JPH05182523A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH05182523A
JPH05182523A JP3358709A JP35870991A JPH05182523A JP H05182523 A JPH05182523 A JP H05182523A JP 3358709 A JP3358709 A JP 3358709A JP 35870991 A JP35870991 A JP 35870991A JP H05182523 A JPH05182523 A JP H05182523A
Authority
JP
Japan
Prior art keywords
weight
percentage
porcelain
component
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3358709A
Other languages
Japanese (ja)
Other versions
JP3179830B2 (en
Inventor
Yasushi Inoue
泰史 井上
Koichiro Tsujiku
浩一郎 都竹
Naoto Narita
直人 成田
Yoichi Mizuno
洋一 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP35870991A priority Critical patent/JP3179830B2/en
Publication of JPH05182523A publication Critical patent/JPH05182523A/en
Application granted granted Critical
Publication of JP3179830B2 publication Critical patent/JP3179830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To fire a dielectric porcelain composition at 900 deg.C or less, and use the dielectric porcelain composition in a high frequency area by containing a main component formed of ZrO2-SnO2-TiO2 and a sub-component formed of SiO2, CaO, SrO, BaO, MgO, B2O3, and Li2O. CONSTITUTION:A main component is 25-60 percentage by weight of component expressed by xZrO2+ySnO2+zTiO2 (where, (x), (y), and (z) are numeric values meeting following numerical formulas, 0.25<=x<=0.6, 0.02<=y<=0.26, 0.22<=z<=0.60, and x+y+z=1). A sub-component is formed of 10-40 percentage by weight of SiO2, 1-20 percentage by weight of at least one kind component selected from CaO, SrO, and BaO, 1-15 percentage by weight of MgO, 3-30 percentage by weight of B2O3, 0.01-3.0 percentage by weight of Li2O, and 0.10-3.0 percentage by weight of LiO2O, and the composition contains the main component and the sub-component. After forming porcelain material powder at a ratio of 50 percentage by weight of main component material and 50 percentage by weight of sub-component material, it is molded so as to be fired at 900 deg.C in the air, and is coated by silver paste so as to be baked. A porcelain condenser formed of a porcelain 1 and a pair of electrodes 2 and 3 is obtained thereby.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波用積層磁器コン
デンサ、誘電体共振器等に使用するための誘電体磁器組
成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition for use in high frequency laminated ceramic capacitors, dielectric resonators and the like.

【0002】[0002]

【従来の技術】高周波数領域で使用することができる誘
電体磁器としてZrO2 (酸化ジルコニウム)とSnO
2 (酸化スズ)とTiO2 (酸化チタン)から成る磁器
組成物が知られている。
2. Description of the Related Art ZrO 2 (zirconium oxide) and SnO are used as dielectric ceramics that can be used in a high frequency range.
A porcelain composition consisting of 2 (tin oxide) and TiO 2 (titanium oxide) is known.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来のZr
2 −SnO2 −TiO2 磁器組成物の焼成温度は11
00〜1500℃と比較的高いので、積層磁器コンデン
サを作製する時には内部電極材料として融点の高いPd
(パラジウム)を主成分とする導電性ペーストを使用し
なければならなかった。しかし、Pdは抵抗率が高いた
めにコンデンサのQが低下するという欠点、及び高価で
あるという欠点を有する。
By the way, the conventional Zr
The firing temperature of the O 2 —SnO 2 —TiO 2 porcelain composition is 11
Since it is relatively high at 00 to 1500 ° C., Pd having a high melting point as an internal electrode material is used when manufacturing a laminated ceramic capacitor.
A conductive paste containing (palladium) as a main component had to be used. However, Pd has the drawback that the Q of the capacitor is lowered due to its high resistivity and that it is expensive.

