JPH05174820A - Organic electrolytic solution secondary battery - Google Patents

Organic electrolytic solution secondary battery

Info

Publication number
JPH05174820A
JPH05174820A JP3338959A JP33895991A JPH05174820A JP H05174820 A JPH05174820 A JP H05174820A JP 3338959 A JP3338959 A JP 3338959A JP 33895991 A JP33895991 A JP 33895991A JP H05174820 A JPH05174820 A JP H05174820A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
organic electrolyte
battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3338959A
Other languages
Japanese (ja)
Other versions
JP3239302B2 (en
Inventor
Shoichiro Yasunami
昭一郎 安波
Okimasa Kagawa
興勝 香川
Yukio Maekawa
幸雄 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP33895991A priority Critical patent/JP3239302B2/en
Publication of JPH05174820A publication Critical patent/JPH05174820A/en
Application granted granted Critical
Publication of JP3239302B2 publication Critical patent/JP3239302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide an organic electrolytic solution secondary battery with high charge and discharge capacities and with excellent charge and discharge characteristics. CONSTITUTION:A secondary battery comprises at least a positive electrode consisting of Li-included transition metal chalcogenide, a negative electrode and organic electrolyte. The negative electrode comprises a low graphitization carbon material which, in X-ray diffraction, has crystal thickness Lc of 8-150Angstrom in C axis direction, face-to-face distance d002 of a 002 face of 3.42-3.65Angstrom and true density rho (g/cm<3>) of 1.60-2.20, and mixture of fine carbon grains and/or fine carbon fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充放電容量が高く、充
放電サイクル特性に優れた二次電池、特にリチウム二次
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery having a high charge / discharge capacity and excellent charge / discharge cycle characteristics, and more particularly to a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池は負極活物質としてリ
チウム金属を用いると、充放電の繰り返しにより充電時
に活性の高い樹枝状のリチウム金属(デンドライト)や
苔状のリチウム金属(モス)が生成し、それが直接また
はそれが脱落して間接的に正極活物質と接触して内部短
絡を起こすことがあり、サイクル特性が低いのみでな
く、発火等取扱上きわめて大きな危険を有している。そ
の対策として、リチウム合金(Al、Al−Mn(US
−4,820,599)、Al−Mg(特開昭57−9
8977)、Al−Sn(特開昭63−6,742)、
Al−In、Al−Cd(特開平1−144,57
3))を用いる方法が提案されているが、リチウム金属
を用いているので内部短絡防止に対する本質的な解決に
なっていない。近年、リチウム金属を用いない方法とし
て、リチウムイオンまたはリチウム金属を吸蔵・放出で
きる炭素質化合物を用いる方法が提案されている。炭素
質材料は、非晶質部分と結晶性部分とをともに有する低
黒鉛化炭素と、種々の低黒鉛化炭素を2500℃以上の
高温で加熱処理することでほとんど非晶質部分を有さな
いようにした高黒鉛化炭素とに大別できるが、この両者
は物性・性質等において大きく異なり、全く別の材料と
して扱われている(稲垣道夫著、炭素材料工学、日刊工
業新聞社出版(1985年))。また、これらの炭素質
材料は天然に産するかあるいは種々の有機化合物を加熱
焼成処理して得られることもよく知られたことである。
2. Description of the Related Art In a lithium secondary battery, when lithium metal is used as a negative electrode active material, dendritic lithium metal (dendrites) and mossy lithium metal (moss), which have high activity, are generated by repeated charging and discharging. However, it may directly or indirectly fall into contact with the positive electrode active material to cause an internal short circuit, which not only has poor cycle characteristics, but also has a great risk in handling such as ignition. As a countermeasure, a lithium alloy (Al, Al-Mn (US
-4,820,599), Al-Mg (JP-A-57-9)
8977), Al-Sn (JP 63-6,742),
Al-In, Al-Cd (JP-A-1-144,57)
A method using 3)) has been proposed, but since lithium metal is used, it is not an essential solution to the prevention of internal short circuit. In recent years, a method using a carbonaceous compound capable of inserting and extracting lithium ions or lithium metal has been proposed as a method that does not use lithium metal. The carbonaceous material has almost no amorphous portion by heat treating low-graphitizing carbon having both an amorphous portion and a crystalline portion and various low-graphitizing carbon at a high temperature of 2500 ° C. or higher. The above can be roughly classified into high graphitized carbon as described above, but these two are greatly different in physical properties and properties and are treated as completely different materials (Michio Inagaki, Carbon Material Engineering, Nikkan Kogyo Shimbun Publishing (1985). Year)). It is also well known that these carbonaceous materials are produced naturally or can be obtained by heating and burning various organic compounds.

【0003】高黒鉛化炭素は本来、充放電容量が高いこ
とが知られているが(フィジカルレビューB、42巻、
6424頁(1990))、負極活物質として用いた場
合、充電初期に充放電に必要なLiの量よりさらに多く
の量の不可逆な容量損失、いわゆるエクスホリエーショ
ンを示すことが知られており(ジャーナルオブエレクト
ロケミカル ソサイエティ、137巻、2009頁(1
990))、この容量損失分、正極に過剰な容量を有さ
せねばならず、高い充放電容量を得ることができないと
いう問題がある。この容量損失を防止する方法としてW
O90/13,924に、黒鉛化度の高い炭素質物と黒
鉛化度の低い炭素質物を混合して用いる方法が提案され
ているが、黒鉛化度の高い炭素質物を用いることに何ら
変わりなく、上記の容量損失を本質的に解決しうるもの
ではない。一方、低黒鉛化炭素を負極に用いた提案が数
多くなされている(特開昭58−93,176、同58
−209,864、同61−214,417、同62−
88,269、同62−90,863、同62−12
2,066、同62−216,170、同63−13,
282、同63−24,555、同63−121,24
7、同63−121,257、同63−155,56
8、同63−276,873、同63−314,82
1、特開平1−204,361、同1−221,85
9、同2−82,466、同2−155,168、同2
−230,660、同1−274,360、同2−28
4,354、同3−122,974など)が、低黒鉛化
炭素は高黒鉛化炭素に見られる充電初期の容量損失は著
しく小さくなるものの、良好なサイクル特性を得ること
が難しい。
Highly graphitized carbon is known to have a high charge / discharge capacity by nature (Physical Review B, Vol. 42,
6424 (1990)), it is known that when used as a negative electrode active material, it exhibits irreversible capacity loss, so-called exfoliation, which is larger than the amount of Li necessary for charging and discharging at the initial stage of charging ( Journal of Electrochemical Society, 137, 2009 (1
990)), the positive electrode must have an excessive capacity corresponding to this capacity loss, and there is a problem that a high charge / discharge capacity cannot be obtained. As a method to prevent this capacity loss, W
A method of using a carbonaceous material having a high graphitization degree and a carbonaceous material having a low graphitization degree in O90 / 13,924 has been proposed, but there is no difference in using a carbonaceous material having a high graphitization degree. The above capacity loss cannot be solved essentially. On the other hand, there have been many proposals using low graphitized carbon for the negative electrode (Japanese Patent Laid-Open Nos. 58-93,176 and 58-58).
-209,864, 61-214,417, 62-
88, 269, 62-90, 863, 62-12
2,066, 62-216,170, 63-13,
282, same 63-24, 555, same 63-121, 24
7, the same 63-121,257, the same 63-155,56
8, ibid. 63-276, 873, ibid. 63-314, 82
1, JP-A-1-204,361, 1-221,85
9, 2-2-82,466, 2-155,168, 2
-230,660, 1-224,360, 2-28
No. 4,354, No. 3-122,974, etc.), it is difficult to obtain good cycle characteristics with low-graphitized carbon, although the capacity loss at the initial stage of charging, which is observed in highly-graphitized carbon, is significantly reduced.

【0004】以上のように、充放電容量損失低減、充放
電サイクル特性改善などリチウム二次電池用負極活物質
に要求される不可欠な性能をともに満足するための、さ
らなる改良が望まれている。
As described above, further improvement is desired to satisfy both the indispensable performances required for the negative electrode active material for lithium secondary batteries, such as reduction of charge / discharge capacity loss and improvement of charge / discharge cycle characteristics.

【0005】[0005]

【発明が解決しようとする課題】本発明の第一の課題
は、充放電容量損失が低減化された有機電解液二次電池
を得ることである。本発明の第二の課題は、充放電サイ
クル特性に優れた有機電解液二次電池を得ることであ
る。
SUMMARY OF THE INVENTION A first object of the present invention is to obtain an organic electrolyte secondary battery with reduced charge / discharge capacity loss. A second object of the present invention is to obtain an organic electrolyte secondary battery having excellent charge / discharge cycle characteristics.

【0006】[0006]

【課題を解決するための手段】発明者らは鋭意検討の結
果、本発明の課題が、少なくともLi含有遷移金属カル
コゲナイドからなる正極、負極、および有機電解質から
なる二次電池であって、負極として、X線回折における
C軸方向の結晶厚みLcが8〜150Å、002面の面
間隔d002 が3.42〜3.65Åでかつ真密度ρ(g
/cm3 )の値が1.60〜2.20である低黒鉛化炭
素質物と微細カーボン粒子及び/または微細カーボン繊
維とを混合して用いることにより達成することができる
ことを見いだした。
As a result of intensive studies, the inventors of the present invention have found that an object of the present invention is to provide a positive electrode made of at least a Li-containing transition metal chalcogenide, a negative electrode, and a secondary battery made of an organic electrolyte. , The crystal thickness Lc in the C-axis direction in X-ray diffraction is 8 to 150Å, the interplanar spacing d 002 of the 002 plane is 3.42 to 3.65Å, and the true density ρ (g
It has been found that this can be achieved by mixing a low-graphitized carbonaceous material having a value of / cm 3 ) of 1.60 to 2.20 with fine carbon particles and / or fine carbon fibers.

【0007】本発明の二次電池の負極として用いる低黒
鉛化炭素は、充電初期の容量損失が小さい点で優れたも
のであるが、この低黒鉛化炭素にさらに微細カーボン粒
子・微細カーボン繊維を混合して負極材料として用いる
ことにより、驚くべきことに充放電サイクル特性を大幅
に改善できることを見いだした。
The low-graphitized carbon used as the negative electrode of the secondary battery of the present invention is excellent in that the capacity loss in the initial stage of charging is small, but fine carbon particles and fine carbon fibers are further added to this low-graphitized carbon. It was surprisingly found that charge and discharge cycle characteristics can be significantly improved by mixing and using it as a negative electrode material.

【0008】本発明の二次電池に使用される低黒鉛化炭
素としては、X線回折におけるC軸方向の結晶厚みLc
が8〜150Å、002面の面間隔d002 が3.42〜
3.65Åでかつ真密度ρ(g/cm3 )の値が1.6
0〜2.20である炭素材料を用いることができ、好ま
しくはLc=10〜130Å、d002 =3.43〜3.
62Å、真密度ρ(g/cm3 )の値が1.62〜2.
20であり、さらに好ましくはLc=12〜120Å、
002 =3.44〜3.60Å、真密度ρ(g/c
3 )の値が1.65〜2.10である。このような低
黒鉛化炭素は市販の石炭系ピッチや、あるいは石炭系ピ
ッチ、メソフェーズピッチ、有機高分子化合物、縮合多
環炭化水素化合物、多環複素環系化合物などをアルゴン
等の不活性ガス雰囲気下、または真空下で焼成すること
で得ることができる。焼成温度は先に述べたLc、d
002 、ρの値の範囲内ならば特に限定されないが、好ま
しくは400〜2000℃であり、さらに好ましくは5
00〜1700℃である。本発明の二次電池に用いられ
る低黒鉛化炭素として特に好ましくは単独重合体あるい
は共重合体などのアクリロニトリル系ポリマーを焼成し
た炭素であり、繊維状または樹脂状のものなどを用いる
ことができる。繊維状の炭素を用いる場合には、直径
0.2〜2μm、長さ100μm〜1mmのものが好ま
しく、さらに好ましくは直径0.3〜1μm、長さ10
0〜500μmのものである。また、樹脂状の炭素質物
を用いる場合には、平均粒径として2〜150μmの範
囲が好ましく、さらに好ましくは4〜120μmの範囲
であり、特に好ましくは6〜100μmの範囲である。
As the low-graphitized carbon used in the secondary battery of the present invention, the crystal thickness Lc in the C-axis direction in X-ray diffraction is used.
Is 8 to 150Å, and the surface spacing d 002 of the 002 surface is 3.42 to
3.65Å and true density ρ (g / cm 3 ) value is 1.6
A carbon material of 0 to 2.20 can be used, preferably Lc = 10 to 130Å, d 002 = 3.43 to 3.
62Å, true density ρ (g / cm 3 ) is 1.62 to 2.
20 and more preferably Lc = 12 to 120Å,
d 002 = 3.44 to 3.60Å, true density ρ (g / c
The value of m 3) is 1.65 to 2.10. Such low-graphitized carbon is commercially available coal pitch, or coal pitch, mesophase pitch, organic polymer compounds, condensed polycyclic hydrocarbon compounds, polycyclic heterocyclic compounds, etc. in an inert gas atmosphere such as argon. It can be obtained by firing under or under vacuum. The firing temperature is Lc, d described above.
It is not particularly limited as long as it is within the range of 002 and ρ, but it is preferably 400 to 2000 ° C., more preferably 5
It is 00 to 1700 ° C. The low-graphitized carbon used in the secondary battery of the present invention is particularly preferably carbon obtained by firing an acrylonitrile-based polymer such as a homopolymer or a copolymer, and a fibrous or resinous one can be used. When fibrous carbon is used, it preferably has a diameter of 0.2 to 2 μm and a length of 100 μm to 1 mm, more preferably 0.3 to 1 μm and a length of 10.
The thickness is 0 to 500 μm. When a resinous carbonaceous material is used, the average particle size is preferably in the range of 2 to 150 μm, more preferably 4 to 120 μm, and particularly preferably 6 to 100 μm.

【0009】本発明に用いられる微細カーボン粒子・微
細カーボン繊維は、カーボンブラック、微粒子黒鉛、微
細繊維状黒鉛が好ましいが、さらに好ましくはカーボン
ブラックと微細繊維状黒鉛であり、ファーネスブラッ
ク、ランプブラック、サーマルブラック、アセチレンブ
ラック、チャンネルブラック、ローラーブラック、ディ
スクブラック、ケッチェンブラック、気相系黒鉛繊維な
どがあげられるが、特に好ましくはファーネスブラッ
ク、アセチレンブラック、ケッチェンブラック、気相系
黒鉛繊維である。微細カーボン粒子の粒径としては、
0.005〜0.15μmのものが好ましく、さらに好
ましくは0.01〜0.1μmのものである。微細カー
ボン繊維の場合は、直径0.2μm以下、長さ100μ
m以下のものが好ましく、さらに好ましくは直径0.1
μm以下、長さ50μm以下のものである。また、本発
明の低黒鉛化炭素と微細カーボン粒子・微細カーボン繊
維との混合比(重量比)は99.5:0.5〜80:2
0の範囲が好ましく、さらに好ましくは97:3〜8
5:15である。両者の混合法は粉体のまま混合しても
よいし、水または有機溶媒を用いて分散混合してもよ
く、さらには本発明の低黒鉛化炭素に焼成する原料を溶
媒に溶解または分散させ、これに微細カーボン粒子・微
細カーボン繊維を混練した後に焼成する混合法を用いて
もよい。
The fine carbon particles / fine carbon fibers used in the present invention are preferably carbon black, fine particle graphite and fine fibrous graphite, more preferably carbon black and fine fibrous graphite, such as furnace black, lamp black, Thermal black, acetylene black, channel black, roller black, disc black, Ketjen black, vapor-phase graphite fiber and the like can be mentioned, but furnace black, acetylene black, Ketjen black and vapor-phase graphite fiber are particularly preferable. .. As the particle size of the fine carbon particles,
The thickness is preferably 0.005 to 0.15 μm, more preferably 0.01 to 0.1 μm. In the case of fine carbon fiber, diameter is 0.2μm or less, length is 100μ
The diameter is preferably m or less, more preferably 0.1
The length is 50 μm or less and the length is 50 μm or less. The mixing ratio (weight ratio) of the low-graphitized carbon of the present invention and the fine carbon particles / fine carbon fibers is 99.5: 0.5 to 80: 2.
The range of 0 is preferable, and more preferably 97: 3 to 8
It is 5:15. The mixing method of both may be a powder as it is, or may be dispersed and mixed by using water or an organic solvent, and further, the raw material for firing the low-graphitized carbon of the present invention is dissolved or dispersed in a solvent. Alternatively, a mixing method may be used in which fine carbon particles and fine carbon fibers are kneaded and then fired.

【0010】本発明の低黒鉛化炭素と微細カーボン粒子
・微細カーボン繊維を混合した負極合剤には、通常用い
る結着剤や補強剤などを添加することが出来る。結着剤
としては、天然多糖類、合成多糖類、合成ポリヒドロキ
シ化合物、合成ポリアクリル酸化合物や含弗素化合物や
合成ゴムがおもに用いられる。それらの中でも澱粉、カ
ルボキシメチルセルロ−ス、ジアセチルセルロ−ス、ヒ
ドロキシプロピルセルロ−ス、エチレングリコ−ル、ポ
リアクリル酸、ポリテトラフルオロエチレンやポリ弗化
ビニリデン、エチレン・プロピレン・ジエン共重合体や
アクリロニトリル・ブタジエン共重合体などが好まし
い。補強剤としては、リチウムと反応しない繊維状物が
用いられる。例えば、ポリプロピレン繊維、ポリエチレ
ン繊維、テフロン繊維などの合成ポリマ−や炭素繊維が
好ましい。繊維の大きさとしては、長さが0.1〜4m
m、太さが0.1〜50デニ−ルが好ましい。特に、1
〜3mm、1〜6デニ−ルが好ましい。負極合剤はコイ
ン型電池やボタン形電池では、加圧してペレットとして
用いたり、集電体の上に塗布した後圧延したり、該合剤
のプレスシ−トと集電体を重ねて圧延したりして、シ−
ト状電極を作成し、該シ−ト状電極を巻取って円筒型電
池に用いることができる。
A commonly used binder, reinforcing agent, etc. can be added to the negative electrode mixture of the low-graphitized carbon of the present invention mixed with fine carbon particles / fine carbon fibers. As the binder, natural polysaccharides, synthetic polysaccharides, synthetic polyhydroxy compounds, synthetic polyacrylic acid compounds, fluorine-containing compounds and synthetic rubbers are mainly used. Among them, starch, carboxymethyl cellulose, diacetyl cellulose, hydroxypropyl cellulose, ethylene glycol, polyacrylic acid, polytetrafluoroethylene and polyvinylidene fluoride, ethylene / propylene / diene copolymer and Acrylonitrile-butadiene copolymer and the like are preferable. A fibrous material that does not react with lithium is used as the reinforcing agent. For example, synthetic polymers such as polypropylene fiber, polyethylene fiber, Teflon fiber and carbon fiber are preferable. The size of the fiber is 0.1-4m in length
m and the thickness is preferably 0.1 to 50 denier. Especially 1
-3 mm and 1-6 denier are preferred. In the case of coin-type batteries or button-type batteries, the negative electrode mixture is used as pellets by applying pressure, or is applied on a current collector and then rolled, or the press sheet of the mixture is rolled together with the current collector. Or, see
A sheet-shaped electrode can be prepared and the sheet-shaped electrode can be wound up and used for a cylindrical battery.

【0011】本発明に用いることのできるLi含有遷移
金属カルコゲナイドからなる正極としては、MnO2
Mn2 4 、Mn23 、CoO2 、Cox Mn1-x
y 、Nix Co1-X y 、VX Mn1-X y 、FeX
1-x y 、V2 5 、V3 8 、V6 13、Cox
1-X y 、MoS2 、MoO3 、TiS2 などのLi化
物が好ましい。特に好ましくはLia Cob c
d (a=0.1〜1.1、b=0.12〜0.9、c=
1−b、d=2〜2.5)、またはLie Cof Nig
h (e =0.1〜1.1、f =0.12〜0.9、g
=1−f 、h =2〜2.5)である。遷移金属カルコゲ
ナイトのLi化物はリチウムを含む化合物と混合して焼
成する方法やイオン交換法が主に用いられる。還移金属
カルコゲナイドの合成法はよく知られた方法でよいが、
特に空気中やアルゴン、窒素などの不活性ガス雰囲気下
で200〜1500℃で焼成することが好ましい。
Examples of the positive electrode made of a transition metal chalcogenide containing Li that can be used in the present invention include MnO 2 ,
Mn 2 O 4, Mn 2 O 3, CoO 2, Co x Mn 1-x O
y , Ni x Co 1-X O y , V X Mn 1-X O y , Fe X M
n 1-x O y , V 2 O 5 , V 3 O 8 , V 6 O 13 , Co x V
Li compounds such as 1-X O y , MoS 2 , MoO 3 and TiS 2 are preferable. Particularly preferably Li a Co b V c O
d (a = 0.1 to 1.1, b = 0.12 to 0.9, c =
1-b, d = 2-2.5), or Li e Co f Ni g
O h (e = 0.1 to 1.1, f = 0.12 to 0.9, g
= 1-f, h = 2 to 2.5). The transition metal chalcogenite Li compound is mainly used by a method of mixing with a compound containing lithium and firing, or an ion exchange method. The method for synthesizing the transition metal chalcogenide may be a well-known method,
In particular, it is preferable to bake at 200 to 1500 ° C. in air or in an atmosphere of an inert gas such as argon or nitrogen.

【0012】電解質としては、プロピレンカ−ボネ−
ト、エチレンカ−ボネ−ト、ジエチルカーボネート、γ
−ブチロラクトン、1,2−ジメトキシエタン、テトラ
ヒドロフラン、2−メチルテトラヒドロフラン、ジメチ
ルスルフォキシド、1,3−ジオキソラン、ホルムアミ
ド、ジメチルホルムアミド、ジオキソラン、アセトニト
リル、ニトロメタン、エチルモノグライム、リン酸トリ
エステル(特開昭60−23,973)、トリメトキシ
メタン(特開昭61−4,170)、ジオキソラン誘導
体(特開昭62−15,771、同62−22,37
2、同62−108,474)、スルホラン(特開昭6
2−31,959)、3−メチル−2−オキサゾリジノ
ン(特開昭62−44,961)、プロピレンカ−ボネ
−ト誘導体(特開昭62−290,069、同62−2
90,071)、テトラヒドロフラン誘導体(特開昭6
3−32,872)、エチルエ−テル(特開昭63−6
2,166)、1,3−プロパンサルトン(特開昭63
−102,173)などの非プロトン性有機溶媒の少な
くとも一種以上を混合した溶媒とその溶媒に溶けるリチ
ウム塩、例えば、ClO4 - 、BF4 - 、PF6 - 、C
3 SO3 - 、CF3 CO2 - 、AsF6 - 、SbF6
- 、(CF3 SO2 2 - 、B10Cl10 2-(特開昭5
7−74,974)、(1,2−シメトキシエタン)2
ClO4 - (特開昭57−74,977)、低級脂肪族
カルボン酸塩(特開昭60−41,773)、AlCl
4 - 、Cl- 、Br- 、I- (特開昭60−247,2
65)、クロロボラン化合物(特開昭61−165,9
57)、四フェニルホウ酸(特開昭61−214,37
6)などの一種以上から構成されている。なかでも、プ
ロピレンカ−ボネ−トと1,2−ジメトキシエタンの混
合液にLiClO4 あるいはLiBF4 を含む電解液が
代表的である。
As the electrolyte, propylene carbonate
G, ethylene carbonate, diethyl carbonate, γ
-Butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, ethyl monoglyme, phosphate triester 60-23,973), trimethoxymethane (JP-A-61-4,170), dioxolane derivative (JP-A-62-15,771, JP-A-62-22,37).
2, pp. 62-108, 474), sulfolane (Japanese Patent Laid-Open Publication No. 6-68, pp.
2-31,959), 3-methyl-2-oxazolidinone (JP-A-62-44,961), propylene carbonate derivative (JP-A-62-290,069, JP-A-62-2).
90,071), tetrahydrofuran derivative
3-32,872), ethyl ether (JP-A-63-6)
2,166), 1,3-propane sultone (Japanese Patent Application Laid-Open No. 63-63242).
-102,173) aprotic organic least one or more of the mixed solvent and lithium salt soluble in the solvent of a solvent such as, for example, ClO 4 -, BF 4 - , PF 6 -, C
F 3 SO 3 , CF 3 CO 2 , AsF 6 , SbF 6
-, (CF 3 SO 2) 2 N -, B 10 Cl 10 2- ( JP 5
7-74,974), (1,2-Simethoxyethane) 2
ClO 4 - (JP 57-74,977), lower aliphatic carboxylic acid salt (JP-60-41,773), AlCl
4 -, Cl -, Br - , I - ( JP 60-247,2
65), chloroborane compounds (JP-A-61-165, 9
57), tetraphenyl boric acid (JP-A-61-214,37).
6) and the like. Among them, an electrolytic solution containing LiClO 4 or LiBF 4 in a mixed solution of propylene carbonate and 1,2-dimethoxyethane is typical.

【0013】また、電解液の他に次の様な固体電解質も
用いることができる。固体電解質としては、無機固体電
解質と有機固体電解質に分けられる。無機固体電解質に
は、Liの窒化物、ハロゲン化物、酸素酸塩などがよく
知られている。なかでも、Li3 N、LiI、Li5
2 、Li3 N−LiI−LiOH、LiSiO4 、L
iSiO4 −LiI−LiOH(特開昭49−81,8
99)、xLi3 PO4 −(1−x)Li4 SiO
4 (特開昭59−60,866)、Li2 SiS3 (特
開昭60−501,731)、硫化リン化合物(特開昭
62−82,665)などが有効である。有機固体電解
質では、ポリエチレンオキサイド誘導体か該誘導体を含
むポリマ−(特開昭63−135,447)、ポリプロ
ピレンオキサイド誘導体か該誘導体を含むポリマ−、イ
オン解離基を含むポリマ−(特開昭62−254,30
2、同62−254,303、同63−193,95
4)、イオン解離基を含むポリマ−と上記非プロトン性
電解液の混合物(米国特許4,792,504、同4,
830,939、特開昭62−22,375、同62−
22,376、同63−22,375、同63−22,
776、特開平1−95,117)、リン酸エステルポ
リマ−(特開昭61−256,573)、非プロトン性
極性溶媒を含有させた高分子マトリックス材料(米国特
許4,822,701、同4,830,939,特開昭
63ー239,779、特願平2ー30,318、同2
−78,531)が有効である。さらに、ポリアクリロ
ニトリルを電解液に添加する方法もある(特開昭62−
278,774)。また、無機と有機固体電解質を併用
する方法(特開昭60−1,768)も知られている。
In addition to the electrolytic solution, the following solid electrolytes can be used. Solid electrolytes are classified into inorganic solid electrolytes and organic solid electrolytes. Well-known inorganic solid electrolytes include Li nitrides, halides, and oxyacid salts. Among them, Li 3 N, LiI, Li 5 N
I 2, Li 3 N-LiI -LiOH, LiSiO 4, L
iSiO 4 -LiI-LiOH (JP-A-49-81,8)
99), xLi 3 PO 4 - (1-x) Li 4 SiO
4 (JP-A-59-60,866), Li 2 SiS 3 (JP-A-60-501,731), phosphorus sulfide compound (JP-A-62-82,665) and the like are effective. In the organic solid electrolyte, a polyethylene oxide derivative or a polymer containing the derivative (JP-A-63-135,447), a polypropylene oxide derivative or a polymer containing the derivative, a polymer containing an ionic dissociation group (JP-A-62-135). 254,30
2, ibid. 62-254, 303, ibid. 63-193, 95
4), a mixture of a polymer containing an ionic dissociative group and the aprotic electrolyte (US Pat. Nos. 4,792,504, 4,
830,939, JP-A-62-22,375, and JP-A-62-1.
22, 376, 63-22, 375, 63-22.
776, JP-A-1-95,117), phosphoric acid ester polymer (JP-A-61-256,573), and a polymer matrix material containing an aprotic polar solvent (US Pat. No. 4,822,701; 4,830,939, JP-A-63-239,779, Japanese Patent Application No. 2-30,318, and 2
-78,531) is effective. Furthermore, there is also a method of adding polyacrylonitrile to the electrolytic solution (Japanese Patent Laid-Open No. 62-62).
278,774). Also known is a method of using an inorganic and organic solid electrolyte in combination (JP-A-60-1,768).

【0014】セパレ−タ−は、イオン透過度が大きく、
所定の機械的強度を持つ、絶縁性の薄膜である。耐有機
溶剤性と疎水性からポリプレピレンなどのオレフィン系
の不織布やガラス繊維などが用いられている。さらに、
ポリプロピレンやポリエチレンの表面に、側鎖にポリエ
チレンオキシド基を有するアクリロイルモノマーをプラ
ズマグラフト重合した修飾セパレーターを用いることも
できる。
The separator has a large ion permeability,
An insulating thin film having a predetermined mechanical strength. Olefin-based nonwoven fabrics such as polypropylene and glass fibers are used because of their resistance to organic solvents and hydrophobicity. further,
It is also possible to use a modified separator obtained by plasma graft polymerizing an acryloyl monomer having a polyethylene oxide group in its side chain on the surface of polypropylene or polyethylene.

【0015】また、放電や充放電特性を改良する目的
で、以下に示す化合物を電解質に添加することが知られ
ている。例えば、ピリジン(特開昭49−108,52
5)、トリエチルフォスファイト(特開昭47−4,3
76)、トリエタノ−ルアミン(特開昭52−72,4
25)、環状エ−テル(特開昭57−152,68
4)、エチレンジアミン(特開昭58−87,77
7)、n−グライム(特開昭58−87,778)、ヘ
キサリン酸トリアミド(特開昭58−87,779)、
ニトロベンゼン誘導体(特開昭58−214,28
1)、硫黄(特開昭59−8,280)、キノンイミン
染料(特開昭59−68,184)、N−置換オキサゾ
リジノンとN, N, −置換イミダリジノン(特開昭59
−154,778)、エチレングリコ−ルジアルキルエ
−テル(特開昭59−205,167)、四級アンモニ
ウム塩(特開昭60−30,065)、ポリエチレング
リコ−ル(特開昭60−41,773)、ピロ−ル(特
開昭60−79,677)、2−メトキシエタノ−ル
(特開昭60−89,075)、AlCl3 (特開昭6
1−88,466)、導電性ポリマ−電極活物質のモノ
マ−(特開昭61−161,673)、トリエチレンホ
スホルアミド(特開昭61−208,758)、トリア
ルキルホスフィン(特開昭62−80,976)、モル
フォリン(特開昭62−80,977)、カルボニル基
を持つアリ−ル化合物(特開昭62−86,673)、
12ークラウンー4のようなクラウンエーテル類(フィ
ジカル レビュー(Physical Review)
B、42卷、6424頁(1990年))、ヘキサメチ
ルホスホリックトリアミドと4−アルキルモルフォリン
(特開昭62−217,575)、二環性の三級アミン
(特開昭62−217,578)、オイル(特開昭62
−287,580)、四級ホスホニウム塩(特開昭63
−121,268)、三級スルホニウム塩(特開昭63
−121,269)などが挙げられる。
It is also known to add the following compounds to the electrolyte for the purpose of improving discharge and charge / discharge characteristics. For example, pyridine (JP-A-49-108,52)
5), triethyl phosphite (JP-A-47-4,3)
76), triethanolamine (JP-A-52-72,4).
25), cyclic ether (JP-A-57-152,68)
4), ethylenediamine (JP-A-58-87,77)
7), n-glyme (JP-A-58-87,778), hexaphosphoric acid triamide (JP-A-58-87,779),
Nitrobenzene derivative (JP-A-58-214, 28)
1), sulfur (JP-A-59-8,280), quinoneimine dye (JP-A-59-68,184), N-substituted oxazolidinone and N, N , -substituted imidazolidinone (JP-A-59-68).
-154,778), ethylene glycol dialkyl ether (JP-A-59-205,167), quaternary ammonium salt (JP-A-60-30,065), polyethylene glycol (JP-A-60-41). 773), pyrrol (JP-A-60-79,677), 2-methoxyethanol (JP-A-60-89,075), AlCl 3 (JP-A-6-79,677).
1-88,466), a monomer of a conductive polymer electrode active material (JP-A-61-161,673), triethylenephosphoramide (JP-A-61-208,758), and a trialkylphosphine (JP-A-61-167). 62-80,976), morpholine (JP-A-62-80,977), aryl compounds having a carbonyl group (JP-A-62-86,673),
Crown ethers such as 12-crown-4 (Physical Review)
B, 42, 6424 (1990)), hexamethylphosphoric triamide and 4-alkylmorpholine (JP 62-217,575), bicyclic tertiary amine (JP 62-217). , 578), oil (JP-A-62-62)
-287,580), a quaternary phosphonium salt (JP-A-63-63)
-121,268), a tertiary sulfonium salt (JP-A-63 / 1988)
-121, 269) and the like.

【0016】また、電解液を不燃性にするために含ハロ
ゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを
電解液に含ませることができる。(特開昭48−36,
632) また、高温保存に適性をもたせるために電解
液に炭酸ガスを含ませることができる。(特開昭59−
134,567)
Further, in order to make the electrolytic solution nonflammable, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride chloride can be contained in the electrolytic solution. (JP-A-48-36,
632) Further, the electrolytic solution may contain carbon dioxide gas in order to have suitability for high temperature storage. (JP-A-59-
134,567)

【0017】また、正極活物質に電解液あるいは電解質
を含ませることができる。例えば、前記イオン導電性ポ
リマ−やニトロメタン(特開昭48−36,633)、
電解液の添加(特開昭57−124,870)が知られ
ている。また、正極活物質の表面を改質することが出来
る。例えば、金属酸化物の表面をエステル化剤により処
理(特開昭55ー163,779)したり、キレート化
剤で処理(特開昭55ー163,780)、導電性高分
子(特開昭58−163,188、同59−14,27
4)、ポリエチレンオキサイドなど(特開昭60−9
7,561)により処理することができる。また、負極
活物質の表面を改質することもできる。例えば、イオン
導電性ポリマーやポリアセチレン層を設ける(特開昭5
8−111,276)、LiCl(特開昭58−14
2,771)、エチレンカーボネイト(特開昭59−3
1,573)などにより処理することができる。
Further, the positive electrode active material may contain an electrolytic solution or an electrolyte. For example, the ion conductive polymer or nitromethane (Japanese Patent Laid-Open No. 48-36,633),
It is known to add an electrolytic solution (JP-A-57-124,870). Moreover, the surface of the positive electrode active material can be modified. For example, the surface of a metal oxide is treated with an esterifying agent (JP-A-55-163,779) or a chelating agent (JP-A-55-163,780), and a conductive polymer (JP-A-55-163). 58-163, 188, 59-14, 27
4), polyethylene oxide, etc. (JP-A-60-9)
7, 561). Also, the surface of the negative electrode active material can be modified. For example, an ion conductive polymer or a polyacetylene layer is provided (Japanese Patent Laid-Open No. 5-5120).
8-111,276), LiCl (JP-A-58-14)
2,771), ethylene carbonate (JP-A-59-3)
1, 573) and the like.

【0018】電極活物質の担体として、正極には、通常
のステンレス鋼、ニッケル、アルミニウムの他に、導電
性高分子用には多孔質の発泡金属(特開昭59−18,
578)、チタン(特開昭59−68,169)、エキ
スパンドメタル(特開昭61−264,686)、パン
チドメタル、負極には、通常のステンレス鋼、ニッケ
ル、チタン、アルミニウムの他に、多孔質ニッケル(特
開昭58−18,883)、多孔質アルミニウム(特開
昭58−38,466)、アルミニウム焼結体(特開昭
59−130,074)、アルミニウム繊維群の成形体
(特開昭59−148,277)、ステンレス鋼の表面
を銀メッキ(特開昭60−41,761)、フェノール
樹脂焼成体などの焼成炭素質材料(特開昭60−11
2,254)、Al−Cd合金(特開昭60−211,
779)、多孔質の発泡金属(特開昭61−74,26
8)などが用いられる。
As a carrier for the electrode active material, in addition to ordinary stainless steel, nickel, and aluminum for the positive electrode, a porous metal foam for conductive polymers (JP-A-59-18,
578), titanium (JP-A-59-68,169), expanded metal (JP-A-61-264,686), punched metal, and negative electrode, in addition to ordinary stainless steel, nickel, titanium, and aluminum, Porous nickel (JP-A-58-18,883), porous aluminum (JP-A-58-38,466), aluminum sintered body (JP-A-59-130,074), molded body of aluminum fiber group ( JP-A-59-148,277), silver-plated stainless steel surface (JP-A-60-41,761), fired carbonaceous material such as phenol resin fired body (JP-A-60-11).
2, 254), Al-Cd alloy (JP-A-60-212,
779), a porous metal foam (JP-A-61-74, 26).
8) etc. are used.

【0019】集電体としては、構成された電池において
化学変化を起こさない電子伝導体であればよい。例え
ば、通常用いられるステンレス鋼、タチンやニッケルの
他に、銅のニッケルメッキ体(特開昭48−36,62
7)、銅のチタンメッキ体、硫化物の正極活物質にはス
テンレス鋼の上に銅処理したもの(特開昭60−17
5,373)などが用いられる。電池の形状はコイン、
ボタン、シ−ト、シリンダ−などいずれにも適用でき
る。
The current collector may be any electron conductor that does not undergo a chemical change in the constructed battery. For example, in addition to commonly used stainless steel, tachin and nickel, nickel plated bodies of copper (Japanese Patent Application Laid-Open No. 48-36,62).
7), a titanium-plated body of copper, and a positive electrode active material of sulfide, which is obtained by subjecting stainless steel to copper treatment (JP-A-60-17).
5, 373) and the like are used. The shape of the battery is a coin,
It can be applied to any of buttons, sheets and cylinders.

【0020】[0020]

【実施例】以下に具体例を挙げ、本発明をさらに詳しく
説明するが、発明の主旨を越えない限り、本発明は実施
例に限定されるものではない。 実施例1 ポリアクリロニトリル繊維(旭化成製、商品名カシミロ
ン)を、アルゴンガス雰囲気下、1000℃で1時間焼
成し炭素質物を得た。この炭素質物のX線回折における
Lcは14.5Å、d002 は3.55Åであり、真密度
ρは1.79g/cm3 であった。この炭素質物90重
量%と微細カーボン粒子として市販のアセチレンブラッ
ク(電気化学工業製、商品名デンカブラック)10重量
%を粉体のまま2時間混合した。この混合された炭素質
物90重量%に結着剤としてポリテトラフルオロエチレ
ン(和光純薬製)10重量%を含む合剤を圧縮成形させ
たペレット(15mmΦ)を作成し、負極材料とした。
正極材料として、Li0.5 Co0.5 0.5 2.5 を84
重量%、アセチレンブラック(電気化学工業製、商品名
デンカブラック)10重量%、結着剤としてポリテトラ
フルオロエチレン(和光純薬製)6重量%の混合比で混
合した合剤を圧縮成形させたペレット(13mmΦ)を
用いた。正極と負極の理論容量比は1.5とした。な
お、負極の理論容量はGIC理論に基づき、372mA
H/gとした。電解質としては1MのLiBF4 (プロ
ピレンカーボネートと1,2−ジメトキシエタンの等量
混合液)を用い、さらにセパレーターとして微孔質のポ
リプロピレン不織布を用いて、その電解液を不織布に含
浸させて用いた。そして、図1のようなコイン型リチウ
ム電池を作成した(電池1)。さらに同様に表1に示し
たアクリロニトリル系ポリマーを熱処理した炭素質負極
を作成し、同様の電池2〜14を作成した。電池1〜1
0についてはポリアクリロニトリル繊維を、電池11〜
13についてはポリアクリロニトリル樹脂を、電池14
についてはアクリロニトリルースチレン共重合体樹脂を
用いた。また、電池5と6については、結着剤としてポ
リテトラフルオロエチレンの代わりにエチレン・プロピ
レン・ジエン共重合体EPDM(住友化学工業製、商品
名ESPRENE)を用いた。これらのリチウム電池を
1.0mA/cm2 の電流密度で、160mAH/gの
充電、放電は3.2Vでカットの条件で充放電試験を行
い、10サイクル目の放電容量および50サイクル目の
放電容量を測定し、充放電サイクル特性の評価を行っ
た。
EXAMPLES The present invention will be described in more detail with reference to specific examples below, but the present invention is not limited to the examples as long as the gist of the invention is not exceeded. Example 1 Polyacrylonitrile fiber (manufactured by Asahi Kasei, trade name Casimiron) was fired at 1000 ° C. for 1 hour in an argon gas atmosphere to obtain a carbonaceous material. Lc in X-ray diffraction of this carbonaceous material was 14.5 Å, d 002 was 3.55 Å, and true density ρ was 1.79 g / cm 3 . 90% by weight of this carbonaceous material and 10% by weight of commercially available acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo) as fine carbon particles were mixed as a powder for 2 hours. A pellet (15 mmΦ) obtained by compression-molding a mixture containing 90% by weight of the mixed carbonaceous material and 10% by weight of polytetrafluoroethylene (manufactured by Wako Pure Chemical Industries) as a binder was prepared as a negative electrode material.
As the positive electrode material, Li 0.5 Co 0.5 V 0.5 O 2.5 is used.
%, Acetylene black (manufactured by Denki Kagaku Kogyo, trade name Denka Black) 10% by weight, and a mixture of 6% by weight polytetrafluoroethylene (manufactured by Wako Pure Chemical Industries) as a binder were compression molded. Pellets (13 mmΦ) were used. The theoretical capacity ratio of the positive electrode and the negative electrode was set to 1.5. The theoretical capacity of the negative electrode is 372 mA based on the GIC theory.
It was H / g. 1M LiBF 4 (equal amount mixture of propylene carbonate and 1,2-dimethoxyethane) was used as the electrolyte, and a microporous polypropylene nonwoven fabric was used as the separator, and the electrolyte was used by impregnating the nonwoven fabric. .. Then, a coin-type lithium battery as shown in FIG. 1 was created (battery 1). Similarly, a carbonaceous negative electrode obtained by heat-treating the acrylonitrile-based polymer shown in Table 1 was prepared, and the same batteries 2 to 14 were prepared. Batteries 1 to 1
For 0, polyacrylonitrile fiber is used for batteries 11 to 11.
13 is polyacrylonitrile resin, and battery 14
For this, an acrylonitrile-styrene copolymer resin was used. For batteries 5 and 6, an ethylene / propylene / diene copolymer EPDM (manufactured by Sumitomo Chemical Co., Ltd., trade name ESPRENE) was used as a binder instead of polytetrafluoroethylene. These lithium batteries were subjected to a charge / discharge test under conditions of 1.0 mA / cm 2 current density and 160 mAH / g charge and discharge of 3.2 V, and a discharge capacity of 10th cycle and discharge of 50th cycle. The capacity was measured and the charge / discharge cycle characteristics were evaluated.

【0021】実施例2 市販の石炭系コークス(新日鉄化学製、商品名LPC−
u、Lc=41Å、d 002 =3.47Å、ρ=2.09
g/cm3 )を84重量%、市販のアセチレンブラック
(電気化学工業製、商品名デンカブラック)8重量%、
結着剤として上記のEPDM8重量%の混合比で混合し
た合剤を塗布(溶剤トルエン)・乾燥・圧縮成形させた
負極ペレット(15mmΦ)を作成し、負極材料とし
た。そして実施例1と同様にしてコイン型リチウム電池
を作成した(電池15)。さらに同様に表1に示した炭
素質負極を作成し、同様の電池16〜18を作成した。
電池17については、結着剤としてEPDMの代わりに
ポリフッ化ビニリデン(東京化成製)を用いた。また、
電池18については、負極として石炭系コークスに代わ
りにメソフェーズピッチ焼成炭素質物を用いた。これら
のリチウム電池について実施例1と同様にして充放電試
験を行った。
Example 2 Commercially available coal-based coke (trade name: LPC-, manufactured by Nippon Steel Chemical Co., Ltd.)
u, Lc = 41Å, d 002= 3.47Å, ρ = 2.09
g / cm3) 84% by weight, commercially available acetylene black
(Denka Black, manufactured by Denki Kagaku Kogyo) 8% by weight,
As a binder, the above EPDM was mixed at a mixing ratio of 8% by weight.
Applied mixture (solvent toluene), dried and compression molded
Negative electrode pellets (15 mmΦ) are created and used as the negative electrode material.
It was Then, in the same manner as in Example 1, a coin-type lithium battery
Was prepared (battery 15). Similarly, the charcoal shown in Table 1
An elementary negative electrode was prepared, and similar batteries 16 to 18 were prepared.
For battery 17, instead of EPDM as a binder
Polyvinylidene fluoride (manufactured by Tokyo Kasei) was used. Also,
For battery 18, replace the coal-based coke as the negative electrode.
A mesophase pitch calcined carbonaceous material was used. these
The same charge and discharge test was performed on the lithium battery as in Example 1.
Test was carried out.

【0022】実施例3 負極材料としては実施例電池1で述べたポリアクリロニ
トリル繊維を焼成した炭素質物を用いた。セパレーター
として多孔性のポリプロピレンフィルム(ダイセル化学
製、商品名ジュラガード2500)にポリオキシエチレ
ンを側鎖に有するモノマー(新中村化学製、商品名M−
40G)をプラズマグラフト重合(グラフト量、2.5
mg/cm2 )した薄膜を用いた。これ以外は実施例電
池1と同様な電池を作成し(電池19)、充放電試験を
行った。
Example 3 The carbonaceous material obtained by firing the polyacrylonitrile fiber described in Example Battery 1 was used as the negative electrode material. As a separator, a porous polypropylene film (manufactured by Daicel Chemical Co., Ltd., trade name DURAGARD 2500) has a monomer having polyoxyethylene as a side chain (Shin Nakamura Chemical Co., Ltd. trade name M-
40G) by plasma graft polymerization (grafting amount, 2.5
(mg / cm 2 ) thin film was used. Except for this, a battery similar to the example battery 1 was prepared (battery 19) and a charge / discharge test was conducted.

【0023】実施例4 微細カーボン繊維として気相法黒鉛繊維(昭和電工製、
商品名VG−CF)を用いた以外は実施例電池1と同様
な電池を作成し(電池20)、充放電試験を行った。 実施例5 結着剤としてポリテトラフルオロエチレン(三井フルオ
ロケミカル製、商品名テフロン6J)を用いた以外は実
施例電池1と同様な電池を作成し(電池21)、充放電
試験を行った。
Example 4 As a fine carbon fiber, a vapor grown graphite fiber (manufactured by Showa Denko,
A battery similar to Example battery 1 was prepared except that the product name VG-CF) was used (battery 20), and a charge / discharge test was performed. Example 5 A battery similar to Example battery 1 was prepared except that polytetrafluoroethylene (manufactured by Mitsui Fluorochemicals, trade name Teflon 6J) was used as a binder (battery 21), and a charge / discharge test was conducted.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】比較例1 負極材料として、カーボンブラックを混合しなかった以
外は実施例電池1と同様のポリアクリロニトリル繊維焼
成炭素質物からなる負極を有する電池を作成し(電池
a、b)、実施例1と同様にして充放電試験を行った。
電池bについては正極としてLi0.5 Co0.5 0.5
2.5 に代えて、LiCoO2 を用いた。
Comparative Example 1 A battery having a negative electrode made of a polyacrylonitrile fiber calcined carbonaceous material similar to that of Example Battery 1 was prepared as a negative electrode material (Batteries a and b), except that carbon black was not mixed. A charge / discharge test was conducted in the same manner as in 1.
For battery b, the positive electrode was Li 0.5 Co 0.5 V 0.5 O
LiCoO 2 was used in place of 2.5 .

【0029】比較例2 負極材料として、カーボンブラックを混合しなかった以
外は実施例1と同様のポリアクリロニトリル樹脂焼成炭
素質物からなる負極を有する電池を作成し(電池c)、
実施例1と同様にして充放電試験を行った。
Comparative Example 2 A battery having a negative electrode made of a polyacrylonitrile resin calcined carbonaceous material similar to that of Example 1 except that carbon black was not mixed was prepared as a negative electrode material (battery c).
A charge / discharge test was conducted in the same manner as in Example 1.

【0030】比較例3 負極材料として、カーボンブラックを混合しなかった以
外は実施例2と同様の石炭系ピッチコークス、メソフェ
ーズピッチ焼成炭素質物からなる負極を有する電池を作
成し(電池d、e)、実施例1と同様にして充放電試験
を行った。
Comparative Example 3 A battery having a negative electrode composed of coal-based pitch coke and mesophase pitch calcined carbonaceous material as in Example 2 except that carbon black was not mixed was prepared as a negative electrode material (Batteries d and e). A charge / discharge test was performed in the same manner as in Example 1.

【0031】比較例4 負極材料として特開平2−66,856記載のフラン樹
脂焼成炭素質物を用いた以外は実施例1、比較例1と同
様な電池を作成し(電池f、g)、充放電試験を行っ
た。この炭素質物のLc、d002 、ρはそれぞれ12
Å、3.68Å、1.65g/cm3 であった。電池f
はカーボンブラック無添加、電池gはカーボンブラック
を添加した。
Comparative Example 4 Batteries similar to those of Example 1 and Comparative Example 1 were prepared (batteries f and g) except that the furan resin calcined carbonaceous material described in JP-A-2-66,856 was used as the negative electrode material. A discharge test was conducted. Lc, d 002 , and ρ of this carbonaceous material are each 12
Å, 3.68Å, 1.65 g / cm 3 . Battery f
Was added without carbon black, and Battery g was added with carbon black.

【0032】比較例5 負極材料として特開昭62−122,066記載のノボ
ラック樹脂焼成炭素質物を用いた以外は実施例1、比較
例1と同様な電池を作成し(電池h、i)、充放電試験
を行った。この炭素質物のLc、d002 、ρはそれぞれ
13Å、3.70Å、1.62g/cm3 であった。電
池hはカーボンブラック無添加、電池iはカーボンブラ
ックを添加した。 比較例6 負極材料として、カーボンブラックを混合しなかった以
外は実施例電池21とと同様の電池を作成し(電池
j)、充放電試験を行った。実施例と比較例で作成した
負極炭素質材料の内容を表1に、電池の構成を表2〜表
4に、充放電試験の結果を表5〜表6にまとめて示し
た。表5〜表6から、本発明のリチウム二次電池は比較
例の電池に対し、放電容量、充放電サイクル特性におい
て優れていることは明白である。
Comparative Example 5 Batteries similar to those of Example 1 and Comparative Example 1 were prepared (Batteries h and i) except that the novolak resin-fired carbonaceous material described in JP-A-62-122,066 was used as the negative electrode material. A charge / discharge test was conducted. Lc, d 002 , and ρ of this carbonaceous material were 13Å, 3.70Å, and 1.62 g / cm 3 , respectively. The battery h was added with no carbon black, and the battery i was added with carbon black. Comparative Example 6 A battery similar to Example battery 21 was prepared as a negative electrode material except that carbon black was not mixed (Battery j), and a charge / discharge test was performed. Table 1 shows the contents of the negative electrode carbonaceous materials prepared in Examples and Comparative Examples, Tables 2 to 4 show the configurations of the batteries, and Tables 5 to 6 show the results of the charge and discharge tests. From Tables 5 to 6, it is clear that the lithium secondary battery of the present invention is superior to the battery of Comparative Example in discharge capacity and charge / discharge cycle characteristics.

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】[0035]

【発明の効果】本発明のように、負極として、X線回折
におけるC軸方向の結晶厚みLcが8〜150Å、00
2面の面間隔d002 が3.42〜3.65Åでかつ真密
度ρ(g/cm3 )の値が1.60〜2.20である低
黒鉛化炭素質物と微細カーボン粒子または微細カーボン
繊維とを混合して用いることにより、放電容量、充放電
サイクル特性の改良されたリチウム二次電池を得ること
ができる。
As in the present invention, as the negative electrode, the crystal thickness Lc in the C-axis direction in X-ray diffraction is 8 to 150Å, 00.
Low graphitized carbonaceous material and fine carbon particles or fine carbon having a two-sided spacing d 002 of 3.42 to 3.65Å and a true density ρ (g / cm 3 ) of 1.60 to 2.20 By mixing and using the fiber, a lithium secondary battery with improved discharge capacity and charge / discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に使用したコイン型電池の断面図を示し
たものである。
FIG. 1 is a cross-sectional view of a coin battery used in an example.

【符号の説明】[Explanation of symbols]

1 負極封口板 2 負極合剤ペレット 3 セパレーター 4 正極合剤ペレット 5 集電体 6 正極ケース 7 ガスケット 1 Negative Electrode Sealing Plate 2 Negative Electrode Mixture Pellet 3 Separator 4 Positive Electrode Mixture Pellet 5 Current Collector 6 Positive Electrode Case 7 Gasket

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくともLi含有遷移金属カルコゲナ
イドからなる正極、負極、および有機電解質からなる二
次電池であって、負極として、X線回折におけるC軸方
向の結晶厚みLcが8〜150Å、002面の面間隔d
002 が3.42〜3.65Åでかつ真密度ρ(g/cm
3 )の値が1.60〜2.20である低黒鉛化炭素質物
と微細カーボン粒子及び/または微細カーボン繊維とを
混合して用いる事を特徴とする有機電解液二次電池。
1. A secondary battery comprising a positive electrode made of at least Li-containing transition metal chalcogenide, a negative electrode, and an organic electrolyte, wherein the negative electrode has a crystal thickness Lc in the C-axis direction in X-ray diffraction of 8 to 150Å, 002 planes. Surface spacing d
002 is 3.42 to 3.65Å and true density ρ (g / cm
An organic electrolyte secondary battery comprising a mixture of a low-graphitized carbonaceous material having a value of 3 ) of 1.60 to 2.20 and fine carbon particles and / or fine carbon fibers.
【請求項2】 該低黒鉛化炭素質物がポリアクリロニト
リル系焼成体であることを特徴とする請求項1に記載の
有機電解液二次電池。
2. The organic electrolyte secondary battery according to claim 1, wherein the low-graphitized carbonaceous material is a polyacrylonitrile-based fired body.
【請求項3】 該低黒鉛化炭素質物が石炭系コークスで
あることを特徴とする請求項1に記載の有機電解液二次
電池。
3. The organic electrolyte secondary battery according to claim 1, wherein the low-graphitized carbonaceous material is coal-based coke.
【請求項4】 該低黒鉛化炭素質物がメソフェーズピッ
チ焼成体であることを特徴とする請求項1に記載の有機
電解液二次電池。
4. The organic electrolyte secondary battery according to claim 1, wherein the low-graphitized carbonaceous material is a mesophase pitch fired body.
【請求項5】 該微細カーボン粒子がカーボンブラック
または微粒子黒鉛であることを特徴とする請求項1に記
載の有機電解液二次電池。
5. The organic electrolyte secondary battery according to claim 1, wherein the fine carbon particles are carbon black or fine graphite.
【請求項6】 該微細カーボン繊維が微細繊維状黒鉛で
あることを特徴とする請求項1に記載の有機電解液二次
電池。
6. The organic electrolyte secondary battery according to claim 1, wherein the fine carbon fibers are fine fibrous graphite.
【請求項7】 該Li含有遷移金属カルコゲナイドがL
a Cob c d であることを特徴とする請求項1に
記載の有機電解液二次電池。(式中、a=0.1〜1.
1、b=0.15〜0.9、c=1−b、d=2〜2.
5)
7. The Li-containing transition metal chalcogenide is L
i a Co b V c organic electrolyte secondary battery according to claim 1, characterized in that the O d. (In the formula, a = 0.1 to 1.
1, b = 0.15 to 0.9, c = 1-b, d = 2 to 2.
5)
【請求項8】 該Li含有遷移金属カルコゲナイドがL
e Cof Nig h であることを特徴とする請求項1
に記載の有機電解液二次電池。(式中、e=0.1〜
1.1、f=0.15〜0.9、g=1−f、h=2〜
2.5)
8. The Li-containing transition metal chalcogenide is L
ieCofNigO h2. The method according to claim 1, wherein
The organic electrolyte secondary battery according to 1. (In the formula, e = 0.1
1.1, f = 0.15 to 0.9, g = 1-f, h = 2
2.5)
JP33895991A 1991-12-20 1991-12-20 Organic electrolyte secondary battery Expired - Fee Related JP3239302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33895991A JP3239302B2 (en) 1991-12-20 1991-12-20 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33895991A JP3239302B2 (en) 1991-12-20 1991-12-20 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05174820A true JPH05174820A (en) 1993-07-13
JP3239302B2 JP3239302B2 (en) 2001-12-17

Family

ID=18322947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33895991A Expired - Fee Related JP3239302B2 (en) 1991-12-20 1991-12-20 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3239302B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765863A (en) * 1993-08-24 1995-03-10 Fuji Photo Film Co Ltd Nonaqueous battery
EP0817293A1 (en) * 1996-01-08 1998-01-07 Toray Industries, Inc. Secondary battery
JPH11265718A (en) * 1998-03-16 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery
JP2002093406A (en) * 2000-09-18 2002-03-29 At Battery:Kk Nonaqueous electrolyte secondary battery
JP2002313336A (en) * 2001-04-13 2002-10-25 Matsushita Electric Ind Co Ltd Organic electrolyte battery
KR100415810B1 (en) * 1996-06-12 2004-05-14 니기소 가부시키가이샤 Non-aqueous electrolyte secondary battery
WO2005011028A1 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
JP2007207535A (en) * 2006-02-01 2007-08-16 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2007265831A (en) * 2006-03-29 2007-10-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008010337A (en) * 2006-06-30 2008-01-17 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765863A (en) * 1993-08-24 1995-03-10 Fuji Photo Film Co Ltd Nonaqueous battery
EP0817293A1 (en) * 1996-01-08 1998-01-07 Toray Industries, Inc. Secondary battery
EP0817293A4 (en) * 1996-01-08 1998-05-27 Toray Industries Secondary battery
KR100415810B1 (en) * 1996-06-12 2004-05-14 니기소 가부시키가이샤 Non-aqueous electrolyte secondary battery
JPH11265718A (en) * 1998-03-16 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery
JP2002093406A (en) * 2000-09-18 2002-03-29 At Battery:Kk Nonaqueous electrolyte secondary battery
JP2002313336A (en) * 2001-04-13 2002-10-25 Matsushita Electric Ind Co Ltd Organic electrolyte battery
WO2005011028A1 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
JP2007207535A (en) * 2006-02-01 2007-08-16 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2007265831A (en) * 2006-03-29 2007-10-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008010337A (en) * 2006-06-30 2008-01-17 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3239302B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
US8110168B2 (en) Negative active material for lithium secondary battery and negative electrode and lithium secondary battery comprising same
US8338026B2 (en) Positive electrode active material, and positive electrode and lithium secondary battery including the same
EP1148570B1 (en) Nonaqueous electrolyte secondary battery
US5350648A (en) Nonaqueous secondary battery
KR101609459B1 (en) Carbon-silicon composite and manufacturing mehtod of the same
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JPH10284080A (en) Lithium ion secondary battery
JP4798741B2 (en) Non-aqueous secondary battery
JPH076752A (en) Electrode, manufacture thereof, and secondary battery using this electrode
JPH0896798A (en) Negative electrode for lithium battery and lithium battery using this negative electrode
JP3239302B2 (en) Organic electrolyte secondary battery
KR101592773B1 (en) Anode active material and secondary battery comprising the same
JPH0528996A (en) Organic electrolyte secondary battery
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3863514B2 (en) Lithium secondary battery
JP3041738B2 (en) Method for producing carbonaceous material and secondary battery
CN114586199A (en) Negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
JP3145748B2 (en) Organic electrolyte secondary battery
JP4811699B2 (en) Negative electrode for lithium secondary battery
JPH0629020A (en) Nonaqueous secondary battery
JPH07326357A (en) Electrode material
JP4828118B2 (en) Negative electrode for lithium secondary battery
US20220344660A1 (en) Globular carbon-based anode active material, method for manufacturing same, and anode and lithium secondary battery comprising same
JP2005289803A (en) Graphite grain, graphite paste using graphite grain, negative electrode for lithium secondary battery, and lithium secondary battery
JPH11250910A (en) Lithium secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071012

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees