JPH0517689B2 - - Google Patents

Info

Publication number
JPH0517689B2
JPH0517689B2 JP61261012A JP26101286A JPH0517689B2 JP H0517689 B2 JPH0517689 B2 JP H0517689B2 JP 61261012 A JP61261012 A JP 61261012A JP 26101286 A JP26101286 A JP 26101286A JP H0517689 B2 JPH0517689 B2 JP H0517689B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
alloy ribbon
core
annealing
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61261012A
Other languages
Japanese (ja)
Other versions
JPS63114207A (en
Inventor
Yasuo Okazaki
Tsutomu Kaido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26101286A priority Critical patent/JPS63114207A/en
Publication of JPS63114207A publication Critical patent/JPS63114207A/en
Publication of JPH0517689B2 publication Critical patent/JPH0517689B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、非晶質合金薄帯をD型鉄心に巻き加
工或いは成形する際の鉄心加工方法に関する。 〔従来の技術〕 変圧器、回転機等の電気機器に使用される鉄心
材料としては、励磁特性が良好であり、鉄損の低
いことが要求される。この鉄損を低下させるため
には、材料の欠陥を少なくし、内部応力を下げる
ことにより、ヒステリシス損を低減させ、また電
気抵抗を高め、板厚を薄くすることにより、渦電
流損を低減させることが必要である。このような
要求を満たす材料として、珪素鋼板又は珪素鋼帯
がこれまで利用されている。 この珪素鋼板又は珪素鋼帯は、鋳造、熱延、冷
延、焼鈍等の多数の工程を経る従来の方法により
製造されるものである。これに対して、合金を高
温の溶融状態から超急冷することにより、液体と
同様な構造をもつ非晶質合金の薄帯を製造する技
術が最近開発された。 この非晶質合金の製造方法によるとき、薄帯を
圧延等の工程を経ず直接的に製造することができ
る。また、得られた非晶質合金薄帯の電気抵抗が
高く、非晶質構造のため鉄損が著しく低減され、
異方性がない。更に、この非晶質合金薄帯は、励
磁特性も優れているので、鉄心材料として大いに
期待される材料である。 この非晶質合金薄帯をD型鉄心として使用する
場合、数cm〜数十cmの幅に鋳造された非晶質合金
薄帯を所定の巻き枠に巻き加工し、次いでたいて
いの場合に磁場焼鈍する。この焼鈍によつて、鋳
造時の歪みが開放され、所定の方向に磁化容易軸
が揃えられ、鉄心の磁気特性が向上される。同時
に、非晶質合金薄帯の構造緩和が生じ、外力を必
要とすることなく非晶質合金薄帯が鉄心形状を保
つことができるようなる。 ところが、この巻き加工を行うとき、巻き枠に
巻き取られた非晶質合金薄帯に、たとえば皺のよ
うな歪みが発生し易い。この巻き歪みの発生は、
非晶質合金薄帯の幅が大きくなるほど顕著に現れ
る。これは、非晶質合金薄帯が鋳造のままの形態
で使用されることに起因するものである。すなわ
ち、超急冷により非晶質合金薄帯を製造する際、
高温の溶融金属が急冷凝固されること、ノズルの
加工精度、高温時の変形、冷却ロールの膨張等の
変動要因により、非晶質合金薄帯の形状が不安定
なものとなる。このような形状不良が、非晶質合
金薄帯を巻き加工する際に歪みとなつて現れる。
この歪みは、巻き加工に続いて行われる焼鈍工程
で定着され、鉄心の磁気特性を劣化させる。 なお、特開昭57−54308号公報においては、D
型鉄心の直接部にあたる個所を締付け板で所定形
状に保持した状態で、非晶質合金薄帯を焼鈍する
ことが提案されている。しかし、当該公報に示さ
れている締付け板は、鉄心材料を単にD型形状に
保持するものに過ぎない。 〔発明が解決しようとする問題点〕 ところが、非晶質合金薄帯をD型鉄心に加工す
る際、コーナ部に曲げ歪みが残留し易く、これに
よつて磁気特性が低下する。すなわち、この曲げ
残留歪みは、所定方向に磁区が配向することを妨
げ、鉄損悪化の原因となる。しかし、前述の特開
昭57−54308号公報にあつては、コーナ部に生じ
る曲げ歪みに対する対策は、示されていない。 そこで、本発明は、このコーナ部における曲げ
残留応力の影響を緩和して、鉄損が改善された鉄
心を得ることを目的とする。 〔問題点を解決するための手段〕 本発明の鉄心加工方法は、その目的を達成する
ために、非晶質合金薄帯をD型鉄心の巻き枠に直
接巻き加工するか或いはコイル状に巻かれた状態
からD型鉄心に成形するに際し、焼鈍後の曲げ残
留歪みを補償する歪みを前記D型鉄心のコーナ部
に予め付与することを特徴とする。 以下、本発明を、その作用と共に具体的に説明
する。 D型鉄心に巻き取られた非晶質合金薄帯は、そ
れまでの鋳造時及び巻き加工に発生した応力が存
在している。この非晶質合金薄帯を焼鈍すること
により応力が除去されるが、鉄損を最小とするた
めの最適焼鈍では応力の除去が完全でなく、焼鈍
後も非晶質合金薄帯内に残留応力として残る。特
にD型鉄心のコーナ部は、巻き加工時の曲げ歪み
が残留し、非晶質合金薄帯に圧縮力を与え、鉄心
の鉄損を劣化させる。このコーナ部における鉄損
劣化は、鉄心を設計値どおりの寸法に形成して焼
鈍するときには、避けられないものである。 この残留歪みεrは、鉄心加工時に付与した曲げ
歪みをεとするとき、次式(1)で表される。 εr=a・ε2 …(1) ただし、aは20〜30の係数である。 そこで、本発明にあつては、焼鈍後の曲げ残留
歪みを補償する歪みを前記D型鉄心のコーナ部に
予め付与するものである。そこで、目標巻き半径
をrとし、巻き加工時の巻き半径Rを(r−
Δr)、板厚をtとするとき、残留歪みεrは、次式
(2)で表される。 εr=t/r−Δr−t/r …(2) 第1図は、このコーナ部に予め歪みを付与する
手段の一例を示すものである。 この例の非晶質合金薄帯1は、一旦コイル状に
巻き取られたものをD型に成形するか、或いは薄
板状から直接D型に巻き加工したものである。こ
の非晶質合金薄帯1を所定のD型に成形するため
に、直接部1aを両面から押え板2a,2bで締
め付けている。この締付けにより、D型の非晶質
合金薄帯1のコーナ部1bが曲率Rをもつて成形
される。 第2図は、このコーナ部1bを中心として説明
する図である。第2図aに示すように、コーナ部
1bに付与される曲率Rは、焼鈍後に残留する曲
げ歪み分Δrを予め取り込んだ値としている。こ
の曲げ歪みΔrは、式(1)及び(2)から、次式(3)によ
つて示される。 1/Δr=1/r+1/a・t …(3) この曲率Rをもつてコーナ部1bが形成される
ように、非晶質合金薄帯1の直線部1aを押え板
2a,2bにより締め付け、D型に成形する。こ
のときの締付け力は、曲げ歪みΔrが得られる程
度で充分であり、この力をあまり大きくすると、
焼鈍時に隣接する非晶質合金薄帯1各層間に焼付
きが誘発される。 このようにしてD型に成形された非晶質合金薄
帯1を焼鈍した後、押え板2a,2bによる締付
け力を取り除く。その結果、曲げ歪みΔrが解放
されて、D型の非晶質合金薄帯1は、第2図bに
示すように若干変形し、初期設計値どうりの曲率
rのコーナ部1bをもつものとなる。この状態の
D型鉄心においては、曲げ残留応力が解放されて
いるので、コーナ部1bにおいて磁束に対して抵
抗となるような磁区が発生することが防止され
る。そのため、コーナ部1bの磁区の乱れに起因
する鉄損の悪化が改良される。 なお、第1図においては、非晶質合金薄帯1を
同一幅でD型に巻き加工したものであるから、こ
のコーナ部1bに曲率Rを付けるための押え板2
a,2bとしては、フラツトなものを使用する。
D型鉄心には、このような同一幅で非晶質合金薄
帯を巻き加工したものの外に、たとえば第3図a
に示すように段部3が形成されるように、非晶質
合金薄帯1を巻き加工したものもある。この段部
3を設けるとき、D型鉄心に巻き付けられる通電
用コイルが鉄心の陵部で鋭角に曲がることがない
ので、占積率が大きくなる。この段部3をもつD
型鉄心を成形する場合には、第3図bに示すよう
に、D型鉄心の断面形状に対応する断面をもつ押
え板4a,4bを使用する。 〔実施例〕 以下、実施例により本発明の効果を具体的に説
明する。 厚さ30μm、幅100mmのFe−Si−B系非晶質合
金薄帯を、D型状に巻き加工した。このD型の非
晶質合金薄帯の直線部4箇所を幅110mmの鋼板で
押さえつけ、D型鉄心内周のコーナ部における曲
率を、設計値5mmより0.7mmだけ小さい4.3mmとし
た。このD型の非晶質合金薄帯を、窒素ガス雰囲
気中で380℃に1時間磁場焼鈍した。得られた製
品の鉄損を、次表に示す。 なお、次表には、通常どうりに巻き加工したD
型の非晶質合金薄帯を同一条件で焼鈍することに
より得られた鉄心を、比較例として示している。
[Industrial Application Field] The present invention relates to a core processing method for winding or forming an amorphous alloy ribbon onto a D-shaped core. [Prior Art] Iron core materials used in electrical equipment such as transformers and rotating machines are required to have good excitation characteristics and low iron loss. In order to reduce this iron loss, we must reduce hysteresis loss by reducing material defects and lowering internal stress, and reduce eddy current loss by increasing electrical resistance and reducing plate thickness. It is necessary. Silicon steel plates or silicon steel strips have hitherto been used as materials that meet these requirements. This silicon steel plate or silicon steel strip is manufactured by a conventional method that involves a number of steps such as casting, hot rolling, cold rolling, and annealing. In response, a technology has recently been developed to produce thin strips of amorphous alloys with a structure similar to that of liquids by ultra-quenching the alloys from a high-temperature molten state. When using this method for producing an amorphous alloy, a ribbon can be produced directly without going through a process such as rolling. In addition, the electrical resistance of the obtained amorphous alloy ribbon is high, and iron loss is significantly reduced due to the amorphous structure.
No anisotropy. Furthermore, this amorphous alloy ribbon has excellent excitation properties, so it is a material that is highly anticipated as an iron core material. When this amorphous alloy ribbon is used as a D-type iron core, the amorphous alloy ribbon is cast to a width of several centimeters to several tens of centimeters and then wound into a predetermined reel, and then, in most cases, a magnetic field is applied. Anneal. This annealing releases distortion during casting, aligns the axis of easy magnetization in a predetermined direction, and improves the magnetic properties of the core. At the same time, structural relaxation of the amorphous alloy ribbon occurs, allowing the amorphous alloy ribbon to maintain its core shape without requiring external force. However, when this winding process is performed, distortions such as wrinkles are likely to occur in the amorphous alloy ribbon wound around the reel. The occurrence of this winding distortion is
This becomes more noticeable as the width of the amorphous alloy ribbon increases. This is due to the fact that the amorphous alloy ribbon is used in the as-cast form. In other words, when producing an amorphous alloy ribbon by ultra-quenching,
The shape of the amorphous alloy ribbon becomes unstable due to variable factors such as rapid solidification of high-temperature molten metal, processing accuracy of the nozzle, deformation at high temperatures, and expansion of the cooling roll. Such shape defects appear as distortions when the amorphous alloy ribbon is wound.
This distortion is fixed in the annealing process that follows the winding process, and deteriorates the magnetic properties of the core. In addition, in Japanese Patent Application Laid-open No. 57-54308, D
It has been proposed that the amorphous alloy ribbon be annealed while holding the part directly on the molded iron core in a predetermined shape with a clamping plate. However, the clamping plate shown in the publication merely holds the core material in a D-shape. [Problems to be Solved by the Invention] However, when processing an amorphous alloy ribbon into a D-shaped core, bending strain tends to remain in the corner portions, which deteriorates the magnetic properties. That is, this residual bending strain prevents the magnetic domains from being oriented in a predetermined direction, causing a worsening of iron loss. However, in the above-mentioned Japanese Patent Laid-Open No. 57-54308, no countermeasures against bending distortion occurring at the corner portions are disclosed. Therefore, an object of the present invention is to alleviate the influence of bending residual stress at the corner portions and obtain an iron core with improved iron loss. [Means for Solving the Problems] In order to achieve the object, the core processing method of the present invention involves winding the amorphous alloy ribbon directly around the winding frame of the D-shaped core or winding it into a coil shape. When forming the D-shaped core from the bent state, the D-shaped core is characterized in that strain is applied in advance to the corner portions of the D-shaped core to compensate for residual bending strain after annealing. Hereinafter, the present invention will be specifically explained along with its effects. The amorphous alloy ribbon wound around the D-shaped core has stress generated during casting and winding. Stress is removed by annealing this amorphous alloy ribbon, but stress is not completely removed by optimal annealing to minimize iron loss, and it remains in the amorphous alloy ribbon even after annealing. It remains as stress. In particular, in the corner portions of the D-shaped core, bending strain during the winding process remains, which applies compressive force to the amorphous alloy ribbon and deteriorates the iron loss of the core. This deterioration of core loss at the corner portions is unavoidable when the core is formed to the designed dimensions and annealed. This residual strain ε r is expressed by the following equation (1), where ε is the bending strain imparted during core processing. ε r =a·ε 2 (1) where a is a coefficient of 20 to 30. Therefore, in the present invention, a strain that compensates for the bending residual strain after annealing is applied in advance to the corner portion of the D-shaped core. Therefore, the target winding radius is r, and the winding radius R during winding is (r-
Δr), and the plate thickness is t, the residual strain ε r is calculated by the following formula:
It is expressed as (2). ε r =t/r−Δr−t/r (2) FIG. 1 shows an example of means for imparting distortion to this corner portion in advance. The amorphous alloy ribbon 1 in this example is either wound into a coil and then formed into a D-shape, or directly wound into a D-shape from a thin plate. In order to form the amorphous alloy ribbon 1 into a predetermined D shape, the direct portion 1a is clamped from both sides with presser plates 2a and 2b. By this tightening, the corner portion 1b of the D-shaped amorphous alloy ribbon 1 is formed to have a curvature R. FIG. 2 is a diagram mainly illustrating this corner portion 1b. As shown in FIG. 2a, the curvature R given to the corner portion 1b is a value that takes in advance the bending strain Δr that remains after annealing. This bending strain Δr is expressed by the following equation (3) from equations (1) and (2). 1/Δr=1/r+1/a・t...(3) The straight portion 1a of the amorphous alloy ribbon 1 is tightened with the holding plates 2a and 2b so that the corner portion 1b is formed with this curvature R. , mold into a D shape. The tightening force at this time is sufficient to obtain the bending strain Δr; if this force is increased too much,
During annealing, seizure is induced between adjacent layers of the amorphous alloy ribbon 1. After annealing the amorphous alloy ribbon 1 thus formed into a D shape, the clamping force exerted by the holding plates 2a and 2b is removed. As a result, the bending strain Δr is released, and the D-shaped amorphous alloy ribbon 1 is slightly deformed as shown in FIG. becomes. In the D-shaped core in this state, the bending residual stress is released, so that the generation of magnetic domains that would be resistant to magnetic flux at the corner portion 1b is prevented. Therefore, the deterioration of iron loss caused by the disturbance of the magnetic domains in the corner portion 1b is improved. In addition, in FIG. 1, since the amorphous alloy ribbon 1 is wound into a D shape with the same width, a presser plate 2 is used to give the corner portion 1b a curvature R.
As a and 2b, flat ones are used.
In addition to the D-type core made by winding an amorphous alloy ribbon with the same width, for example,
There is also one in which an amorphous alloy ribbon 1 is wound so that a stepped portion 3 is formed as shown in FIG. When this stepped portion 3 is provided, the current-carrying coil wound around the D-shaped core is not bent at an acute angle at the ridge of the core, so that the space factor increases. D with this step 3
When forming a D-type core, as shown in FIG. 3B, holding plates 4a and 4b are used which have a cross section corresponding to the cross-sectional shape of the D-type core. [Example] Hereinafter, the effects of the present invention will be specifically explained with reference to Examples. An Fe-Si-B amorphous alloy ribbon having a thickness of 30 μm and a width of 100 mm was wound into a D shape. The four straight parts of this D-shaped amorphous alloy ribbon were pressed down with steel plates with a width of 110 mm, and the curvature at the corner of the inner periphery of the D-shaped core was set to 4.3 mm, which was 0.7 mm smaller than the design value of 5 mm. This D-type amorphous alloy ribbon was magnetically annealed at 380° C. for 1 hour in a nitrogen gas atmosphere. The iron loss of the obtained product is shown in the table below. In addition, the following table shows D that has been wound in the usual way.
An iron core obtained by annealing a type of amorphous alloy ribbon under the same conditions is shown as a comparative example.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明の鉄心加工方法
においては、予め曲げ残留歪みを補償する歪みを
巻き加工時に与えておくことにより、D型鉄心コ
ーナ部の曲げ残留応力に起因する鉄損の劣化を防
止することができる。
As explained above, in the core processing method of the present invention, by applying strain to compensate for bending residual strain in advance during winding processing, deterioration of iron loss due to bending residual stress at the corner portion of the D-shaped core is reduced. can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の鉄心加工方法の一例を示すも
のであり、第2図a及びbはそれぞれ成形時及び
焼鈍後のコーナ部の形状を示し、第3図は他の実
施例を示す。
FIG. 1 shows an example of the core processing method of the present invention, FIGS. 2a and 2b show the shapes of the corner portions during forming and after annealing, respectively, and FIG. 3 shows another embodiment.

Claims (1)

【特許請求の範囲】[Claims] 1 非晶質合金薄帯をD型鉄心の巻き枠に直接巻
き加工するか或いはコイル状に巻かれた状態から
D型鉄心に成形するに際し、焼鈍後の曲げ残留歪
みを補償する歪みを前記D型鉄心のコーナ部に予
め付与することを特徴とする非晶質合金薄帯の鉄
心加工方法。
1. When directly winding an amorphous alloy ribbon onto the spool of a D-type core or forming a D-type core from a coiled state, the strain to compensate for the bending residual strain after annealing is A method for processing an amorphous alloy ribbon, characterized in that it is applied in advance to the corner portions of a molded iron core.
JP26101286A 1986-10-31 1986-10-31 Method for working iron core of amorphous alloy thin belt Granted JPS63114207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26101286A JPS63114207A (en) 1986-10-31 1986-10-31 Method for working iron core of amorphous alloy thin belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26101286A JPS63114207A (en) 1986-10-31 1986-10-31 Method for working iron core of amorphous alloy thin belt

Publications (2)

Publication Number Publication Date
JPS63114207A JPS63114207A (en) 1988-05-19
JPH0517689B2 true JPH0517689B2 (en) 1993-03-09

Family

ID=17355829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26101286A Granted JPS63114207A (en) 1986-10-31 1986-10-31 Method for working iron core of amorphous alloy thin belt

Country Status (1)

Country Link
JP (1) JPS63114207A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593776B2 (en) * 2010-03-30 2014-09-24 トヨタ自動車株式会社 Reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193014A (en) * 1981-05-22 1982-11-27 Toshiba Corp Manufacture of wound core
JPS59172957A (en) * 1983-03-18 1984-09-29 Aichi Electric Mfg Co Ltd Manufacture of wound core

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193014A (en) * 1981-05-22 1982-11-27 Toshiba Corp Manufacture of wound core
JPS59172957A (en) * 1983-03-18 1984-09-29 Aichi Electric Mfg Co Ltd Manufacture of wound core

Also Published As

Publication number Publication date
JPS63114207A (en) 1988-05-19

Similar Documents

Publication Publication Date Title
US4483723A (en) Steel with antimony addition
JPH0517689B2 (en)
JPS63114205A (en) Method for working iron core of amorphous alloy thin belt
US2783170A (en) Magnetic material and process of making it
JP3333794B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPS63115618A (en) Iron core working method for amorphous alloy ribbon
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JPS63114206A (en) Method for working iron core and inner frame for winding process
JPS6214408A (en) Amorphous magnetic alloy wound core
JPS63114204A (en) Method for working iron core of amorphous alloy thin belt
JP2776337B2 (en) Amorphous core
KR930009975B1 (en) Process for preparing wound core having low core loss
JP2703695B2 (en) Manufacturing method of thin grain oriented electrical steel sheet
JPH0429442B2 (en)
JPH01225724A (en) Production of non-oriented flat rolled magnetic steel sheet having excellent low magnetic field magnetic characteristic
JPH07283035A (en) Amorphous wound core
JP5779948B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6137762B2 (en)
JPS5855211B2 (en) (h,k,o) Manufacturing method for unidirectional electrical steel sheet with crystals in [001] orientation and excellent iron loss
JPS6144413A (en) Manufacture of iron core in electric apparatus
JPS6243114A (en) Manufacture of wound core
JPS61226909A (en) Forming method for iron core of amorphous alloy thin band
JP4414557B2 (en) Amorphous alloy ribbon for wound core and wound core using the same
JPS60182119A (en) Manufacture of wound core
JPS6234829B2 (en)