【0004】そこで、本発明の目的は、900℃以下の
焼成で製造することが可能であり且つ高周波数領域で使
用することが可能な誘電体磁器組成物を提供することに
ある。
Therefore, an object of the present invention is to provide a dielectric ceramic composition which can be manufactured by firing at 900 ° C. or lower and can be used in a high frequency range.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、xZrO2 +ySnO2 +zTiO2 (但
し、x、y、zは0.25≦x≦0.6、0.02≦y
≦0.26、0.22≦z≦0.60、x+y+z=1
を満足する数値)で表される成分 25〜60重量%
と、SiO2 10〜40重量%と、CaO、SrO及
びBaOの内の少なくとも1種から成る成分 1〜20
重量%と、MgO 1〜15重量%と、B2 3 3〜
30重量%と、Li2 O 0.1〜3.0重量%とを含
む誘電体磁器組成物に係わるものである。
The present invention for attaining the above-mentioned object provides xZrO 2 + ySnO 2 + zTiO 2 (where x, y and z are 0.25 ≦ x ≦ 0.6 and 0.02 ≦ y
≦ 0.26, 0.22 ≦ z ≦ 0.60, x + y + z = 1
25-60% by weight of the component represented by
1 to 20 composed of 10 to 40% by weight of SiO 2 and at least one of CaO, SrO and BaO
% By weight, MgO 1 to 15% by weight, B 2 O 3 3 to
The present invention relates to a dielectric ceramic composition containing 30% by weight and Li 2 O 0.1 to 3.0% by weight.

【0006】[0006]

【作用及び効果】本発明によれば、1MHzにおいて比
誘電率εが6.0以上、比誘電率の温度係数Tεが−
60ppm/℃〜+60ppm/℃の誘電体磁器組成物
を提供することができる。本発明の誘電体磁器組成物
は、銀(Ag)、銅(Cu)等の低融点金属の導電ペー
スト層との同時焼成で得ることができるので、高周波用
積層磁器コンデンサの誘電体磁器として好適なものであ
る。積層磁器コンデンサの内部電極をAg、Cu等の抵
抗率の小さい金属で形成すれば、Qを高めることができ
る。
According to the present invention, the relative permittivity ε r is 6.0 or more and the temperature coefficient T ε of the relative permittivity is − at 1 MHz.
It is possible to provide a dielectric ceramic composition of 60 ppm / ° C to +60 ppm / ° C. Since the dielectric ceramic composition of the present invention can be obtained by co-firing with a conductive paste layer of a low melting point metal such as silver (Ag) or copper (Cu), it is suitable as a dielectric ceramic for a high frequency laminated ceramic capacitor. It is something. If the internal electrodes of the laminated ceramic capacitor are formed of a metal having a low resistivity such as Ag or Cu, the Q can be increased.

【0007】[0007]

【実施例】次に、本発明の実施例(比較例を含む)を説
明する。高周波用磁器コンデンサの誘電体磁器を得るた
めに、表1に示す36種類の組成の試料を作成した。表
1のx、y、zは仮焼後又は本焼成後の磁器の主成分を
示す組成式 xZrO2 +ySnO2 +zTiO2 におけるx、y、zの値を示す。副成分の欄はSiO2
(酸化ケイ素)CaO(酸化カルシウム)、SrO(酸
化ストロンチウム)、BaO(酸化バリウム)、MgO
(酸化マグネシウム)、B2 3 (酸化ホウ素)、Li
2 O(酸化リチウム)の焼成後の含有率を重量%で示
す。
EXAMPLES Next, examples of the present invention (including comparative examples) will be described. In order to obtain dielectric porcelain for high frequency porcelain capacitors, samples of 36 types of compositions shown in Table 1 were prepared. In Table 1, x, y, and z represent the values of x, y, and z in the composition formula xZrO 2 + ySnO 2 + zTiO 2 showing the main component of the porcelain after calcination or main calcination. The sub-component column is SiO 2
(Silicon oxide) CaO (calcium oxide), SrO (strontium oxide), BaO (barium oxide), MgO
(Magnesium oxide), B 2 O 3 (boron oxide), Li
The content of 2 O (lithium oxide) after firing is shown by weight%.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】次に、試料No.1に従う高周波用磁器コ
ンデンサの製造方法を詳しく説明する。x=0.25、
y=0.2、z=0.55に従う 0.25ZrO2 +0.2SnO2 +0.55TiO2 の組成の主成分を得るために、ZrO2 (酸化ジルコニ
ウム)とSnO2 (酸化スズ)とTiO2 (酸化チタ
ン)とを上記の主成分を得ることができる割合に配合
し、ポリエチレン製ポットに水と共に入れ、湿式混合し
た後脱水乾燥した。次に、この乾燥物を空気中で100
0〜1200℃で2時間仮焼して主成分材料を得た。
Next, the sample No. A method of manufacturing the high frequency porcelain capacitor according to 1 will be described in detail. x = 0.25,
According to y = 0.2, z = 0.55 In order to obtain the main components of the composition of 0.25ZrO 2 + 0.2SnO 2 + 0.55TiO 2 , ZrO 2 (zirconium oxide), SnO 2 (tin oxide) and TiO 2 (Titanium oxide) was blended in such a proportion that the above main component could be obtained, put in a polyethylene pot together with water, wet mixed, and then dehydrated and dried. Next, the dried product is dried in air at 100
The main component material was obtained by calcination at 0 to 1200 ° C. for 2 hours.

【0011】次に、焼成後の磁器においてSiO2 20
重量%、SrO10重量%、MgO10重量%、B2
3 9重量%、Li2 O1重量%の割合で副成分を含める
ために、SiO2 40重量%、SrO20重量%、Mg
O20重量%、B2 3 18重量%、Li2 O2重量%
の組成の副成分が得られるようにSiO2 、SrCO3
(炭酸ストロンチウム)、MgO、B2 3 、Li2
3 (炭酸リチウム)を秤量し、これ等の原料をポリエ
チレン製ポットに水と共に入れて、湿式混合した後脱水
乾燥した。次に、この乾燥物を空気中で750〜850
℃で2時間仮焼し、SiO2 とSrOとMgOとB2
3 とLi2 Oとから成る副成分材料を得た。
Next, in the porcelain after firing, SiO 2 20
% By weight, SrO 10% by weight, MgO 10% by weight, B 2 O
3 9% by weight, in order to include the secondary components in a ratio of Li 2 O1 wt%, SiO 2 40 wt%, SrO20 wt%, Mg
O 20 % by weight, B 2 O 3 18% by weight, Li 2 O 2% by weight
SiO 2 , SrCO 3 so that the subcomponents of the composition of
(Strontium carbonate), MgO, B 2 O 3 , Li 2 C
O 3 (lithium carbonate) was weighed, and these raw materials were put in a polyethylene pot together with water, wet mixed, and then dehydrated and dried. Next, the dried product is heated in the air at 750 to 850.
Calcination at ℃ for 2 hours, SiO 2 , SrO, MgO and B 2 O
A subcomponent material consisting of 3 and Li 2 O was obtained.

【0012】次に、主成分材料50重量%、副成分材料
50重量%の比率に各材料を秤量し、これをポリエチレ
ン製ポットに水と共に入れて、湿式混合した後脱水乾燥
し、磁器原料粉末を得た。この磁器原料粉末の組成比は
表1の試料No.1に示す通りである。
Next, each material was weighed in a ratio of 50% by weight of the main component material and 50% by weight of the subcomponent material, and this was put in a polyethylene pot together with water, wet-mixed and dehydrated and dried to obtain porcelain raw material powder. Got The composition ratio of this porcelain raw material powder is the sample No. 1 in Table 1. It is as shown in 1.

【0013】次に、この磁器原料粉末に有機バインダー
を加えて造粒し、この造粒物を直径9.8mm、厚さ
0.6mmの円板状に、500kg/cm2 の圧力で加
圧成形した。次に、この成形体をジルコニアセッタ上に
載せて空気中900℃の温度で焼成した。この本焼成で
得られた円板状磁器の両主面に銀ペーストを塗布して焼
付け、図1に示す磁器1と一対の電極2、3とから成る
磁器コンデンサを得た。
Next, an organic binder is added to this porcelain raw material powder to granulate, and the granulated product is pressed into a disk shape having a diameter of 9.8 mm and a thickness of 0.6 mm at a pressure of 500 kg / cm 2. Molded. Next, this compact was placed on a zirconia setter and fired in air at a temperature of 900 ° C. Silver paste was applied to both main surfaces of the disc-shaped porcelain obtained by the main firing and baked to obtain a porcelain capacitor including the porcelain 1 and a pair of electrodes 2 and 3 shown in FIG.

