an envelope detection circuit (including an integration circuit) 5 to a synchronization judgment circuit 6, and the correlation judgment circuit 6 maximizes the output at the moment when the signs coincide. Although an output is obtained, a threshold point (SHL in FIG. 2) is provided in this correlation output for detection.

【0006】図2はLPF4の出力,即ち端子Out で検
出される信号波形であるが、このようにして検出された
同期捕捉情報を用いて、相関出力をコントロール電圧に
変換して後、クロック発生器としてのVCO7に供給す
ることにより、拡散変調時のクロック周波数と等しく、
時間的にも等価な拡散符号を発生することができる。得
られた拡散符号P(t)は、乗算器9にて入力SS信号S(t)
=P(t)*d(t) と、乗算による逆拡散が行なわれるが、こ
れは正常な逆拡散復調へと動作が移行していることを意
味する。
FIG. 2 shows the signal waveform detected at the output of the LPF 4, that is, at the terminal Out. The synchronous output information thus detected is used to convert the correlation output into a control voltage and then generate a clock. By supplying it to the VCO 7 as a device, it becomes equal to the clock frequency during spread modulation,
It is possible to generate spreading codes that are equivalent in time. The spread code P (t) thus obtained is input to the multiplier 9 by the input SS signal S (t).
= P (t) * d (t), despreading is performed by multiplication, which means that the operation has shifted to normal despreading demodulation.

【0007】しかるに、このままでは同期が保持される
ことにはならないので、同期保持回路(例えばDLL)
を更に備え、これに動作を移すようにすれば、同期捕捉
から同期保持へと動作が移行して、同期が成立すること
になる。また、スライディング相関型の同期捕捉回路
は、実際に使用する場合には、回路の前段に自動利得制
御回路(AGC)を用いて、受信SS信号レベルの変動
が生じても相関出力は変動しないようにしている。
However, since the synchronization is not maintained as it is, the synchronization holding circuit (eg, DLL)
Further, if the operation is transferred to this, the operation shifts from the synchronization acquisition to the synchronization holding, and the synchronization is established. When the sliding correlation type synchronization acquisition circuit is actually used, an automatic gain control circuit (AGC) is used in the preceding stage of the circuit so that the correlation output does not change even if the received SS signal level changes. I have to.

【0008】[0008]

【発明が解決しようとする課題】このようなスライディ
ング相関型の同期捕捉回路は、回路が比較的簡潔である
という特長を持っているが、その反面、SS信号に雑音
や干渉波による妨害を被った場合に、同期外れが生じた
り同期捕捉が出来なくなる等、妨害に弱いという欠点を
持ち合わせている。即ち、実際の受信動作において受信
状態が良好であれば問題は生じないが、現実にはSS信
号に種々の雑音や干渉波が妨害として発生することが少
くない。実際に妨害を被った場合には、理想的な図2の
波形に対して、図4(B) に示すようなノイズの多い相関
出力波形になってしまう。このような状態に至るとスレ
シュホールドレベルでの検出が困難になり、同期が外れ
る問題や、同期捕捉自体もできなくなるという問題が生
じる。
Such a sliding correlation type synchronization acquisition circuit has a feature that the circuit is relatively simple, but on the other hand, the SS signal is disturbed by noise or an interference wave. In this case, there is a drawback that it is vulnerable to interference, such as loss of synchronization or the inability to capture synchronization. That is, if the reception condition is good in the actual reception operation, no problem occurs, but in reality, various noises and interference waves are often generated in the SS signal as interference. When actually disturbed, the correlative output waveform as shown in FIG. 4 (B) becomes noisy as compared with the ideal waveform of FIG. When such a state is reached, detection at the threshold level becomes difficult, which causes a problem that synchronization is lost, and a problem that synchronization acquisition itself cannot be performed.

【0009】[0009]

【課題を解決するための手段】本発明の同期捕捉方式で
は、乗算型相関器と拡散符号発生器との間に、入力フィ
ルタの伝送特性の影響を補正するための補正フィルタ
と、この補正フィルタを通過した拡散符号を逆数化拡散
符号に変換する逆数化回路を設けると共に、乗算型相関
器とエンベロープ検出器との間に、該乗算型相関器より
の出力信号中の拡散ノイズを抑圧するための、拡散ノイ
ズ再生回路及び減算回路を含む拡散ノイズ抑圧手段を設
け、拡散ノイズ再生回路に補正フィルタにて補正された
拡散符号と逆数化拡散符号とを供給して、同期捕捉を行
なうことにより、上記課題を解決したものである。
In the synchronization acquisition system of the present invention, a correction filter for correcting the influence of the transmission characteristics of the input filter is provided between the multiplication type correlator and the spread code generator, and this correction filter. In order to suppress the spreading noise in the output signal from the multiplying correlator between the multiplying correlator and the envelope detector, while providing the reciprocal circuit for converting the spreading code that has passed through to the reciprocal spreading code. By providing a spreading noise suppressing means including a spreading noise reproducing circuit and a subtracting circuit, supplying the spreading code corrected by the correction filter and the reciprocal spreading code to the spreading noise reproducing circuit, and performing synchronous acquisition. This is a solution to the above problem.

【0010】[0010]

【実施例】本発明の(スライディング相関型)同期捕捉
方式について、これを実現し得る回路構成例に沿って、
図3以降を併せ参照しながら説明する。図3は本発明の
同期捕捉方式を実現し得る同期捕捉回路1のブロック構
成図、図4(A),(C) はその動作説明用相関特性図、図5
は本発明方式に使用される拡散ノイズ抑圧回路の抑圧動
作を示す動作説明用周波数スペクトル図であり、図3に
おいて図1に示した従来回路と同一構成部分には同一符
号を付してその詳細な説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Regarding the (sliding correlation type) synchronization acquisition method of the present invention, along with an example of a circuit configuration capable of realizing this,
This will be described with reference to FIG. 3 and subsequent figures. FIG. 3 is a block configuration diagram of a synchronization acquisition circuit 1 capable of realizing the synchronization acquisition method of the present invention, FIGS. 4 (A) and 4 (C) are correlation characteristic diagrams for explaining its operation, and FIG.
3 is a frequency spectrum diagram for explaining the suppressing operation of the spread noise suppressing circuit used in the method of the present invention. In FIG. 3, the same components as those of the conventional circuit shown in FIG. Description is omitted.

【0011】SS信号S(t)は入力端子Inより入力フィル
タ2を介して乗算器9に供給される。一方、VCO7で
はクロック信号を発生させているが、このクロック周波
数は、送信側での拡散変調に使われるものよりも高めに
設定され、その得られたクロックを拡散符号発生器8に
供給し、これを基に拡散符号ρ(t) を生成するよう構成
している。この拡散符号ρ(t) は、SS信号の伝送系や
入出力フィルタの伝送特性を考慮して設計された補正フ
ィルタ(LPF)15により周波数特性を補正され、更
に逆数化回路16にて逆数化拡散符号{ρ(t)}-1とされ
てから、スライディング相関用の乗算器9に出力され
る。
The SS signal S (t) is supplied from the input terminal In to the multiplier 9 via the input filter 2. On the other hand, the VCO 7 generates a clock signal, but this clock frequency is set higher than that used for spread modulation on the transmission side, and the obtained clock is supplied to the spread code generator 8. Based on this, the spreading code ρ (t) is generated. This spread code ρ (t) has its frequency characteristic corrected by a correction filter (LPF) 15 designed in consideration of the transmission characteristics of the SS signal transmission system and the input / output filter, and is then reciprocally converted by the reciprocal circuit 16. The spread code is set to {ρ (t)} −1 and then output to the multiplier 9 for sliding correlation.

【0012】この乗算器9では、入力されたSS信号S
(t)と逆数化拡散符号{ρ(t)}-1とのスライディング相
関が行われ、その出力として瞬間的に符号が一致する状
態が生じるが、その時刻の相関出力が得られる以外の時
間帯には、相関の取れないSS信号S(t)*{ρ(t)}-1と、
SS信号が被る雑音や干渉波等の妨害成分が生じる。こ
の妨害成分をI(t)とすると、このI(t)に逆数化拡散符号
{ρ(t)}-1が乗じられた拡散ノイズI(t)*{ρ(t)}-1の複
合成分(拡散ノイズとも言う)として、乗算器9の出力
信号中に生じる。かかる複合成分は復調情報除去用ハイ
パスフィルタ(高域濾波器;以下“HPF”とも記す)
3及び引算回路14に供給される。
In the multiplier 9, the input SS signal S
The sliding correlation between (t) and the inverse spread code {ρ (t)} -1 is performed, and as a result, the code momentarily coincides, but at times other than when the correlation output at that time is obtained. In the band, uncorrelated SS signals S (t) * {ρ (t)} -1 ,
Interfering components such as noise and interference waves on the SS signal are generated. If this disturbing component is I (t), the composite of spreading noise I (t) * {ρ (t)} -1 obtained by multiplying this I (t) by the inverse spread code {ρ (t)} -1. It occurs in the output signal of the multiplier 9 as a component (also called diffusion noise). Such a composite component is a high-pass filter for removing demodulation information (high-pass filter; hereinafter also referred to as "HPF")
3 and the subtraction circuit 14.

【0013】HPF3では、復調情報の周波数帯に入り
込む全ての成分が除去されて、乗算器10に出力され
る。乗算器10では補正フィルタ15の出力との乗算が
行われ、乗算器11の一方の入力端子に出力される。乗
算器11の他方の入力端子には、LPF12を通過した
逆数化拡散符号{ρ(t)}-1が供給されている。LPF1
2は逆数化拡散符号{ρ(t)}-1の周波数スペクトルのメ
インローブの高域部及びサイドローブを除去するために
用いている。従って、逆数化拡散符号のメインローブの
中低域成分のみが乗算器11には供給されることにな
り、従って、乗算器11からは、HPF3により損失し
ている復調情報の周波数帯域成分の、部分的に復元され
たものが出力される。
The HPF 3 removes all the components that enter the frequency band of the demodulation information and outputs it to the multiplier 10. The multiplier 10 multiplies the output of the correction filter 15 and outputs the result to one input terminal of the multiplier 11. To the other input terminal of the multiplier 11, the inverse spread code {ρ (t)} −1 that has passed through the LPF 12 is supplied. LPF1
2 is used for removing the high band part and the side lobe of the main lobe of the frequency spectrum of the inverse spread code {ρ (t)} −1 . Therefore, only the low- and middle-frequency components of the main lobe of the reciprocal spread code are supplied to the multiplier 11. Therefore, from the multiplier 11, the frequency band component of the demodulation information lost by the HPF 3, The output is a partially restored version.

【0014】かかる部分復元出力は周波数特性補正回路
13に供給され、ここで必要周波数帯域における部分復
元を完全復元に補正されて、復元複合成分として出力さ
れる。この復元された複合成分は引算回路14に供給さ
れ、ここで上記乗算器9からのスライディング相関出力
との引算が行われ、複合成分は打ち消し動作により抑圧
される。即ち、相関時の相関出力{図2,図4(A),(B)
参照}と相関動作時(全ての時間)に生じる複合成分
(拡散ノイズ)より、拡散ノイズの抑圧されたCN比
(信号対雑音比)の良い相関出力が得られる{図4(C)
参照}。
The partial restoration output is supplied to the frequency characteristic correction circuit 13, where the partial restoration in the required frequency band is corrected to complete restoration and output as a restoration composite component. The restored composite component is supplied to the subtraction circuit 14, where it is subtracted from the sliding correlation output from the multiplier 9, and the composite component is suppressed by the canceling operation. That is, the correlation output at the time of correlation {Fig. 2, Fig. 4 (A), (B)
Reference} and a complex component (spreading noise) that occurs during correlation operation (all times), a correlation output with a good CN ratio (signal-to-noise ratio) in which spread noise is suppressed can be obtained {Fig. 4 (C)
reference}.

【0015】ここで、図4について詳細に説明する。図
4(A) は干渉波や雑音の無いSS信号が供給された時
の、従来の同期捕捉方式による相関特性、同図(B) は強
力な干渉波妨害を被った場合の従来方式による相関特性
であり、同図(C) は強力な干渉波妨害を被った場合の本
発明方式による相関特性である。いずれもLPF4の出
力信号波形を観測したものである。本発明方式では、引
算回路14よりの引算出力をLPF4にて不要な拡散ノ
イズ成分を除去した後、積分回路を含むエンベロープ検
出回路5に供給し、ここで情報変調SS信号の場合に生
じる正負の極性の相関出力を一方の極性に揃えて、適度
な積分時定数を与えている。
Here, FIG. 4 will be described in detail. Fig. 4 (A) shows the correlation characteristics of the conventional synchronization acquisition method when an SS signal without interference waves or noise is supplied, and Fig. 4 (B) shows the correlation characteristics of the conventional method when suffering strong interference wave interference. FIG. 3C is a correlation characteristic according to the method of the present invention in the case of being subjected to strong interference wave interference. Both are observations of the output signal waveform of the LPF 4. In the method of the present invention, the subtraction calculation force from the subtraction circuit 14 is supplied to the envelope detection circuit 5 including the integrator circuit after removing unnecessary diffusion noise components by the LPF 4, and this occurs in the case of the information modulated SS signal. Correlation outputs of positive and negative polarities are aligned with one polarity to give an appropriate integration time constant.

【0016】得られた変換相関出力を同期判定回路6に
供給し、予め設定されているスレシュホールドレベルSH
L による同期検出をここで行なうわけである。同期検出
時の同期検出情報をクロック発生器であるVCO7に供
給し、拡散変調時のクロックと等しい周波数のクロック
をVCO7より発生させて、拡散符号発生器8へ供給し
ている。このようにして得られた拡散符号は、送信側で
の拡散変調に用いられる拡散符号と時間(クロック周波
数)が一致するので、同期が確立される。
The obtained converted correlation output is supplied to the synchronization judgment circuit 6, and the preset threshold level SH
Sync detection by L is performed here. The synchronization detection information at the time of synchronization detection is supplied to the VCO 7, which is a clock generator, and a clock having the same frequency as the clock at the time of spread modulation is generated from the VCO 7 and supplied to the spread code generator 8. The spreading code thus obtained has the same time (clock frequency) as the spreading code used for spreading modulation on the transmitting side, so that synchronization is established.

【0017】なお、本発明方式は同期捕捉を目的として
いるものであり、同期保持の動作は行われない。同期保
持とは、まずスライディング相関器によって、ある範囲
の位相差に近付いたP(t)とρ(t) を更に近付けて、雑音
等の擾乱によって位相差が大きくなるのを防ぐ動作であ
る。一般の同期保持には、遅延ロックループ回路が用い
られ、この遅延ロックループ回路との併用により、同期
捕捉が行われたら同期保持動作に切り替わるようにして
用いられている。
It should be noted that the method of the present invention is intended for synchronization acquisition, and the operation of holding synchronization is not performed. The synchronization hold is an operation in which the sliding correlator first brings P (t) and ρ (t) closer to a phase difference in a certain range closer to each other to prevent the phase difference from becoming large due to a disturbance such as noise. In general, a delay locked loop circuit is used for synchronization holding, and when used in combination with this delay locked loop circuit, it is used so as to switch to a synchronization holding operation when synchronization is acquired.

【0018】ここで、本発明方式による同期捕捉が成立
した際の、拡散ノイズの抑圧過程について、図3,図5
を併せ参照して詳細に説明する。図5(A)は入力フィル
タ2に供給されたSS信号Ds(f)の周波数帯域内に干渉
波I(f) が混入している場合の周波数スペクトル図であ
り、図中のTはVCO7より発生するクロック時間を示
している。同図(B)は乗算器9からの同期状態での逆拡
散出力で、D(f) は復調情報であり、Is(f)は干渉波I
(f) が拡散されて出来た拡散ノイズである。同図(C)の
Is'(f) は情報除去フィルタ(HPF)3により情報分
が取り除かれて残った拡散ノイズである。
Here, FIG. 3 and FIG. 5 show the diffusion noise suppression process when the synchronization acquisition by the method of the present invention is established.
Will also be described in detail. FIG. 5A is a frequency spectrum diagram when the interference wave I (f) is mixed in the frequency band of the SS signal Ds (f) supplied to the input filter 2, and T in the figure is from the VCO 7 It shows the clock time that occurs. FIG. 7B shows the despreading output from the multiplier 9 in the synchronous state, D (f) is demodulation information, and Is (f) is the interference wave I.
(f) is diffusion noise created by diffusion. Is' (f) in FIG. 7C is diffused noise left after the information component is removed by the information removal filter (HPF) 3.

【0019】図5(D)は乗算器10の出力で、I(f) は
元に戻った干渉波を、n(f) は失われた情報周波数帯域
の拡散ノイズの再拡散成分を、夫々示している。同図
(E)は逆数化拡散符号をLPF12によりフィルタリン
グ(高域除去)して得られた拡散符号S'(f)である。同
図(F)は乗算器11の出力で、is'(f) は部分的に復元
された拡散ノイズを表わしている。同図(G)は周波数特
性補正回路13の出力で、情報周波数帯域内では拡散ノ
イズis(f)は完全に補正されていること示している。同
図(H)は引算回路14の出力信号スペクトルを表わし、
復調情報D(f) と残留拡散ノイズps(f)を夫々示してい
る。更に、同図(I)はLPF4を介して得られた復調情
報D(f) を示しす。この図5(I)より、伝送系で混入し
た干渉波I(f) がほぼ完全に除去されていることが分
る。
FIG. 5D shows the output of the multiplier 10. I (f) is the restored interference wave, and n (f) is the respreading component of the lost spreading noise in the information frequency band. Shows. Same figure
(E) is a spreading code S ′ (f) obtained by filtering (high-frequency removal) the reciprocal spreading code by the LPF 12. (F) is the output of the multiplier 11, and is' (f) represents the partially restored diffused noise. FIG. 6G shows the output of the frequency characteristic correction circuit 13 and shows that the diffusion noise is (f) is completely corrected in the information frequency band. The figure (H) shows the output signal spectrum of the subtraction circuit 14,
The demodulation information D (f) and the residual diffusion noise ps (f) are shown respectively. Further, FIG. 3 (I) shows the demodulation information D (f) obtained through the LPF 4. From FIG. 5 (I), it can be seen that the interference wave I (f) mixed in the transmission system is almost completely removed.

【0020】[0020]

【発明の効果】本発明の同期捕捉方式は以上のようにし
て同期捕捉復調するので、不要な拡散ノイズ及び非同期
時の相関の取れないSS信号を効率的に抑圧して、SN
比の良い相関出力を検出して同期捕捉が達成できる。特
に、SS信号のプロセスゲインを超える強力な妨害波を
被る場合、従来方式では同期捕捉が不可能であっても、
本方式では正しい同期捕捉が行えるという優れた特長を
持っている。これにより、従来方式では不可能であっ
た、強烈な妨害波混入時の同期捕捉と逆拡散復調が達成
できるという優れた特長を有する。
Since the synchronization acquisition system of the present invention performs the synchronization acquisition and demodulation as described above, unnecessary spread noise and uncorrelated SS signals at the time of asynchronous are efficiently suppressed, and SN
The synchronous acquisition can be achieved by detecting the correlation output having a good ratio. In particular, when a strong interference wave exceeding the process gain of the SS signal is received, even if synchronization cannot be acquired by the conventional method,
This method has the excellent feature that correct synchronization can be achieved. As a result, it has an excellent feature that it can achieve synchronous acquisition and despread demodulation when a strong interfering wave is mixed, which was impossible with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の代表的なスライディング相関型の同期捕
捉方式を実現し得る同期捕捉回路の構成図。
FIG. 1 is a configuration diagram of a synchronization acquisition circuit that can realize a conventional typical sliding correlation type synchronization acquisition system.

【図2】従来方式での相関出力とその検出用スレシュホ
ールドレベルを示す特性図。
FIG. 2 is a characteristic diagram showing a correlation output and a detection threshold level thereof in the conventional method.

【図3】本発明の同期捕捉方式を実現し得る同期捕捉回
路のブロック構成図。
FIG. 3 is a block configuration diagram of a synchronization acquisition circuit capable of realizing the synchronization acquisition system of the present invention.

【図4】SS信号の同期捕捉動作説明用の相関特性図。FIG. 4 is a correlation characteristic diagram for explaining an SS signal synchronization acquisition operation.

【図5】本発明方式に使用される拡散ノイズ抑圧回路の
抑圧動作説明用スペクトル図。
FIG. 5 is a spectrum diagram for explaining a suppressing operation of a spread noise suppressing circuit used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 拡散ノイズ抑圧回路 2 入力フィルタ 3 高域濾波器(HPF) 4,12 低域濾波器(LPF) 5 エンベロープ検出回路 6 同期判定回路 7 電圧制御発振器 8 拡散符号発生器 9〜11 乗算器 13 周波数特性補正回路 14 引算回路 15 補正フィルタ 16 逆数化回路 1 Spreading Noise Suppression Circuit 2 Input Filter 3 High-pass Filter (HPF) 4,12 Low-pass Filter (LPF) 5 Envelope Detection Circuit 6 Synchronization Judgment Circuit 7 Voltage Controlled Oscillator 8 Spreading Code Generator 9-11 Multiplier 13 Frequency Characteristic correction circuit 14 Subtraction circuit 15 Correction filter 16 Inverse circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】スペクトル拡散信号を入力フィルタを介し
て乗算型相関器に供給して拡散符号との乗算を行ない、
その乗算出力をエンベロープ検出器にてエンベロープ検
出して同期判定回路に供給し、該同期判定回路の相関出
力レベルにより同期の捕捉検出を行ない、その検出信号
をクロック発生器に供給してクロック信号を発生させ、
該クロック信号を基に拡散符号発生器で生成した拡散符
号を上記乗算型相関器に出力する、一巡フィードバック
ループから成るスライディング相関型の同期捕捉方式に
おいて、 上記乗算型相関器と拡散符号発生器との間に、入力フィ
ルタの伝送特性の影響を補正するための補正フィルタ
と、該補正フィルタを通過した拡散符号を逆数化拡散符
号に変換する逆数化回路を設けると共に、 上記乗算型相関器とエンベロープ検出器との間に、該乗
算型相関器よりの出力信号中の拡散ノイズを抑圧するた
めの、拡散ノイズ再生回路及び減算回路を含む拡散ノイ
ズ抑圧手段を設け、 上記拡散ノイズ再生回路に、上記補正フィルタにて補正
された拡散符号と、上記逆数化拡散符号とを供給して、
同期捕捉を行なうようにしたことを特徴とする、スペク
トル拡散信号の同期捕捉方式。
1. A spread spectrum signal is supplied to a multiplication type correlator via an input filter to perform multiplication with a spread code,
The envelope output is envelope-detected by the envelope detector and supplied to the synchronization determination circuit, synchronization is detected and detected by the correlation output level of the synchronization determination circuit, and the detection signal is supplied to the clock generator to supply the clock signal. Raise,
In a sliding correlation type synchronization acquisition system consisting of a loop feedback loop, which outputs a spreading code generated by a spreading code generator based on the clock signal to the multiplication type correlator, the multiplication type correlator and the spreading code generator are provided. A correction filter for correcting the influence of the transmission characteristics of the input filter, and an inverse circuit for converting the spread code that has passed through the correction filter into an inverse spread code are provided between A diffused noise suppressor including a diffused noise reproducing circuit and a subtracting circuit for suppressing diffused noise in the output signal from the multiplication type correlator is provided between the detector and the detector, and the diffused noise reproducing circuit includes: By supplying the spread code corrected by the correction filter and the reciprocal spread code,
A synchronization acquisition method for spread spectrum signals, characterized in that synchronization acquisition is performed.
【請求項2】上記拡散ノイズ再生回路を、同期捕捉時に
得られる相関出力のうち情報信号周波数に相当する周波
数帯域を除去する高域濾波器と、該高域濾波器の出力と
上記補正された拡散符号と乗算する第1の乗算器と、こ
の乗算器出力に上記逆数化拡散符号のうち高域成分を低
減された符号を乗算する第2の乗算器と、該第2の乗算
器出力の周波数特性を補正する周波数特性補正回路とを
備えて、拡散ノイズを再生するようにしたことを特徴と
する、請求項1記載のスペクトル拡散信号の同期捕捉方
式。
2. A high-pass filter for removing the frequency band corresponding to the information signal frequency in the correlation output obtained at the time of synchronization acquisition by the diffusion noise reproduction circuit, and the output of the high-pass filter and the corrected output. A first multiplier for multiplying the spread code; a second multiplier for multiplying the output of the multiplier by a code of the reciprocal spread code whose high frequency component is reduced; and a second multiplier output of the second multiplier The spread spectrum signal synchronization acquisition method according to claim 1, further comprising: a frequency characteristic correction circuit that corrects a frequency characteristic to reproduce spread noise.
JP36062291A 1991-12-27 1991-12-27 Synchronous acquisition method of spread spectrum signal Expired - Lifetime JP2570042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36062291A JP2570042B2 (en) 1991-12-27 1991-12-27 Synchronous acquisition method of spread spectrum signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36062291A JP2570042B2 (en) 1991-12-27 1991-12-27 Synchronous acquisition method of spread spectrum signal

Publications (2)

Publication Number Publication Date
JPH05183535A true JPH05183535A (en) 1993-07-23
JP2570042B2 JP2570042B2 (en) 1997-01-08

Family

ID=18470204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36062291A Expired - Lifetime JP2570042B2 (en) 1991-12-27 1991-12-27 Synchronous acquisition method of spread spectrum signal

Country Status (1)

Country Link
JP (1) JP2570042B2 (en)

Also Published As

Publication number Publication date
JP2570042B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
US8040935B2 (en) Methods and apparatus for spread spectrum modulation and demodulation
USRE38603E1 (en) Data transmitter and receiver of a spread spectrum communication system using a pilot channel
US5675608A (en) Synchronous transmitter and receiver of spread spectrum communication method
JP2006512821A (en) Multimode receiver
JP2002135169A (en) Spread spectrum receiver
JP3523609B2 (en) Code division multiple access (CDMA) code timing tracking device
JP2570042B2 (en) Synchronous acquisition method of spread spectrum signal
JPH0642654B2 (en) Tau dither circuit
US20050008108A1 (en) Frequency offset detector for afc under rayleigh fading
JP2731361B2 (en) Signal processing device
JP2650553B2 (en) Spread spectrum demodulator
JP4186715B2 (en) Receiving sensitivity suppression reduction system
JP2689806B2 (en) Synchronous spread spectrum modulated wave demodulator
JP2682363B2 (en) Spread spectrum modulation and / or demodulation device
JP2601206B2 (en) Spread spectrum communication system and receiving apparatus
JPH09247046A (en) Receiver for spread spectrum communication
JP2000216702A (en) Spread spectrum communications system
JPH07123024A (en) Method for initial pull-in of automatic frequency control in spread spectrum communication and receiver
JPH05175939A (en) Automatic gain control circuit for receiving spread spectrum signal
JP2514113B2 (en) Spread spectrum demodulator
JPH0746157A (en) Synchronization holding device for spread spectrum demodulation
JP2000216701A (en) Spread spectrum communications system
JPH1198107A (en) Spread spectrum communication type receiver
JPH0746154A (en) Spread spectrum modulator and/or demodulator
JPH05199205A (en) Demodulator for synchronous spread spectrum modulated wave