JPH05179365A - Method and device for atmosphere control of heat treatment furnace - Google Patents

Method and device for atmosphere control of heat treatment furnace

Info

Publication number
JPH05179365A
JPH05179365A JP34640591A JP34640591A JPH05179365A JP H05179365 A JPH05179365 A JP H05179365A JP 34640591 A JP34640591 A JP 34640591A JP 34640591 A JP34640591 A JP 34640591A JP H05179365 A JPH05179365 A JP H05179365A
Authority
JP
Japan
Prior art keywords
value
heat treatment
carbon potential
atmosphere
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34640591A
Other languages
Japanese (ja)
Other versions
JP2602384B2 (en
Inventor
Takashi Seki
孝 史 関
Kozo Ozaki
崎 巧 三 小
Nobuhiro Shindo
藤 信 博 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nittetsu Hokkaido Control Systems Co Ltd
Original Assignee
Nippon Steel Corp
Nittetsu Hokkaido Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nittetsu Hokkaido Control Systems Co Ltd filed Critical Nippon Steel Corp
Priority to JP3346405A priority Critical patent/JP2602384B2/en
Publication of JPH05179365A publication Critical patent/JPH05179365A/en
Application granted granted Critical
Publication of JP2602384B2 publication Critical patent/JP2602384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To control the PF value (carbon potential) of steel or the like in an atmosphere heat treatment furnace within the specified range. CONSTITUTION:The fluctuation amount of the PF value is sequentially operated in a batch type annealing furnace to control the PF value according to the kind of steel, and the gain of a PF regulator is corrected to an appropriate value by making a judgement that the fluctuation amount is not greater than or not less than the specified value. The PF value can be suppressed within the specified range as requested, and an appropriate heat treatment is realized without causing decarburization or carburization to the heat treated steel, manufacturing steel of high grade.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼材等の雰囲気熱処理炉
におけるPF(カーボンポテンシャル)値を変動なく一
定範囲内に制御する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a PF (carbon potential) value in a furnace for heat treatment of an atmosphere such as steel within a fixed range without fluctuation.

【0002】[0002]

【従来の技術】鋼材熱処理炉において、炉内雰囲気ガス
の成分組成は、PF値で管理するのが一般的であり、P
F値PFは、(1)式で表わされる。
2. Description of the Related Art In a steel heat treatment furnace, it is common to control the composition of the atmosphere gas in the furnace by the PF value.
The F value PF is expressed by equation (1).

【0003】 PF=(CO)2/CO2 ・・・(1) その制御方法は、鋼材毎に決定されるPF値に従い、そ
の目標値に一致させる様に、炉内へ供給するガス量を制
御することにより行われている。この場合、炉内ガス成
分のCO,CO2 濃度より、PF演算器を用いてPF値
を求め、この演算値と予め設定された目標PF値との偏
差(△PF)がなくなるように、調節器でPI(比例・
積分)制御されている。
PF = (CO) 2 / CO 2 (1) The control method is to adjust the amount of gas supplied into the furnace according to the PF value determined for each steel material so as to match the target value. It is done by controlling. In this case, the PF value is obtained from the CO and CO 2 concentrations of the gas components in the furnace using a PF calculator, and the deviation (ΔPF) between this calculated value and the preset target PF value is adjusted so as to be eliminated. PI (proportional
Integral) controlled.

【0004】[0004]

【発明が解決しようとする課題】しかし、PF値は、そ
の演算式からも判る様に、CO2 濃度が減少してくると
値が極端に大きくなる為、PF制御にハンチングが発生
し、その結果炉内鋼材の脱炭・侵炭が目標値以上に変化
してしまう場合が発生するが、これを防止する為に、特
開昭63-162820号公報にみられる様に、CO2 濃度が低
下してきた場合、そのPF調節ゲインをあるパターンに
沿って変化させることにより、PF値のハンチングを防
止する方法があるが、この場合、PF調節ゲインはCO
2 濃度と正の相関関係にあるように規制する為、その関
係を逸脱した場合には、PF値にハンチングが発生して
しまう問題があった。即ち、この場合CO2 濃度起因に
よるPF値変動に対しては有効であるが、CO濃度変
動,炉内温度変動等その他の要因による変動は考慮され
ていない為、狭義の意味でしか、最適PF制御ができな
いという問題があった。
However, as can be seen from the equation, the PF value becomes extremely large as the CO 2 concentration decreases, so that hunting occurs in the PF control, and As a result, decarburization and carburization of the steel material in the furnace may change beyond the target value. To prevent this, as shown in JP-A-63-162820, the CO 2 concentration is changed. If it decreases, there is a method of preventing hunting of the PF value by changing the PF adjustment gain along a certain pattern. In this case, the PF adjustment gain is the CO
Since the concentration is regulated so as to have a positive correlation with the concentration, there is a problem that hunting occurs in the PF value when the relation is deviated. That is, in this case, although it is effective for the PF value variation due to the CO 2 concentration, the variation due to other factors such as the CO concentration variation and the in-furnace temperature variation is not taken into consideration. There was a problem that it could not be controlled.

【0005】本発明は、PF制御をCO2 濃度如何に係
わらず、多数要因によるものも含めて、あらゆる範囲に
わたって目標範囲にPF値を抑えることを目的とする。
It is an object of the present invention to suppress the PF value to a target range over all ranges including those due to a large number of factors regardless of the CO 2 concentration.

【0006】[0006]

【課題を解決するための手段】本発明は、PF値自身の
変動状況を直接・連続的に演算し変動範囲がある一定値
以上を越えた場合PF調整ゲインを調整するという新し
いPF調節ゲインコントロール方法を提供する。又、P
F値の変動範囲が一定値以下になった場合は、PF調節
ゲインを逆に調整することにより応答性を高める。以下
に、その具体的手段について示す。
SUMMARY OF THE INVENTION The present invention is a new PF adjustment gain control that directly or continuously calculates the variation of the PF value itself and adjusts the PF adjustment gain when the variation range exceeds a certain value. Provide a way. Also, P
When the variation range of the F value becomes equal to or less than a certain value, the responsiveness is enhanced by adjusting the PF adjustment gain in reverse. The specific means will be described below.

【0007】熱処理炉においては、雰囲気ガスの組成変
動は非常に重要な指標である。その変動は(1)式すなわ
ちPF値の演算式からも判る様に、CO,CO2 濃度の
変動により決定され、その変動状態は連続的であり且
つ、滑らかな曲線を描く。そこで、このPF値の変動状
況を演算式により捉える為には、PF値を△t秒間毎に
サンプリングし、サンプリング値をPF1 ,PF2 ,‥
‥‥‥‥,PFn とすると、PF値の連続的な変動は、
△t秒間の離散的な値に変換され、演算処理が容易とな
る。この値を用いて、まず、次式により△t秒間でのP
F値の変動量△PFn を演算する。
In the heat treatment furnace, the composition variation of the atmosphere gas is a very important index. As can be seen from the equation (1), that is, the equation for calculating the PF value, the variation is determined by the variation in CO and CO 2 concentrations, and the variation state is continuous and draws a smooth curve. Therefore, in order to grasp the change situation of the PF value by an arithmetic expression, the PF value is sampled every Δt seconds, and the sampled values are PF 1 , PF 2 ,.
If PF n , then the continuous fluctuation of the PF value is
It is converted into a discrete value for Δt seconds, and the arithmetic processing becomes easy. Using this value, first, P in Δt seconds is calculated by the following equation.
The F-value fluctuation amount ΔPF n is calculated.

【0008】 △PFn =(PFn −PFn-1 )/△t ・・・(2) ここで、△PFn は、n時点のサンプリング値とn+1
時点のサンプリング値の間の変化量すなわち△t秒間の
PF値の変化量である。
ΔPF n = (PF n −PF n−1 ) / Δt (2) where ΔPF n is the sampling value at the time point n and n + 1.
It is the amount of change between the sampling values at the time point, that is, the amount of change in the PF value for Δt seconds.

【0009】この△PFを逐次演算すると、△PF1
△PF2 ‥‥‥‥‥△PFn がもとめられる。次に、こ
の△PFn を隣接する値で、逐次符号照合し、符号変化
があった場合の点を極大値または極小値すなわちピ−ク
値とし、その時点でのPF値をPFn ’としてメモリす
る。以降、順次△PFn 演算,符号照合およびピ−ク検
出を行い、変曲点毎のPF値をメモリする。これを、P
1 ’、PF2 ’‥‥‥PF’n-1 、PF’n とする
と、 △PFn ’=PFn ’−PFn-1 ’ ・・・(3) が求められる。そして、この△PFn ’と予め決めてお
いた△PFa との絶対値比較を行い変動判定を行う。そ
して、 △PFa <△PFn ’でありかつ△PFn ’>△P
n-1 ’>△PFn-2’の場合は、PF値がハンチング
していると判断し、PF調節ゲインをX倍(X<1)変
化させることによりPFゲインを落とし、ハンチングを
抑制する。又、 △PFa <△PFn ’でありかつ△PFn ’≒△P
n-1 ’≒PFn-2 ’の場合は、PF値がサイクリング
していると判断し、PF調節ゲインをY倍(Y<1)変
化させることによりPFゲインを落とし、サイクリング
を抑制する。
When this ΔPF is sequentially calculated, ΔPF 1 ,
△ PF 2 ‥‥‥‥‥ △ PF n is required. Next, this ΔPF n is successively code-matched with adjacent values, and the point when there is a code change is set as the maximum value or the minimum value, that is, the peak value, and the PF value at that point is set as PF n '. To memory. After that, the ΔPF n calculation, the code collation and the peak detection are sequentially performed, and the PF value for each inflection point is stored. This is P
F 1 ', PF 2' When ‥‥‥ PF 'n-1, PF ' n, △ PF n '= PF n' -PF n-1 '··· (3) is obtained. Then, this ΔPF n 'is compared with the predetermined ΔPF a to compare the absolute values, and the variation is determined. Then, ΔPF a <ΔPF n 'and ΔPF n '> ΔP
When F n-1 '> ΔPF n-2 ', it is determined that the PF value is hunting, and the PF gain is reduced by changing the PF adjustment gain by X times (X <1) to suppress the hunting. To do. Also, ΔPF a <ΔPF n 'and ΔPF n ' ≈ ΔP
When F n-1 '≈ PF n-2 ', it is determined that the PF value is cycling, and the PF gain is reduced by changing the PF adjustment gain Y times (Y <1) to suppress cycling. ..

【0010】更に、PF調節ゲインを変化させた後、P
F値の変動が、△PFb 以内にはいっている場合には、
つまり △PFm ’<△PFb であり、△PFm ’≒△PF
m-1 ≒△PFm-2 で、しかも、PF設定値を変更するこ
とが生じた場合は、PF調節ゲインをZ倍(Z>1)変
化させることにより、従来の、PF値に戻し、設定値変
更時の応答性を回復させる。
Further, after changing the PF adjustment gain, P
If the fluctuation of F value is within ΔPF b ,
That is, ΔPF m '<ΔPF b , and ΔPF m ' ≈ ΔPF b
If m-1 ≈ ΔPF m-2 , and if the PF set value changes, the PF adjustment gain is changed to Z times (Z> 1) to restore the conventional PF value. Restores the responsiveness when the set value is changed.

【0011】そして、以上の判定を行う場合、一定の観
測時間を設け、その観測時間の中でゲイン変更ロジック
を動作させるようにしている。
When making the above determination, a fixed observation time is set and the gain changing logic is operated during the observation time.

【0012】以上のように、PF値の変動を常時把握
し、各種の演算を施すことでオンラインでダイナミック
にPFゲインを変更することができる。
As described above, it is possible to dynamically change the PF gain online by constantly grasping the fluctuation of the PF value and performing various calculations.

【0013】[0013]

【実施例】図1に、本発明の熱処理炉PF制御装置の全
体構成を示す。図において1は熱処理炉であり、炉内の
加熱及び雰囲気ガス供給の為、バーナ等必要装置が装備
されている。2は雰囲気ガス分析計で、炉内雰囲気のC
O,CO2 を分析するものであり、炉内のサンプリング
点は炉内代表点をとるように複数設定される。3はPF
演算回路で、CO,CO2 の濃度によりPF値を演算す
る。4はPF調節器で、3で演算されたPF値にもとず
き、処理される鋼材毎に予め設定器8で設定された値と
なるようにP1制御するもので、その操作出力は、雰囲
気ガス調節弁5に出力され雰囲気ガス量を制御する。6
はPF値変動判定回路で、PF値のサンプリング処理,
変化率演算処理,ピーク判定処理、などをおこなうもの
である。7はPF調節ゲイン補正回路で、PF変動量に
応じて、PF調節器4の制御ゲインを変更できる機能を
備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the overall structure of a heat treatment furnace PF controller according to the present invention. In the figure, reference numeral 1 denotes a heat treatment furnace, which is equipped with necessary devices such as a burner for heating the inside of the furnace and supplying atmospheric gas. 2 is an atmosphere gas analyzer, which is C in the atmosphere in the furnace.
O and CO 2 are analyzed, and a plurality of sampling points in the furnace are set so as to take representative points in the furnace. 3 is PF
The calculation circuit calculates the PF value based on the concentrations of CO and CO 2 . Reference numeral 4 denotes a PF adjuster, which controls P1 based on the PF value calculated in 3 so as to be a value preset by the setter 8 for each steel material to be processed, and its operation output is It is output to the atmospheric gas control valve 5 to control the amount of atmospheric gas. 6
Is a PF value fluctuation determination circuit,
It performs change rate calculation processing, peak determination processing, and the like. Reference numeral 7 denotes a PF adjustment gain correction circuit, which has a function of changing the control gain of the PF adjuster 4 according to the PF fluctuation amount.

【0014】図2に、従来法によって鋼材を熱処理する
場合の時間経過に従ったPF値の変化を示す。先ず、炉
温を一定温度になるまで除々に高くすると、PF値も炉
内温度の上昇に伴って除々に上昇して行く。ここでは、
PF値の応答性を向上させる為、一般的にはPF調節器
の制御ゲインはやや高めに調整されている。次に、炉温
がある一定値に落ち着き、均熱状態を保持としている状
態では、PF値も同様に一定値に保持される。この均熱
状態を一定時間経過した後、徐冷却状態に入る。PF値
の変動は、炉内ガス組成変動が主因であり、PF調節ゲ
イン補正がない従来の場合は、炉内ガス組成の変動がP
F値の変動としてそのまま発生してしまう。 図3に、
本発明のPF値ゲイン制御を行った場合のPF値の変化
を示す。温度パターンは、昇熱から除々に上昇させて行
き、均熱状態を保持し、徐冷状態にはいるのは従来法と
同じであるが、PF値の変動を常時演算しており、PF
値が基準PF範囲を越える変動が発生した場合は、PF
値変動判定回路6で変動の発生を検知し、PF調節ゲイ
ン補償が行われる為、PF値の変動を一定の許容範囲以
内に抑制することができている。PF基準値を250に
設定した場合、従来法の変動幅は±20であったが、本
発明法では±10以内に収った。尚、△t秒は、プロセ
スの状況によって変化させるのが好ましく、0.5〜数
秒の範囲が現在のところ適切である。図3に示す例では
1秒とした。
FIG. 2 shows changes in the PF value over time when heat treating a steel material by the conventional method. First, when the furnace temperature is gradually raised to a constant temperature, the PF value also gradually rises as the furnace temperature rises. here,
In order to improve the responsiveness of the PF value, the control gain of the PF adjuster is generally adjusted slightly higher. Next, when the furnace temperature has settled to a certain value and the soaking state is maintained, the PF value is also maintained at a constant value. After a certain period of time has passed from this soaking state, the state of slow cooling is entered. The fluctuation of the PF value is mainly due to the fluctuation of the gas composition in the furnace. In the conventional case without the PF adjustment gain correction, the fluctuation of the gas composition in the furnace is P
It will occur as it is as a change in the F value. In Figure 3,
9 shows a change in PF value when the PF value gain control of the present invention is performed. The temperature pattern is the same as that of the conventional method in that the temperature pattern is gradually raised from the temperature rise, the soaking state is maintained, and the gradual cooling state is entered, but the fluctuation of the PF value is constantly calculated,
If the value fluctuates beyond the standard PF range, PF
Since the occurrence of the variation is detected by the value variation determination circuit 6 and the PF adjustment gain compensation is performed, the variation of the PF value can be suppressed within a certain allowable range. When the PF reference value was set to 250, the fluctuation range of the conventional method was ± 20, but within the range of ± 10 in the method of the present invention. The Δt seconds are preferably changed depending on the process conditions, and the range of 0.5 to several seconds is currently appropriate. In the example shown in FIG. 3, it is set to 1 second.

【0015】[0015]

【効果】以上のように、本発明ではPF値の変動を逐次
演算することにより、常時変動状況を把握し、その変動
がある設定範囲を越えた場合、PF調節ゲインを抑制
し、PFの変動発生を抑えることができる為に、常にP
F値を最適なある一定範囲に抑制することができるとい
う利点がもたらされる。このことは、熱処理鋼材に対
し、脱炭・浸炭を起すことなく、適正な熱処理が可能で
あり、ひいては良質な鋼材が製造でき、産業上非常に大
きい効果を発揮することができる。
[Effect] As described above, according to the present invention, the fluctuation condition of the PF value is continuously calculated to grasp the constant fluctuation condition, and when the fluctuation exceeds the set range, the PF adjustment gain is suppressed to change the PF. Since it can suppress the occurrence, P
The advantage is that the F value can be suppressed within a certain optimum range. This means that the heat-treated steel material can be appropriately heat-treated without decarburization and carburization, and thus a high-quality steel material can be manufactured, which is very effective in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing a configuration of an exemplary embodiment of the present invention.

【図2】 従来の制御によるPF値の変化を示すタイム
チャ−トである。
FIG. 2 is a time chart showing changes in PF value due to conventional control.

【図3】 本発明の制御によるPF値の変化を示すタイ
ムチャ−トである。
FIG. 3 is a time chart showing changes in the PF value under the control of the present invention.

【図4】 本発明のPF値のサンプリング値PF1等と
演算結果ΔPFn,PF1 ’,ΔPF1 ’等を示すタイ
ムチャ−トであり、横軸が時間である。
FIG. 4 is a time chart showing sampling values PF 1 etc. of the PF value of the present invention and calculation results ΔPF n , PF 1 ′, ΔPF 1 ′, etc., and the horizontal axis is time.

【符号の説明】[Explanation of symbols]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 進 藤 信 博 室蘭市仲町12番地 ニッテツ北海道制御シ ステム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Nobuhiro Shin Fujita No. 12 Nakamachi, Muroran City Nittetsu Hokkaido Control System Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱処理炉内雰囲気中のカーボンポテンシャ
ルを測定し、その測定値と予め定められたカーボンポテ
ンシャルの基準値との差値に制御ゲインを加味して得ら
れる投入ガス量変更信号をガス量調整手段に与えて雰囲
気制御を行う熱処理炉の雰囲気制御方法において、測定
したカーボンポテンシャルの変動振幅と予め定められた
変動振幅の制御範囲基準との大小関係と、前記測定した
変動振幅の増減傾向で変化する制御ゲインを用いて前記
雰囲気制御を行うことを特徴とする熱処理炉の雰囲気制
御方法。
1. An input gas amount change signal obtained by measuring a carbon potential in an atmosphere in a heat treatment furnace and adding a control gain to a difference value between the measured value and a reference value of a predetermined carbon potential. In the atmosphere control method of the heat treatment furnace for performing the atmosphere control by giving the amount adjusting means, the magnitude relationship between the measured fluctuation amplitude of the carbon potential and the predetermined control range reference of the fluctuation amplitude, and the increasing / decreasing tendency of the measured fluctuation amplitude An atmosphere control method for a heat treatment furnace, characterized in that the atmosphere control is performed by using a control gain that changes with.
【請求項2】熱処理炉内雰囲気中のカーボンポテンシャ
ルを測定し、その測定値と予め入力されたカーボンポテ
ンシャルの基準値との差値に制御ゲインを加味して得ら
れる投入ガス量変更信号をガス量調整手段に与えて雰囲
気制御を行うカーボンポテンシャル調節計を具備する熱
処理炉の雰囲気制御装置において、測定したカーボンポ
テンシャルを一定周期で読み取り且つ記憶し、前回測定
値と今回測定値の差値から時々刻々変動するカーボンポ
テンシャルの極大値と極小値を演算且つ記憶し、該極大
値と極小値からカーボンポテンシャルの変動振幅を演算
する演算手段と、該変動振幅と予め入力された変動振幅
の制御範囲基準との大小関係および前記演算した変動振
幅の増減傾向によりカーボンポテンシャル調節計の制御
ゲインを補正する補正手段を設けたことを特徴とする熱
処理炉の雰囲気制御装置。
2. A charged gas amount change signal obtained by measuring a carbon potential in an atmosphere in a heat treatment furnace and adding a control gain to a difference value between the measured value and a reference value of a carbon potential input in advance. In the atmosphere control device of the heat treatment furnace equipped with a carbon potential controller for controlling the atmosphere by giving it to the amount adjusting means, the measured carbon potential is read and stored at a constant cycle, and the difference value between the previous measurement value and the current measurement value is sometimes used. Calculation means for calculating and storing the maximum value and the minimum value of the carbon potential which changes every moment, and calculating the fluctuation amplitude of the carbon potential from the maximum value and the minimum value, and a control range reference of the fluctuation amplitude and the fluctuation amplitude inputted in advance. The control gain of the carbon potential controller is corrected based on the magnitude relationship with Atmosphere control device of the heat treatment furnace, characterized in that a positive means.
JP3346405A 1991-12-27 1991-12-27 Atmosphere control method and apparatus for heat treatment furnace Expired - Lifetime JP2602384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3346405A JP2602384B2 (en) 1991-12-27 1991-12-27 Atmosphere control method and apparatus for heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3346405A JP2602384B2 (en) 1991-12-27 1991-12-27 Atmosphere control method and apparatus for heat treatment furnace

Publications (2)

Publication Number Publication Date
JPH05179365A true JPH05179365A (en) 1993-07-20
JP2602384B2 JP2602384B2 (en) 1997-04-23

Family

ID=18383204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3346405A Expired - Lifetime JP2602384B2 (en) 1991-12-27 1991-12-27 Atmosphere control method and apparatus for heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2602384B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761097A (en) * 1976-11-11 1982-04-13 Degussa Soap, detergent and cleaning agent containing a type crystalline zeolite powder
JPS63162820A (en) * 1986-12-26 1988-07-06 Daido Steel Co Ltd Atmosphere control method for heat treatment furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761097A (en) * 1976-11-11 1982-04-13 Degussa Soap, detergent and cleaning agent containing a type crystalline zeolite powder
JPS63162820A (en) * 1986-12-26 1988-07-06 Daido Steel Co Ltd Atmosphere control method for heat treatment furnace

Also Published As

Publication number Publication date
JP2602384B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
US4396478A (en) Method of control of chemico-thermal treatment of workpieces in glow discharge and a device for carrying out the method
JPH05179365A (en) Method and device for atmosphere control of heat treatment furnace
JP3384330B2 (en) Thickness control method in reverse rolling mill
KR840002270B1 (en) Method tension control of steel strip
US6955730B2 (en) Method for enhancing the metallurigcal quality of products treated in a furnace
JP6402696B2 (en) High-strength steel plate manufacturing equipment and manufacturing method
JPH075958B2 (en) Atmosphere control method for heat treatment furnace
RU2068006C1 (en) Method to control metal heating in flame heating furnace
JP3537215B2 (en) Heating furnace temperature controller
JPH0233785B2 (en)
JP2004197144A (en) Method for controlling temperature of continuous normalized sheet
JPH042731A (en) Method for controlling temperature of batch annealing furnace
RU2152446C1 (en) Method of control of heating metal in bell-type furnace
JPS63307223A (en) Method for changing speed in sheet temperature control in continuous annealing furnace
SU827569A1 (en) Method of control of electromagnetic properties of transformer steel
JPH10102133A (en) Method for controlling decarburization to extra-low carbon steel
JPS6058764B2 (en) Continuous furnace plate temperature control method
JPH07138658A (en) Device for controlling dew point in continuous heat treatment furnace
JPH06142739A (en) Plate thickness controller in tandem roller
SU1746142A1 (en) Method of control of fuel combustion in multizone through furnace
JP2001011520A (en) Method and apparatus for controlling blowing in converter
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPS60100627A (en) Method for controlling continuous type heating furnace
JPH11123427A (en) Method for controlling shape of rolled stock and device therefor
SU1199809A1 (en) Method of controlling process of chemical-heat treatment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961119