【0014】次に、この磁器コンデンサの比誘電率
ε、Q値、比誘電率の温度係数Tε(ppm/℃)を
測定した。なお、比誘電率ε及びQは周波数1MH
z、電圧1V、周囲温度20℃の条件で測定した。温度
係数Tεは+20℃のεを基準にした−25〜+20
℃のε及び+20℃〜+85℃のεの変化率であ
り、1MHz、1Vの条件で測定した。
Next, the relative permittivity ε r , Q value and temperature coefficient T ε (ppm / ° C.) of the relative permittivity of this ceramic capacitor were measured. It should be noted that the relative permittivity ε r and Q are frequency 1 MH
It was measured under the conditions of z, voltage 1 V, and ambient temperature 20 ° C. The temperature coefficient Tε is −25 to +20 based on ε r of + 20 ° C.
The rate of change of ε r at 0 ° C. and ε r at + 20 ° C. to + 85 ° C. was measured under the conditions of 1 MHz and 1V.

【0015】試料No.2〜36についても、主成分及
び/又は副成分の組成を変えた他は試料No.1と同一
の方法で磁器コンデンサを作り、同一の方法で特性を測
定した。試料No.1〜36の特性は表2に示す通りで
ある。
Sample No. Sample Nos. 2 to 36 were also changed except that the composition of the main component and / or the subcomponent was changed. A porcelain capacitor was produced by the same method as in No. 1, and the characteristics were measured by the same method. Sample No. The characteristics of 1 to 36 are as shown in Table 2.

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】表2から明らかなように、試料No.1の
磁器コンデンサのεは7.5、Qは1200、−20
〜+20℃のTεは+5(ppm/℃)、+20〜+8
0℃のTεは+7(ppm/℃)である。また、本発明
で特定された範囲の磁器組成物によれば、比誘電率ε
が6.0〜10.5、Qが1000〜1700、温度係
数Tεが−60〜+60(ppm/℃)の電気的特性が
得られる。なお、試料No.7〜12、23〜32、3
5、36は上記の所望特性を得ることができないので、
本発明の範囲外の比較例である。
As is clear from Table 2, the sample No. Ε r of the porcelain capacitor of No. 1 is 7.5, Q is 1200, −20
T + at + 20 ° C is +5 (ppm / ° C), +20 to +8
Tε at 0 ° C is +7 (ppm / ° C). Further, according to the porcelain composition in the range specified in the present invention, the relative permittivity ε r
Of 6.0 to 10.5, Q of 1000 to 1700, and temperature coefficient Tε of −60 to +60 (ppm / ° C.) are obtained. Sample No. 7-12, 23-32, 3
5 and 36 cannot obtain the above desired characteristics,
It is a comparative example outside the scope of the present invention.

【0019】次に、本発明の高周波誘電体磁器組成物の
組成範囲の限定理由を説明する。試料No.1〜12で
は、主成分のx、y、z即ち、ZrO2 とSnO2 とT
iO2 との混合比率が種々変えられている。試料No.
7に示すようにxが0.2の場合には、所望の温度係数
Tεが得られないが、試料No.1に示すようにxが
0.25であれば、所望の電気的特性を有する焼結体が
得られる。従って、xの下限値は0.25である。試料
No.8に示すようにxの値が0.7の場合には、所望
の温度係数Tεが得られないが、試料No.2に示すよ
うにxが0.6の場合には所望の電気的特性を有する焼
結体が得られる。従って、xの上限値は0.6である。
Next, the reasons for limiting the composition range of the high frequency dielectric ceramic composition of the present invention will be explained. Sample No. 1 to 12, x, y, z of the main components, that is, ZrO 2 , SnO 2 and T
The mixing ratio with iO 2 is variously changed. Sample No.
As shown in FIG. 7, when x is 0.2, the desired temperature coefficient Tε cannot be obtained. When x is 0.25 as shown in 1, a sintered body having desired electrical characteristics can be obtained. Therefore, the lower limit value of x is 0.25. Sample No. As shown in FIG. 8, when the value of x is 0.7, the desired temperature coefficient Tε cannot be obtained. As shown in 2, when x is 0.6, a sintered body having desired electrical characteristics can be obtained. Therefore, the upper limit value of x is 0.6.

【0020】試料No.9に示すようにyが0.01の
場合には、所望の温度係数Tε及びQが得られないが、
試料No.3に示すようにyが0.02の場合には所望
特性を有する焼結体が得られる。従って、yの下限値は
0.02である。試料No.10に示すようにyが0.
3の場合には、所望の温度係数Tεが得られないが、試
料No.4に示すようにyが0.26の場合には所望特
性の焼結体が得られる。従って、yの上限値は0.26
である。
Sample No. As shown in 9, when y is 0.01, desired temperature coefficients Tε and Q cannot be obtained,
Sample No. As shown in 3, when y is 0.02, a sintered body having desired characteristics can be obtained. Therefore, the lower limit value of y is 0.02. Sample No. As shown in FIG. 10, y is 0.
In the case of 3, the desired temperature coefficient Tε cannot be obtained, but the sample No. As shown in 4, when y is 0.26, a sintered body having desired characteristics can be obtained. Therefore, the upper limit of y is 0.26
Is.

【0021】試料No.11に示すようにzが0.2の
場合には、所望の温度係数Tεが得られないが、試料N
o.5に示すようにzが0.22の場合には所望特性を
有する焼結体が得られる。従って、zの下限値は0.2
2である。試料No.12に示すようにzが0.7の場
合には、所望の温度係数Tεが得られないが、試料N
o.6に示すようにzが0.6の場合には所望特性を有
する焼結体が得られる。従って、zの上限値は0.6で
ある。
Sample No. As shown in 11, when z is 0.2, the desired temperature coefficient Tε cannot be obtained, but the sample N
o. As shown in FIG. 5, when z is 0.22, a sintered body having desired characteristics can be obtained. Therefore, the lower limit of z is 0.2
It is 2. Sample No. As shown in FIG. 12, when z is 0.7, the desired temperature coefficient Tε cannot be obtained.
o. As shown in 6, when z is 0.6, a sintered body having desired characteristics can be obtained. Therefore, the upper limit of z is 0.6.

【0022】試料No.13〜36では主成分のx、
y、zが固定され、副成分が種々変えられている。試料
No.23に示すようにSiO2 が5重量%の場合には
Qが700となり、所望特性が得られないが、試料N
o.13に示すようにSiO2 が10重量%になると、
所望特性が得られる。従って、SiO2 の含有率の下限
は10重量%である。試料No.24に示すようにSi
2 が45重量%の場合には900℃の焼成で焼結体が
得られないが、試料No.14に示すようにSiO2
40重量%の場合には所望特性が得られる。従って、S
iO2 の含有率の上限は40重量%である。
Sample No. 13 to 36, the main component x,
y and z are fixed, and various subcomponents are changed. Sample No. As shown in No. 23, when SiO 2 is 5% by weight, Q is 700 and desired characteristics cannot be obtained.
o. As shown in 13, when SiO 2 becomes 10% by weight,
The desired properties are obtained. Therefore, the lower limit of the SiO 2 content is 10% by weight. Sample No. As shown in 24
When O 2 is 45% by weight, a sintered body cannot be obtained by firing at 900 ° C. As shown in 14, when SiO 2 is 40% by weight, desired characteristics are obtained. Therefore, S
The upper limit of the content of iO 2 is 40% by weight.

【0023】CaO、SrO、BaOは第2族の金属の
酸化物であって同様な作用を有する。従って、試料N
o.13〜22に示すようにCaO、SrO、BaOを
単独で使用してもよいし、混合して使用してもよい。こ
れ等の添加量(含有率)はこれ等の合計で決まる。試料
No.25に示すようにCaO、SrO、BaOの和が
0.5重量%の場合には900℃の焼成で焼結体が得ら
れないが、試料No.15に示すようにCaO、Sr
O、BaOの和が1重量%の場合には所望特性の焼結体
が得られる。従って、CaO、SrO、BaO成分の含
有率の下限値は1重量%である。試料No.26に示す
ようにCaO、SrO、BaOの和が25重量%の場合
にはQが700となり、所望特性が得られないが、試料
No.16に示すようにCaO、SrO、BaOの和が
20重量%の場合には所望特性を有する焼結体が得られ
る。従って、CaO、SrO、BaO成分の含有率の上
限値は20重量%である。
CaO, SrO, and BaO are oxides of Group 2 metals and have similar functions. Therefore, sample N
o. As shown in 13 to 22, CaO, SrO, and BaO may be used alone or in combination. The addition amount (content rate) of these is determined by the total of these. Sample No. 25, when the sum of CaO, SrO, and BaO is 0.5% by weight, a sintered body cannot be obtained by firing at 900 ° C. As shown in 15, CaO, Sr
When the sum of O and BaO is 1% by weight, a sintered body having desired characteristics can be obtained. Therefore, the lower limit of the content of CaO, SrO, and BaO components is 1% by weight. Sample No. As shown in FIG. 26, when the sum of CaO, SrO and BaO is 25% by weight, Q becomes 700 and desired characteristics cannot be obtained. As shown in 16, when the sum of CaO, SrO and BaO is 20% by weight, a sintered body having desired characteristics can be obtained. Therefore, the upper limit of the content of CaO, SrO, and BaO components is 20% by weight.

【0024】試料No.27に示すようにMgOが0.
1重量%の場合には900℃の焼成で焼結体が得られな
いが、試料No.17に示すようにMgOが1重量%に
なると、所望特性の焼結体が得られる。従って、MgO
の含有率の下限は1重量%である。試料No.28に示
すようにMgOが20重量%の場合にはQが500であ
って所望特性が得られないが、試料No.18に示すよ
うにMgOが15重量%の場合には所望特性が得られ
る。従って、MgOの含有率の上限は15重量%であ
る。
Sample No. As shown in FIG.
In the case of 1% by weight, a sintered body cannot be obtained by firing at 900 ° C. As shown in 17, when MgO is 1% by weight, a sintered body having desired characteristics can be obtained. Therefore, MgO
The lower limit of the content of is 1% by weight. Sample No. As shown in 28, when MgO is 20% by weight, Q is 500 and desired characteristics cannot be obtained. As shown in 18, when MgO is 15% by weight, the desired characteristics are obtained. Therefore, the upper limit of the MgO content is 15% by weight.

【0025】試料No.29に示すようにB2 3 が1
重量%の場合には900℃の焼成で焼結体が得られない
が、試料No.19に示すようにB2 3 が3重量%に
なると、所望特性を有する焼結体が得られる。従って、
2 3 の含有率の下限は3重量%である。試料No.
30に示すようにB2 3 が40重量%の場合には90
0℃の焼成で焼結体が得られないが、試料No.20に
示すようにB2 3 が30重量%の場合には所望特性を
有する焼結体が得られる。従って、B2 3 の含有率の
上限は30重量%である。
Sample No. As shown in 29, B 2 O 3 is 1
In the case of weight%, a sintered body cannot be obtained by firing at 900 ° C. As shown in 19, when B 2 O 3 is 3% by weight, a sintered body having desired characteristics can be obtained. Therefore,
The lower limit of the B 2 O 3 content is 3% by weight. Sample No.
As shown in 30, when B 2 O 3 is 40% by weight, 90
Although a sintered body cannot be obtained by firing at 0 ° C., sample No. As shown in 20, when B 2 O 3 is 30% by weight, a sintered body having desired characteristics can be obtained. Therefore, the upper limit of the B 2 O 3 content is 30% by weight.

【0026】試料No.31に示すようにLi2 Oが
0.01重量%の場合にはQが900℃の焼成で焼結体
が得られないが、試料No.21に示すようにLi2
が0.1重量%になると、所望特性を有する焼結体が得
られる。従って、Li2 Oの含有率の下限は0.1重量
%である。試料No.32に示すようにLi2 Oが5重
量%の場合には900℃の焼成で焼結体が得られない
が、試料No.22に示すようにLi2 Oが3重量%の
場合には所望特性を有する焼結体が得られる。従って、
Li2 Oの含有率の上限は3重量%である。
Sample No. As shown in 31, when Li 2 O is 0.01% by weight, a sintered body cannot be obtained by firing at a Q of 900 ° C. As shown in 21, Li 2 O
Is 0.1% by weight, a sintered body having desired characteristics can be obtained. Therefore, the lower limit of the Li 2 O content is 0.1% by weight. Sample No. As shown in FIG. 32, when Li 2 O was 5% by weight, a sintered body could not be obtained by firing at 900 ° C. As shown in No. 22, when Li 2 O is 3% by weight, a sintered body having desired characteristics can be obtained. Therefore,
The upper limit of the Li 2 O content is 3% by weight.

【0027】試料No.35に示すように主成分の含有
率が15重量%の場合にはQが500であり、所望特性
が得られないが、試料No.33に示すように主成分の
含有率が25重量%の場合には所望特性が得られる。従
って、主成分の含有率の下限は25重量%である。試料
No.36に示すように主成分の含有率が70重量%の
場合には900℃の焼成で焼結体が得られないが、試料
No.34に示すように主成分の含有率が60重量%で
所望特性を有する焼結体が得られる。従って、主成分の
含有率の上限は60重量%である。
Sample No. As shown in No. 35, when the content of the main component is 15% by weight, Q is 500 and desired characteristics cannot be obtained. As shown in 33, when the content of the main component is 25% by weight, desired characteristics are obtained. Therefore, the lower limit of the content of the main component is 25% by weight. Sample No. As shown in No. 36, when the content of the main component is 70% by weight, a sintered body cannot be obtained by firing at 900 ° C. As shown in No. 34, a sintered body having desired characteristics with a main component content of 60% by weight can be obtained. Therefore, the upper limit of the content of the main component is 60% by weight.

【0028】試料No.1〜36では、誘電体磁器の特
性比較を容易に行うために単層の磁器コンデンサを作製
したが、この代りに、図2に示すように、誘電体磁器1
1の中にAg(銀)、Cu(銅)等の低融点金属の内部
電極12を設け、この内部電極12に一対の外部電極1
3、14を接続した積層磁器コンデンサを作製して同様
な特性測定をしたところ、同様な効果が得られた。積層
磁器コンデンサを製作する場合には、磁器生シート(グ
リーンシート)に内部電極用導電性ペーストを塗布した
ものを積層して生チップを作り、内部電極の焼付と磁器
の焼成を同時に行うが、本発明に従う磁器11は900
℃以下で焼成で得ることができるので、内部電極12と
して抵抗率の小さいAg、Cu等の低融点金属を使用す
ることが可能になり、Q値の向上が達成される。
Sample No. 1 to 36, a single-layer porcelain capacitor was manufactured in order to easily compare the characteristics of the dielectric porcelain, but instead of this, as shown in FIG.
1 is provided with an internal electrode 12 of a low melting point metal such as Ag (silver) or Cu (copper), and a pair of external electrodes 1 is provided on the internal electrode 12.
When a laminated ceramic capacitor in which Nos. 3 and 14 were connected was manufactured and the same characteristics were measured, the same effect was obtained. When manufacturing a laminated porcelain capacitor, a porcelain raw sheet (green sheet) coated with a conductive paste for internal electrodes is laminated to make a raw chip, and the internal electrodes are baked and the porcelain is fired at the same time. The porcelain 11 according to the invention is 900
Since it can be obtained by firing at a temperature of not more than 0 ° C., it is possible to use a low melting point metal such as Ag or Cu having a low resistivity as the internal electrode 12, and an improvement in Q value is achieved.

【0029】[0029]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 副成分を得るための出発原料としてCaC
3 、SrCO3 、Li2 CO3 の代りにCaO、Sr
O、Li2 Oを使用することができる。 (2) 本焼成の温度は例えば750〜1200℃程度
の範囲で変えることができる。 (3) 本発明に従う誘電体磁器組成物を誘電体共振器
の磁器、多層回路基板等にも使用可能である。
MODIFICATION The present invention is not limited to the above-described embodiments, and the following modifications are possible, for example. (1) CaC as a starting material for obtaining subcomponents
Instead of O 3 , SrCO 3 , Li 2 CO 3 , CaO, Sr
O and Li 2 O can be used. (2) The main calcination temperature can be changed within a range of, for example, about 750 to 1200 ° C. (3) The dielectric porcelain composition according to the present invention can also be used for porcelains of dielectric resonators, multilayer circuit boards and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係わる磁器コンデンサを示す断面図で
ある。
FIG. 1 is a cross-sectional view showing a ceramic capacitor according to an example.

【図2】実施例に従う積層磁器コンデンサを示す断面図
である。
FIG. 2 is a sectional view showing a laminated ceramic capacitor according to an example.

【符号の説明】[Explanation of symbols]

1 磁器 2,3 電極 1 porcelain 2 and 3 electrodes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 洋一 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichi Mizuno 6-16-20 Ueno Taito-ku, Tokyo Taiyo Induction Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】xZrO2 +ySnO2 +zTiO2 (但し、x、y、zは 0.25≦x≦0.6 0.02≦y≦0.26 0.22≦z≦0.60 x+y+z=1を満足する数値) で表される成分 25〜60重量%と、 SiO2 10〜40重量%と、 CaO、SrO及びBaOの内の少なくとも1種から成
る成分 1〜20重量%と、 MgO 1〜15重量%と、 B2 3 3〜30重量%と、 Li2 O 0.1〜3.0重量%とを含む誘電体磁器組
成物。
1. xZrO 2 + ySnO 2 + zTiO 2 (where x, y and z are 0.25 ≦ x ≦ 0.6 0.02 ≦ y ≦ 0.26 0.22 ≦ z ≦ 0.60 x + y + z = 1 25 to 60% by weight of a component represented by the following formula, SiO 2 10 to 40% by weight, a component consisting of at least one of CaO, SrO and BaO 1 to 20% by weight, MgO 1 to and 15 wt%, B 2 O 3 3~30 wt% and, Li 2 O 0.1 to 3.0% by weight and a dielectric ceramic composition comprising a.
JP35870991A 1991-12-26 1991-12-26 Dielectric porcelain composition Expired - Fee Related JP3179830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35870991A JP3179830B2 (en) 1991-12-26 1991-12-26 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35870991A JP3179830B2 (en) 1991-12-26 1991-12-26 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH05182523A true JPH05182523A (en) 1993-07-23
JP3179830B2 JP3179830B2 (en) 2001-06-25

Family

ID=18460713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35870991A Expired - Fee Related JP3179830B2 (en) 1991-12-26 1991-12-26 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3179830B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353863B1 (en) * 1998-09-10 2003-01-24 주식회사 케이티 Method for fabricating microwave dielectric ceramics
KR20030092381A (en) * 2002-05-29 2003-12-06 전자부품연구원 Low-temperatue Co-firing dielectric composition
JP2010215773A (en) * 2009-03-16 2010-09-30 Nec Lighting Ltd Fluorescent body and fluorescent lamp
JP2010215772A (en) * 2009-03-16 2010-09-30 Nec Lighting Ltd Fluorescent body and fluorescent lamp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353863B1 (en) * 1998-09-10 2003-01-24 주식회사 케이티 Method for fabricating microwave dielectric ceramics
KR20030092381A (en) * 2002-05-29 2003-12-06 전자부품연구원 Low-temperatue Co-firing dielectric composition
JP2010215773A (en) * 2009-03-16 2010-09-30 Nec Lighting Ltd Fluorescent body and fluorescent lamp
JP2010215772A (en) * 2009-03-16 2010-09-30 Nec Lighting Ltd Fluorescent body and fluorescent lamp

Also Published As

Publication number Publication date
JP3179830B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
JP3305626B2 (en) Dielectric porcelain composition and ceramic electronic component using this dielectric porcelain composition
JPH0817054B2 (en) Dielectric porcelain composition
JPH05148005A (en) Dielectric porcelain composition
JPH0414442B2 (en)
JPH05182523A (en) Dielectric porcelain composition
JPH0676627A (en) Dielectric ceramic composition
JPS5920905A (en) High dielectric contact porcelain composition
JPS6133249B2 (en)
JPH01236514A (en) Dielectric porcelain material
JP3457714B2 (en) Dielectric porcelain composition
JP2531548B2 (en) Porcelain composition for temperature compensation
JPH08119734A (en) Dielectric ceramic composition
JPS6224385B2 (en)
JPH0571538B2 (en)
JPS6114611B2 (en)
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPH0551127B2 (en)
JPH08119736A (en) Dielectric ceramic composition
JP2787438B2 (en) High permittivity porcelain body
JP2531547B2 (en) Porcelain composition for temperature compensation
JPH08119735A (en) Dielectric ceramic composition
US4988651A (en) Temperature compensating dielectric ceramic composition
JP3185333B2 (en) Non-reducing dielectric ceramic composition
KR100380944B1 (en) Dielectric ceramic composition for low temperature sintering
JPH0581927A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees