JPH05175288A - Optical/electrical probe and method for evaluating optical element - Google Patents

Optical/electrical probe and method for evaluating optical element

Info

Publication number
JPH05175288A
JPH05175288A JP3344591A JP34459191A JPH05175288A JP H05175288 A JPH05175288 A JP H05175288A JP 3344591 A JP3344591 A JP 3344591A JP 34459191 A JP34459191 A JP 34459191A JP H05175288 A JPH05175288 A JP H05175288A
Authority
JP
Japan
Prior art keywords
electrode
optical
waveguide
light
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3344591A
Other languages
Japanese (ja)
Inventor
Hisashi Hamaguchi
久志 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3344591A priority Critical patent/JPH05175288A/en
Publication of JPH05175288A publication Critical patent/JPH05175288A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Light Receiving Elements (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To obtain a probe which can be easily used under a less restricted condition and can be applied to various kinds of photoreceptor elements by providing an optical waveguide and electrode section integrally and adjacently formed with and to the waveguide so that the waveguide can be electrically coupled with an optical element when the electrode section comes into contact with the electrode of the optical element. CONSTITUTION:The title optical/electrical probe is provided with an optical waveguide 43 and electrode section 34 integrally and adjacently formed with and to the waveguide 43 in such a state that, when the electrode 22 of an optical element 20 comes into contact with the section 34, the waveguide 43 is optically coupled with the element 2. For example, the waveguide 43 is formed by diffusing titanium in a glass or LiNbO3 substrate 42 and a strip line 34 of Au is formed on the surface of the substrate 42 near the waveguide 43 through a silicon oxide film 33. Then a bump electrode 36 is formed on the front end section of the line 34 so that the electrode 36 can be brought into contact with the p-electrode 22 of a photoreceptor element. In addition, a polished surface and reflecting film 45 are formed at the front end section of the waveguide 43 and a light emitting section 46 is provided near the front end section of the waveguide 43.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は受光素子用の評価装置等
の光・電気プローブに関し、特に、光通信等に用いる受
光素子の光・電気特性の評価装置等の光・電気プローブ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical / electrical probe such as an evaluation device for a light receiving element, and more particularly to an optical / electrical probe such as an evaluation device for optical / electrical characteristics of a light receiving element used for optical communication and the like.

【0002】[0002]

【従来の技術】半導体受光素子の製造工程においては、
素子特性の評価をウエハ状態のままで各チップ毎に行
い、良品チップの選別を行っている。
2. Description of the Related Art In the process of manufacturing a semiconductor light receiving element,
The element characteristics are evaluated for each chip in the wafer state and the non-defective chips are selected.

【0003】特性の評価項目としては、暗電流、光
電変換効率、応答特性などがある。の暗電流の評価
については電気特性の測定のみであるが、との項目
については、光を受光素子チップの受光部に入射しなが
ら電気特性を測定評価する必要がある。そのためには、
評価装置としては、光入射装置と、素子の電極部との電
気的接続用プローブとの両方を備える必要がある。
The characteristic evaluation items include dark current, photoelectric conversion efficiency, and response characteristics. Regarding the evaluation of the dark current, only the measurement of the electric characteristics is performed. For the above items, it is necessary to measure and evaluate the electric characteristics while the light is incident on the light receiving portion of the light receiving element chip. for that purpose,
As the evaluation device, it is necessary to include both the light incident device and the probe for electrical connection with the electrode portion of the element.

【0004】図7に従来の技術による受光素子の評価装
置の構成を示す。x、y、z軸方向に位置決め移動が可
能な試料台10の台上に評価される半導体受光素子のチ
ップ20が置かれる。
FIG. 7 shows the structure of a conventional light receiving element evaluation apparatus. The chip 20 of the semiconductor light receiving element to be evaluated is placed on the stage of the sample stage 10 which can be positioned and moved in the x-, y-, and z-axis directions.

【0005】図2では、簡単のためチップ20は一個で
描いてあるが、実際には、複数のチップがつながったも
のや、複数のチップからなる1枚のウエハであることが
一般的である。
In FIG. 2, a single chip 20 is shown for simplicity, but in practice, it is generally one in which a plurality of chips are connected or one wafer composed of a plurality of chips. ..

【0006】一個のチップ20は例えば、図示のように
+ 型の受光部21と、光電変換により発生した電気信
号を取り出すp電極22と、チップ20のn型領域と電
気的に接続しているn電極23とを含む。n電極23
は、試料台10を介して接地されている。なお、測定周
波数が高周波の場合にはn電極を受光素子20の表面の
p電極22の近傍に配置することもある。
One chip 20 is electrically connected to, for example, a p + type light receiving portion 21, a p electrode 22 for extracting an electric signal generated by photoelectric conversion, and an n type region of the chip 20 as shown in the figure. And the n-electrode 23 that is present. n-electrode 23
Are grounded via the sample table 10. When the measurement frequency is high, the n electrode may be arranged on the surface of the light receiving element 20 in the vicinity of the p electrode 22.

【0007】電気的特性を測定するためのプローブとし
て金属針30が用いられ、チップ20のp電極22に接
触させられる。金属針30は図示しないマニュピレータ
により位置決めされる。金属針30は、直流電源31の
一方の電極に電流測定器32を介して接続される。直流
電源31の他方の電極は試料台10に接続される。
A metal needle 30 is used as a probe for measuring electrical characteristics and is brought into contact with the p-electrode 22 of the chip 20. The metal needle 30 is positioned by a manipulator (not shown). The metal needle 30 is connected to one electrode of a DC power supply 31 via a current measuring device 32. The other electrode of the DC power supply 31 is connected to the sample table 10.

【0008】光入射のための装置として、光ファイバ4
0が設けられる。光ファイバ40は図示しない別のマニ
ュピレータにより移動可能であり、先端の光出射部を受
光部21の面上にくるように位置合わせされる。光ファ
イバユニット40は光源41から光を導入し、その先端
部から光をチップ20の受光部21に照射する。
An optical fiber 4 is used as a device for light incidence.
0 is provided. The optical fiber 40 can be moved by another manipulator (not shown), and is aligned so that the light emitting portion at the tip is on the surface of the light receiving portion 21. The optical fiber unit 40 introduces light from a light source 41 and irradiates the light receiving section 21 of the chip 20 with the light from its tip.

【0009】以上の構成によって、光を受光部21に入
射しながら光電変換効率や応答特性等の測定評価が行わ
れる。チップ20が複数有る場合には、試料台10を移
動させながら各チップ毎に測定評価がされる。
With the above configuration, measurement and evaluation of photoelectric conversion efficiency, response characteristics, etc. are performed while light is incident on the light receiving section 21. When there are a plurality of chips 20, the measurement evaluation is performed for each chip while moving the sample table 10.

【0010】[0010]

【発明が解決しようとする課題】ところで、受光素子2
0の受光部(受光面)21は、受光素子の容量(キャパ
シタンス)値を左右する。その容量を低減して、素子を
より高速(高周波数)動作させるためには、受光面21
はより小さくなる傾向にある。従って、受光面21の径
は150μm程度から100μm程度、50μm程度、
30μm程度と次第に小型化したものが開発されてい
る。
By the way, the light receiving element 2
The zero light receiving portion (light receiving surface) 21 influences the capacitance value of the light receiving element. In order to reduce the capacitance and operate the device at higher speed (high frequency), the light receiving surface 21
Tends to be smaller. Therefore, the diameter of the light receiving surface 21 is about 150 μm to 100 μm, about 50 μm,
What is gradually reduced to about 30 μm is being developed.

【0011】光ファイバ40がシングルモードファイバ
の場合、光出射面において光束は約10μm程度の径で
あり、出射面から離れるにつれ、その径は拡大する。素
子20の受光面21の径が100μmの場合には、受光
面内に光を照射するには光ファイバ40の出射面は受光
面21上200〜300μm程度までの高さに配置され
なければならない。すると、この高さでクラッドを含む
光ファイバの全径が横に張り出すことになる。
When the optical fiber 40 is a single mode fiber, the light beam has a diameter of about 10 μm on the light emitting surface, and the diameter increases as the distance from the light emitting surface increases. When the diameter of the light receiving surface 21 of the element 20 is 100 μm, the emitting surface of the optical fiber 40 must be arranged on the light receiving surface 21 at a height of about 200 to 300 μm in order to irradiate light into the light receiving surface. .. Then, at this height, the entire diameter of the optical fiber including the clad extends laterally.

【0012】従来の技術による評価装置においては、受
光部21の面積が充分大きい場合には、光ファイバ40
と電極針30とは互いにぶつかることなく良好な測定が
可能である。
In the evaluation device according to the prior art, when the area of the light receiving portion 21 is sufficiently large, the optical fiber 40 is used.
The electrode needle 30 and the electrode needle 30 do not hit each other, and good measurement is possible.

【0013】しかし、光ファイバ40の外形寸法は12
5μm程度、金属針30の先端部の直径は30μm程度
であるために、素子が小型化されて受光部21の径が1
50μm以下になると光ファイバ40と金属針30とが
ぶつかるようになる。
However, the outer dimension of the optical fiber 40 is 12
Since the diameter of the tip of the metal needle 30 is about 5 μm and the diameter of the tip of the metal needle 30 is about 30 μm, the element is downsized and the diameter of the light receiving unit 21 is 1 μm.
When the thickness is 50 μm or less, the optical fiber 40 and the metal needle 30 collide with each other.

【0014】受光部21が小さくなる程、受光部21へ
の光入射とp電極22との接続が困難になる。光ファイ
バ40の先端部をテーパ先球状に加工したとしても、素
子20の受光部21の径が50μm程度に小さくなると
やはり光入射と電極接続との両立が困難になる。
As the light receiving portion 21 becomes smaller, it becomes more difficult for light to enter the light receiving portion 21 and to connect to the p-electrode 22. Even if the tip portion of the optical fiber 40 is processed into a tapered spherical tip, if the diameter of the light receiving portion 21 of the element 20 is reduced to about 50 μm, it is still difficult to achieve both light incidence and electrode connection.

【0015】従って、従来の技術による受光素子の評価
装置は、使用上の制限が多くて使いにくくなっており、
新しい構成の評価装置が望まれている。本発明の目的
は、使用上の制限が少なく、使いやすくて種々の範囲の
受光素子に適用できる光・電気プローブを提供すること
にある。
Therefore, the conventional light-receiving element evaluation device is difficult to use due to many restrictions on use.
A new configuration of the evaluation device is desired. An object of the present invention is to provide an optical / electrical probe which has few restrictions on use, is easy to use, and can be applied to light receiving elements in various ranges.

【0016】[0016]

【課題を解決するための手段】本発明による光・電気プ
ローブは、光導波路と、該光導波路に隣接 して一体に
設けられた電極部とを備え、該光導波路と電極部とは、
光素子の電極に該電極部が接触した状態で、該光導波路
と光素子とが光結合する関係を有する。
An optical / electrical probe according to the present invention comprises an optical waveguide and an electrode portion integrally provided adjacent to the optical waveguide, and the optical waveguide and the electrode portion are
The optical waveguide and the optical element are in a relationship of being optically coupled with each other in a state where the electrode portion is in contact with the electrode of the optical element.

【0017】[0017]

【作用】光導波路と電極部とが一体化されているため、
光導波路を光素子と光結合させた状態で、光導波路に一
体に隣接配置した電極部が光素子の電極と接続するよう
に配置できる。
[Operation] Since the optical waveguide and the electrode part are integrated,
In a state where the optical waveguide is optically coupled to the optical element, the electrode portion integrally adjacent to the optical waveguide can be arranged so as to be connected to the electrode of the optical element.

【0018】[0018]

【実施例】以下、図1〜図6を参照して、受光素子の評
価装置の実施例について説明する。なお、図7の参照番
号と同じ番号のものは同一物を示す。試料台10や直流
電源31および電流測定器32については図1〜図5で
は図示しないが、実質的に同一のものが使用できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an evaluation device for a light receiving element will be described below with reference to FIGS. The same reference numerals as those in FIG. 7 indicate the same items. Although not shown in FIGS. 1 to 5, the sample table 10, the DC power supply 31, and the current measuring device 32 can be substantially the same.

【0019】図1〜図3は、評価装置の測定プローブの
第1の実施例であり、図1が装置の側面図、図2が図1
のA方向から見た平面図、図3が図1のB方向から見た
図である。
1 to 3 show a first embodiment of a measuring probe of an evaluation apparatus, FIG. 1 is a side view of the apparatus, and FIG. 2 is FIG.
3 is a plan view seen from the direction A, and FIG. 3 is a view seen from the direction B in FIG.

【0020】第1の実施例においては、光導入部として
は、ガラスもしくはLiNbO3 (ニオブ酸リチウム)
基板42にチタンの拡散を行って高屈折率領域を形成
し、光導波路43を形成している。チタンの拡散層によ
る光導波路43の断面は図3に示すようなものである。
その幅と深さは、それぞれ約8〜10μmと6μm程度
である。
In the first embodiment, the light introducing portion is made of glass or LiNbO 3 (lithium niobate).
Titanium is diffused in the substrate 42 to form a high refractive index region, and the optical waveguide 43 is formed. The cross section of the optical waveguide 43 formed by the titanium diffusion layer is as shown in FIG.
The width and depth are about 8 to 10 μm and 6 μm, respectively.

【0021】また、光導波路43に近い基板42の表面
には、酸化シリコン膜33を形成する。酸化シリコン膜
33の表面に厚みが約3〜5μmのAu(金)によるコ
プレーナストリップ線路34を高周波電気信号線路とし
て形成する。密着性を増やすためには、酸化シリコン膜
33との間にTi層を介在させるのがよい。
A silicon oxide film 33 is formed on the surface of the substrate 42 near the optical waveguide 43. A coplanar strip line 34 of Au (gold) having a thickness of about 3 to 5 μm is formed as a high frequency electric signal line on the surface of the silicon oxide film 33. In order to increase the adhesiveness, it is preferable to interpose a Ti layer with the silicon oxide film 33.

【0022】図2の平面図にストリップ線路34のパタ
ーンが示される。本実施例のストリップ線路34はその
幅が約9μmである。なお、同時に接地線として、コプ
レーナグランドプレート35が信号線路34から約15
μm程度離れて形成される。
The pattern of the strip line 34 is shown in the plan view of FIG. The strip line 34 of this embodiment has a width of about 9 μm. At the same time, the coplanar ground plate 35 is connected to the signal line 34 from the signal line 34 as a ground line.
They are formed apart by about μm.

【0023】信号ストリップ線路34の先端部の上に受
光素子20のp電極22と接触するための突起状の電極
すなわち、バンプ電極36が形成される。バンプ電極3
6の材料はAuであり、たとえばその厚みは約10〜1
5μmで約9μm角の寸法である。信号ストリップ線路
34の他端は信号電流測定器に接続される。なお、受光
素子20の表面にn電極が形成される場合には、グラン
ドプレート35の上にもn電極と対応する位置に同様な
バンプ電極を形成してもよい。
A bump-shaped electrode, that is, a bump-shaped electrode 36 for contacting the p-electrode 22 of the light-receiving element 20 is formed on the tip of the signal strip line 34. Bump electrode 3
The material of No. 6 is Au, for example, its thickness is about 10-1.
The size is about 9 μm square at 5 μm. The other end of the signal strip line 34 is connected to a signal current measuring device. When the n-electrode is formed on the surface of the light receiving element 20, a similar bump electrode may be formed on the ground plate 35 at a position corresponding to the n-electrode.

【0024】光導波路43の一端は、コア径が7〜9μ
m(高速径約10μm)程度の光ファイバ44と接続さ
れ、光源より光が導入される。光導波路43の他端側の
基板42の面は、光導波路43の方向に対し約40度の
角度で研磨される。
One end of the optical waveguide 43 has a core diameter of 7 to 9 μm.
It is connected to an optical fiber 44 having a diameter of about m (high-speed diameter of about 10 μm), and light is introduced from a light source. The surface of the substrate 42 on the other end side of the optical waveguide 43 is polished at an angle of about 40 degrees with respect to the direction of the optical waveguide 43.

【0025】入射角を90−40=50度位にすると、
入射光をほぼ全反射させることができる。なお、入射角
は厳密なものではない。反射率を高くするには研磨面に
は反射膜45が形成される。反射膜45の材料は、金属
あるいは誘電体多層膜が用いられる。
When the incident angle is set to about 90-40 = 50 degrees,
The incident light can be almost totally reflected. The incident angle is not exact. To increase the reflectance, the reflective film 45 is formed on the polished surface. As the material of the reflection film 45, a metal or dielectric multilayer film is used.

【0026】バンプ電極36の先端近傍の光導波路43
の先端部付近に光出射窓46が設けられる。光ファイバ
44から光導波路43を経由してきた光は反射膜45で
下方に反射して光出射窓46から受光部21に入射す
る。
Optical waveguide 43 near the tip of bump electrode 36
A light exit window 46 is provided near the tip of the. The light that has passed through the optical waveguide 43 from the optical fiber 44 is reflected downward by the reflection film 45 and enters the light receiving portion 21 through the light emission window 46.

【0027】一例として、受光素子20は、n+ 型にド
ープした約500μm厚のInP(インジュウム燐)基
板24上にバンドギャップの狭いInGaAs(インジ
ュウムガリウム砒素)による約1μm厚の光吸収層25
を形成し、さらにその上にn型のInP層26を数μm
の厚みで形成し、その一部をp+ 型にドープして受光部
21を形成し、その周囲にp電極22を形成してなる。
なお、受光素子は、本例に限らず、他のプレーナ構造の
受光素子であっても測定評価できる。
As an example, the light-receiving element 20 has a light absorption layer 25 of about 1 μm thick made of InGaAs (indium gallium arsenide) having a narrow band gap on an n + -type InP (indium phosphide) substrate 24 of about 500 μm thickness.
And an n-type InP layer 26 of several μm
And a part thereof is doped to be p + -type to form a light receiving portion 21, and a p electrode 22 is formed around the light receiving portion 21.
The light receiving element is not limited to this example, and other light receiving elements having a planar structure can be measured and evaluated.

【0028】図1に示すように、測定プローブを図示し
ないマニュピレータを用いて、バンプ電極36が受光素
子20のp電極22と接触しつつ、同時に光出射窓46
から光が受光部21に入射するように、位置合わせをし
た後、受光素子の光電変換効率や応答特性等の測定評価
が行われる。
As shown in FIG. 1, by using a manipulator (not shown) as the measurement probe, the bump electrode 36 is in contact with the p-electrode 22 of the light receiving element 20, and at the same time, the light emitting window 46.
After the alignment is performed so that the light enters the light receiving portion 21, the measurement and evaluation of the photoelectric conversion efficiency and the response characteristic of the light receiving element are performed.

【0029】上記の実施例の測定プローブを有する評価
装置では、受光部の径が30μm程度以下の受光素子で
10GHz程度までの応答周波数の測定評価が可能であ
る。なお、上記した各寸法の数値や材料の種類は本実施
例の例であり、本発明の装置は、それらに限定されるも
のではない。説明したものと同様な作用効果を奏する他
の数値ならびに材料を選択できることは言うまでもな
い。
In the evaluation device having the measurement probe of the above-mentioned embodiment, it is possible to measure and evaluate the response frequency up to about 10 GHz with the light receiving element having the light receiving portion having a diameter of about 30 μm or less. The numerical values of the respective dimensions and the types of materials described above are examples of this embodiment, and the device of the present invention is not limited to them. It goes without saying that other numerical values and materials can be selected that have the same effects as those described.

【0030】図4に第2の実施例の構成を示す。第2の
実施例では、第1の実施例の基板42とストリップ線路
34を使用せず、代わりに、光導波路として光ファイバ
47そのものを利用し、信号線路として光ファイバ47
に結合した金属スリーブ37を用いる。
FIG. 4 shows the configuration of the second embodiment. The second embodiment does not use the substrate 42 and the strip line 34 of the first embodiment, but instead uses the optical fiber 47 itself as an optical waveguide and the optical fiber 47 as a signal line.
The metal sleeve 37 connected to is used.

【0031】この第2の実施例は、第1の実施例に比
べ、構造が簡単で、基板42を作ることとストリップ線
路の形成工程が不要であるという利点を有する。代わり
に第1の実施例の方は、第2の実施例に比べ、より高周
波特性に優れる。
The second embodiment has the advantages that the structure is simpler than that of the first embodiment and that the substrate 42 and the strip line forming step are not required. Instead, the first embodiment is more excellent in high frequency characteristics than the second embodiment.

【0032】第2の実施例においては、光ファイバ47
の先端面がコア48の方向に対し約40度に斜め研磨さ
れ、第1の実施例と同様な反射膜49が研磨面に形成さ
れる。コア48を通過した光は反射膜49で反射して光
出射部46を透過して受光部21に入射する。このた
め、受光素子上の光束の断面形状は楕円形となる。
In the second embodiment, the optical fiber 47
The front end surface of is polished at an angle of about 40 degrees with respect to the direction of the core 48, and a reflective film 49 similar to that of the first embodiment is formed on the polished surface. The light passing through the core 48 is reflected by the reflection film 49, passes through the light emitting portion 46, and enters the light receiving portion 21. Therefore, the cross-sectional shape of the light flux on the light receiving element is elliptical.

【0033】金属スリープ37は導電体であり、その中
央部に貫通孔38があけられ、その中に光ファイバ47
が挿入され、光ファイバ47の先端部が貫通孔38から
少し覗く位置で固定される。
The metal sleep 37 is a conductor, and a through hole 38 is formed in the center thereof, and an optical fiber 47 is provided therein.
Is inserted, and the tip of the optical fiber 47 is fixed at a position where it is slightly seen through the through hole 38.

【0034】金属スリーブ37の一つの角39が研磨さ
れて突起状電極を形成しており、その角39は光が受光
部21に入射するように光ファイバ47を位置決めした
ときに図示の如くp電極22と面接触するように配置さ
れる。
One corner 39 of the metal sleeve 37 is polished to form a protruding electrode, and the corner 39 is p as shown when the optical fiber 47 is positioned so that the light enters the light receiving portion 21. It is arranged so as to make surface contact with the electrode 22.

【0035】金属スリーブ37が受光素子20のp電極
22と接触しつつ、同時に反射膜49で反射した光が光
出射窓46を通って受光部21に入射するような位置に
測定プローブを図示しないマニュピレータで位置合わせ
をした後、受光素子の光電変換効率や応答特性等の測定
評価が行われる。
The measurement probe is not shown at a position where the metal sleeve 37 is in contact with the p-electrode 22 of the light receiving element 20 and at the same time the light reflected by the reflection film 49 is incident on the light receiving portion 21 through the light emission window 46. After alignment with the manipulator, measurement and evaluation of photoelectric conversion efficiency and response characteristics of the light receiving element are performed.

【0036】次に、第3の実施例を図5と図6を参照し
て説明する。図5は側面図で、図6は図5のC方向から
見た平面図である。前述した第1と第2の実施例のもの
は、いずれも測定プローブが受光素子20の面に対して
斜め方向に傾斜して配置され、反射面によって光の進行
方向を変えて受光面21に入射せしめる構造であった
が、第3の実施例のものは、反射面を使用せず、光導波
路が受光部21に対しほぼ垂直に配置される。反射面が
用いられないこと以外は第1図の実施例と同様な構造で
あるので、以下、簡単に説明する。
Next, a third embodiment will be described with reference to FIGS. 5 is a side view, and FIG. 6 is a plan view seen from the direction C in FIG. In both the first and second embodiments described above, the measurement probe is arranged obliquely with respect to the surface of the light receiving element 20, and the light traveling direction is changed by the reflecting surface to form the light receiving surface 21. Although the structure is such that the light is incident, the third embodiment does not use a reflecting surface, and the optical waveguide is arranged substantially perpendicular to the light receiving portion 21. The structure is the same as that of the embodiment shown in FIG. 1 except that the reflecting surface is not used. Therefore, a brief description will be given below.

【0037】第3の実施例においては、第1の実施例と
同様にガラスもしくはLiNbO3 基板50にチタンの
拡散を行って光導波路51を形成している。また、光導
波路51に近い基板50の表面には、低屈折率の透明絶
縁媒質である酸化シリコン膜52を介し、その表面にコ
プレーナストリップ線路53を高周波電気信号線路とし
て形成する。
In the third embodiment, as in the first embodiment, the optical waveguide 51 is formed by diffusing titanium into the glass or LiNbO 3 substrate 50. Further, a coplanar strip line 53 is formed as a high frequency electric signal line on the surface of the substrate 50 near the optical waveguide 51 with a silicon oxide film 52 which is a transparent insulating medium having a low refractive index interposed.

【0038】図6の平面図にストリップ線路53のパタ
ーンが示される。なお、ストリップ線路53は基板50
の角で曲げられて、その上にバンプ電極54が形成され
る。このバンプ電極54が形成されるストリップ線路の
曲がり部分の長さは高周波特性に影響を与えないために
は0.2mm程度以下にするのが好ましい。
A pattern of the strip line 53 is shown in the plan view of FIG. The strip line 53 is the substrate 50.
The bump electrode 54 is formed on the bump electrode 54. The length of the bent portion of the strip line on which the bump electrode 54 is formed is preferably about 0.2 mm or less in order not to affect the high frequency characteristics.

【0039】光導波路51の一端は、光ファイバ44と
接続され、光源より光が導入される。光導波路51の素
子側の面は光導波路51の方向に対し垂直になってお
り、光はそのまま光出射窓55を透過して受光部21に
入射する。
One end of the optical waveguide 51 is connected to the optical fiber 44, and light is introduced from the light source. The element-side surface of the optical waveguide 51 is perpendicular to the direction of the optical waveguide 51, and the light passes through the light emitting window 55 as it is and enters the light receiving portion 21.

【0040】なお、第3の実施例においては、反射膜が
不要であり、斜め研磨も不要である等の点で第1の実施
例よりも測定プローブの製造が簡単である。以上個別半
導体受光素子の評価装置を例に説明したが、本発明は、
その例に限るものではなく、たとえば、光集積回路中の
受光素子の評価等に用いることもできる。半導体レー
ザ、LEDのような発光素子の評価にも適用可能であ
る。その場合には、発光素子からの光を光導波路を介し
て受けて光信号を検出する測定器に与えればよい。すな
わち、光電変換素子、光導電素子を含む光と電気信号の
両方を同時に利用するオプトエレクトロニクス素子の評
価装置として適用もできる。
The third embodiment is simpler in manufacturing the measuring probe than the first embodiment in that the reflection film is unnecessary and the oblique polishing is unnecessary. Although the evaluation device for the individual semiconductor light receiving element has been described above as an example, the present invention is
The present invention is not limited to this example, and can be used, for example, for evaluation of a light receiving element in an optical integrated circuit. It is also applicable to evaluation of light emitting elements such as semiconductor lasers and LEDs. In that case, the light from the light emitting element may be given to the measuring device which receives the light via the optical waveguide and detects the optical signal. That is, it can be applied as an evaluation device for an optoelectronic element that simultaneously uses both light and an electric signal, including a photoelectric conversion element and a photoconductive element.

【0041】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example,
It will be apparent to those skilled in the art that various modifications, improvements, combinations and the like can be made.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
光導波路部材と導電路とを一体に形成したことにより、
以下のような優れた効果を奏する。
As described above, according to the present invention,
By integrally forming the optical waveguide member and the conductive path,
It has the following excellent effects.

【0043】従来、電極針用と光ファイバ用とにそれぞ
れ個別に必要であった位置合わせマニュピュレータが一
つですむことになる。従って、構造が簡単で使いやす
く、使用上の制限が少なく、位置合わせの手間も減少す
る。
Conventionally, only one positioning manipulator which has been separately required for the electrode needle and the optical fiber is required. Therefore, the structure is simple and easy to use, there are few restrictions on use, and the labor for alignment is reduced.

【0044】また、選択的に得られる効果として、受光
素子等の電極との接続用電極(突起電極)と、光入出力
部とが非常に接近して構成できるために、光素子の小型
化による小さな受光面、出射面の素子に対応できること
と、ストリップ線路を採用できるために、従来の電極針
のような構造よりもより高周波特性が改善できることが
あげられる。
As an effect that can be selectively obtained, the electrode for connection with the electrode of the light receiving element or the like (projection electrode) and the light input / output portion can be formed very close to each other, so that the size of the optical element can be reduced. Due to the fact that it is possible to deal with small elements of the light-receiving surface and the light-emitting surface, and because the strip line can be adopted, the high frequency characteristics can be improved more than the structure like the conventional electrode needle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による受光素子の評価装置の第1の実施
例の側面図である。
FIG. 1 is a side view of a first embodiment of a light receiving element evaluation apparatus according to the present invention.

【図2】図1のA方向からみた平面図である。FIG. 2 is a plan view seen from the direction A in FIG.

【図3】図1のB方向からみた断面図である。FIG. 3 is a cross-sectional view seen from the direction B in FIG.

【図4】本発明による受光素子の評価装置の第2の実施
例の側面図である。
FIG. 4 is a side view of a second embodiment of the light-receiving element evaluation device according to the present invention.

【図5】本発明による受光素子の評価装置の第3の実施
例の側面図である。
FIG. 5 is a side view of a third embodiment of the light-receiving element evaluation device according to the present invention.

【図6】図5のC方向からみた平面図である。6 is a plan view seen from the direction C in FIG.

【図7】従来の技術による受光素子の評価装置の外観図
である。
FIG. 7 is an external view of a conventional light receiving element evaluation apparatus.

【符号の説明】[Explanation of symbols]

10・・・・・・・試料台 20・・・・・・・受光素子 21・・・・・・・受光部(受光面) 22・・・・・・・p電極 23・・・・・・・n電極 24・・・・・・・n+ 型層 25・・・・・・・光吸収層 26・・・・・・・n型層 30・・・・・・・金属針 31・・・・・・・電源 32・・・・・・・電流検出器 33・・・・・・・酸化シリコン層 34,53・・・・ストリップ線路 35・・・・・・・グランドプレート 36,54・・・・バンプ電極 37・・・・・・・金属スリーブ 40,44,47・・光ファイバ 41・・・・・・・光源 42,50・・・・基板 43,48,51・・光導波路 45,49・・・・反射膜 46,55・・・・光出射窓10 --- Sample stand 20 --- Light-receiving element 21 --- Light-receiving part (light-receiving surface) 22 --- P electrode 23 --- ..N electrode 24 ..... n + type layer 25 ........ light absorbing layer 26 ........ n type layer 30 ........ metal needle 31 ..・ ・ ・ ・ Power source 32 ・ ・ ・ ・ Current detector 33 ・ ・ ・ ・ ・ ・ Silicon oxide layer 34, 53 ・ ・ ・ ・ Strip line 35 ・ ・ ・ ・ ・ ・ Grand plate 36, 54 ... Bump electrode 37 ... Metal sleeve 40, 44, 47 ... Optical fiber 41 ... Light source 42, 50 ... Substrate 43, 48, 51 ... Optical waveguide 45, 49 ... Reflective film 46, 55 ... Light output window

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光導波路(43,48,51)と、 該光導波路に隣接して一体に設けられた電極部(34〜
37,39,53,54)とを備え、 該光導波路と電極部とは、光素子の電極に該電極部が接
触した状態で、該光導波路と光素子とが光結合する関係
を有する光・電気プローブ。
1. An optical waveguide (43, 48, 51) and an electrode portion (34-) integrally provided adjacent to the optical waveguide.
37, 39, 53, 54), and the optical waveguide and the electrode section have a relationship in which the optical waveguide and the optical element are optically coupled in a state where the electrode section is in contact with the electrode of the optical element. -Electric probe.
【請求項2】 前記光導波路は、さらに先端部に前記光
導波路を通る光を反射する光反射面(45,49)を有
する請求項1記載の光・電気プローブ。
2. The optical / electrical probe according to claim 1, wherein the optical waveguide further has a light reflection surface (45, 49) for reflecting light passing through the optical waveguide at a tip end portion thereof.
【請求項3】 請求項1記載の光・電気プローブを用い
て、前記電極部を光素子の電極と接触させて光素子にバ
イアスを供給し、前記光導波路を介して光素子の光の入
力/出力を行なう光素子の評価方法。
3. The optical / electrical probe according to claim 1, wherein the electrode portion is brought into contact with an electrode of an optical element to supply a bias to the optical element, and light of the optical element is input through the optical waveguide. / Method of evaluating optical element for output.
JP3344591A 1991-12-26 1991-12-26 Optical/electrical probe and method for evaluating optical element Withdrawn JPH05175288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3344591A JPH05175288A (en) 1991-12-26 1991-12-26 Optical/electrical probe and method for evaluating optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3344591A JPH05175288A (en) 1991-12-26 1991-12-26 Optical/electrical probe and method for evaluating optical element

Publications (1)

Publication Number Publication Date
JPH05175288A true JPH05175288A (en) 1993-07-13

Family

ID=18370457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3344591A Withdrawn JPH05175288A (en) 1991-12-26 1991-12-26 Optical/electrical probe and method for evaluating optical element

Country Status (1)

Country Link
JP (1) JPH05175288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098460A2 (en) 2004-04-01 2005-10-20 Wentworth Laboratories, Inc. Double side probing of semiconductor devices
JP2017058211A (en) * 2015-09-15 2017-03-23 株式会社島津製作所 Light detection device
JP2021063782A (en) * 2019-10-17 2021-04-22 株式会社日本マイクロニクス Inspection probe, method for manufacturing inspection probe, and inspection probe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005098460A2 (en) 2004-04-01 2005-10-20 Wentworth Laboratories, Inc. Double side probing of semiconductor devices
EP1740963A2 (en) * 2004-04-01 2007-01-10 Wentworth Laboratories, Inc. Double side probing of semiconductor devices
EP1740963A4 (en) * 2004-04-01 2010-12-22 Wentworth Lab Inc Double side probing of semiconductor devices
JP2017058211A (en) * 2015-09-15 2017-03-23 株式会社島津製作所 Light detection device
JP2021063782A (en) * 2019-10-17 2021-04-22 株式会社日本マイクロニクス Inspection probe, method for manufacturing inspection probe, and inspection probe

Similar Documents

Publication Publication Date Title
JP6861745B2 (en) Test system
US6049638A (en) Photodetector module
CN107532967B (en) System for testing performance of optical device and method for testing optical device
JPH0567770A (en) Photoelectronic integrated circuit device
JPH05175288A (en) Optical/electrical probe and method for evaluating optical element
EP0527829A1 (en) Photo detectors
JPH09186348A (en) Semiconductor module
JPS6231136A (en) Device for evaluating photosemiconductor element
JPS62283684A (en) Optical probe unit
Bardalen et al. Bipolar photodiode module operated at 4 K
JP2003057118A (en) High frequency light signal measuring device
US6646887B2 (en) Removable mechanical attachment system for electronic assemblies
JPH0511609B2 (en)
US6777252B2 (en) Method and apparatus for testing an individual lightwave chip on a wafer
JPH07209560A (en) Optical module
US6827504B2 (en) Butt joined electronic assembly and module having an electrical standoff
JPH0980083A (en) Signal waveform measuring equipment for printed board
MIKES Bipolar photodiode module operated at 4 K
US6726377B2 (en) Butt joined electrical apparatus and module
JP2962265B2 (en) Manufacturing method of electro-optical element
JPH0787211B2 (en) Integrated circuit test equipment
JPH05100130A (en) Optical coupling structure between photodetecting element and optical waveguide
JP2004207344A (en) Rear surface incident light receiving element
JP2532484B2 (en) Method and apparatus for assembling hybrid optical integrated circuit
JPH04249382A (en) Semiconductor photodetector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311