JPH05172854A - Measurement of electric current by photomagnetic field sensor - Google Patents

Measurement of electric current by photomagnetic field sensor

Info

Publication number
JPH05172854A
JPH05172854A JP3354818A JP35481891A JPH05172854A JP H05172854 A JPH05172854 A JP H05172854A JP 3354818 A JP3354818 A JP 3354818A JP 35481891 A JP35481891 A JP 35481891A JP H05172854 A JPH05172854 A JP H05172854A
Authority
JP
Japan
Prior art keywords
current
magnetic field
measured
field sensor
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3354818A
Other languages
Japanese (ja)
Inventor
Mamoru Tanahara
守 棚原
Takashi Ezure
孝 江連
Toshiki Sakamoto
俊貴 坂本
Hidekazu Nishimura
英一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3354818A priority Critical patent/JPH05172854A/en
Publication of JPH05172854A publication Critical patent/JPH05172854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To measure the high and low electric current with high precision and measure the sum of the in-phase electric current which flow in a number of conductors by one photomagnetic sensor. CONSTITUTION:A current transformer 2 is installed on an arbitrary measured conductor 1 among at least two measured conductors 1 in which each in-phase electric current flows. The secondary side output of the current transformer 2 is individually applied to a magnetic core 3 having a common gap, and the optical signal whose intensity varies according to the magnetic field of the core 3 having the same magnetism by a photomagnetic field sensor 5 installed in the gap 4 of the core 3 having the same magnetism, and the optical signal is treated to measure the electric current which flows in the measured conductor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はファラデ−効果を利用し
た光磁界センサにより、開閉装置、断路器、電力ケ−ブ
ル等の導体に流れる電流を測定する方法に関し、特に、
低電流から大電流までの広い範囲の電流値の測定や、導
体数が2以上ある多導体の電流測定に使用するのに適す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a current flowing through a conductor such as a switchgear, a disconnector and a power cable by an optical magnetic field sensor utilizing the Faraday effect, and more particularly,
It is suitable for use in measuring a wide range of current values from low current to large current, and for measuring the current of multiple conductors having two or more conductors.

【0002】[0002]

【従来の技術】開閉装置、断路器、電力ケ−ブル等の導
体に流れる電流を測定するには、従来は、図4に示すよ
うに被測定導体11の所定位置にファラデー効果を利用
した光磁界センサ12を配置し、その光磁界センサ12
の光信号を電気信号に変換し、処理して行なっていた。
2. Description of the Related Art Conventionally, in order to measure a current flowing through a conductor such as a switchgear, a disconnecting switch, and a power cable, an optical device utilizing the Faraday effect is provided at a predetermined position of a conductor 11 to be measured as shown in FIG. The magnetic field sensor 12 is arranged and the optical magnetic field sensor 12 is arranged.
The optical signal of is converted into an electric signal and processed.

【0003】光磁界センサ12は発光部20、受光部2
1等からなる検出器23、ファラデ−素子等からなる光
センサ部24、この光センサ部24と前記検出器23を
結ぶ光ファイバ25からなる。前記光センサ部24では
図5に示すように偏光子26によって直線偏光された光
波がファラデ−素子27に入射され、その光波はファラ
デ−素子27に印加されている磁界(被測定導体11に
流れる電流によって生じた磁界)の強度に応じたファラ
ーデー回転を起こし、この光波が検光子28によって光
の強度に変換され、光ファイバ25を通して前記受光部
21に至る。
The optical magnetic field sensor 12 includes a light emitting section 20 and a light receiving section 2.
It comprises a detector 23 composed of 1 etc., an optical sensor section 24 composed of a Faraday element and the like, and an optical fiber 25 connecting the optical sensor section 24 and the detector 23. In the optical sensor section 24, as shown in FIG. 5, the light wave linearly polarized by the polarizer 26 is incident on the Faraday element 27, and the light wave is applied to the Faraday element 27 (magnetic field flowing to the conductor 11 to be measured). Faraday rotation is caused according to the intensity of the magnetic field generated by the electric current, and this light wave is converted into light intensity by the analyzer 28 and reaches the light receiving portion 21 through the optical fiber 25.

【0004】ここで入射光の電気ベクトルの大きさを
E、磁界をH、偏光子Eと検光子Hのなす角をθ0 、フ
ァラデー回転角をθ、ベルデ定数をVD 、有効光路長を
lとすると、検光子Hを透過する光強度Pは次式で表さ
れる。 P=|Ecos(θ0 ーθ)eiwt2 =E2 cos2(θ0 ーθ) =E2 /2{1+cos 2(θ0 ーθ)} 但しθ=VD Hl
Here, the magnitude of the electric vector of the incident light is E, the magnetic field is H, the angle between the polarizer E and the analyzer H is θ 0 , the Faraday rotation angle is θ, the Verdet constant is V D , and the effective optical path length is Assuming l, the light intensity P transmitted through the analyzer H is expressed by the following equation. P = | Ecos (θ 0 over θ) e iwt | 2 = E 2 cos 2 (θ 0 over θ) = E 2/2 { 1 + cos 2 (θ 0 over theta)} where θ = V D Hl

【0005】また、従来は特に低電流を高精度に測定す
る場合とか、外乱ノイズを除去する必要がある場合等
は、図6のように被測定導体11の外周にギャップ付き
磁性コア13を被せ、同磁性コア13のギャップ中に前
記光磁界センサ12のセンサ部24を設置し、次式に基
ずいて電流値を測定していた。 Ha 〜I/l 但しl:ギャップ長
Further, conventionally, when a low current is measured with high accuracy, or when disturbance noise needs to be removed, a magnetic core 13 with a gap is covered on the outer circumference of the conductor 11 to be measured as shown in FIG. The sensor section 24 of the optical magnetic field sensor 12 was installed in the gap of the magnetic core 13 and the current value was measured based on the following equation. H a ~I / l However l: gap length

【0006】また、154kV、275kV等の超高電
圧を伝送する超高圧線は導体径が太いので、送電線を変
電所に引込む場合は細い多導体に分岐して引込まざるを
得ない。この場合、送電線の分岐前で電流測定しようと
すると導体径が大きいため、センサ、特に、磁性コアが
非常に大きくなってしまう。しかもそのセンサを鉄塔の
上に取付けなければならないので、設置が困難である。
このように複数本の導体(多導体)を用いて通電する場
合は、図4、図6のいずれの電流測定方法により電流測
定するにしても、分岐された各導体(多導体)に前記光
磁界センサ12を設置して各導体11の電流を測定し、
その和を電気的にとって分岐前の送電線の電流を測定し
ていた。
Further, since the conductor diameter of the ultra-high voltage line for transmitting ultra-high voltage such as 154 kV and 275 kV is large, when the transmission line is drawn into the substation, there is no choice but to branch it into a thin multiconductor. In this case, if an attempt is made to measure the current before the branch of the power transmission line, the diameter of the conductor is large, so that the sensor, especially the magnetic core, becomes very large. Moreover, the sensor must be mounted on the steel tower, which makes installation difficult.
When a plurality of conductors (multiconductors) are used to conduct electricity in this way, no matter which of the current measurement methods of FIG. 4 and FIG. A magnetic field sensor 12 is installed to measure the current of each conductor 11,
The sum was electrically used to measure the current of the transmission line before branching.

【0007】[0007]

【発明が解決しようとする課題】前記した従来の測定方
法では次のような問題があった。 ギャップ付き磁性コアを使用しない図4の場合は低
電流側の測定精度が落ちる。 ギャップ付き磁性コア13を使用する図6の場合は
逆に大電流側で同磁性コア13の飽和或は高感度化によ
るファラデー素子27の飽和が起きて、電流測定範囲を
広くすることができない。 前記した多導体の電流測定方法では、各導体11に
光磁界センサ12を設置するので光磁界センサ12の数
が多くなって計測システムが複雑になり、測定作業がし
にくくなったり、同システムが高くなったりする。
The conventional measuring method described above has the following problems. In the case of FIG. 4 in which the magnetic core with a gap is not used, the measurement accuracy on the low current side is reduced. In the case of FIG. 6 using the magnetic core 13 with a gap, conversely, saturation of the magnetic core 13 on the large current side or saturation of the Faraday element 27 due to high sensitivity occurs, and the current measurement range cannot be widened. In the multi-conductor current measuring method described above, since the optical magnetic field sensor 12 is installed in each conductor 11, the number of the optical magnetic field sensors 12 increases, the measurement system becomes complicated, and the measurement work becomes difficult. It gets expensive.

【0008】本発明の目的は広い電流範囲を高精度で測
定でき、しかも多導体に流れる同相電流の和を1台の光
磁気センサで測定できるようにした電流測定方法を提供
することにある。
An object of the present invention is to provide a current measuring method capable of measuring a wide current range with high accuracy and measuring the sum of in-phase currents flowing in multiple conductors with one magneto-optical sensor.

【0009】[0009]

【課題を解決するための手段】本発明の光磁界センサに
よる電流測定方法は、図1に示すように同相電流が流れ
る二以上の被測定導体1の任意の被測定導体1に変流器
2を設置し、夫々の変流器2の二次側出力を個別に共通
のギャップ付き磁性コア3に印加し、同磁性コア3のギ
ャップ4中に設置した光磁界センサ5により同磁性コア
3の磁界に応じて強度変化する光信号を得、その光信号
を処理して被測定導体1に流れる電流を測定するように
したものである。
As shown in FIG. 1, a current measuring method using an optical magnetic field sensor according to the present invention includes a current transformer 2 which is connected to an arbitrary measured conductor 1 of two or more measured conductors 1 through which an in-phase current flows. Is installed, and the secondary side output of each current transformer 2 is individually applied to the common magnetic core 3 with a gap, and the optical magnetic field sensor 5 installed in the gap 4 of the same magnetic core 3 causes the magnetic core 3 An optical signal whose intensity changes according to a magnetic field is obtained, the optical signal is processed, and the current flowing through the conductor 1 to be measured is measured.

【0010】[0010]

【作用】本発明の光磁界センサによる電流測定方法で
は、図1のように被測定導体1に取り付けられた変流器
2の二次側出力I2 は被測定電流I1 に比例する。この
二次側出力I2 がギャップ付き磁性コア3に印加され、
同磁性コア3において被測定電流I1 に応じた磁界が発
生する。このとき、ギャップ付き磁性コア3のギャップ
4中に設置されている光磁界センサ5のファラデ−素子
27(図5)に偏光された光波を入射すると、同ギャッ
プ付き磁性コア3から生じてファラデ−素子27に加わ
る磁界に応じて前記光波の強度が変化し、光磁界センサ
5の出力PはP∝I2 ∝I1 となり、被測定電流I1
比例したセンサ出力Pが得られる。
In the current measuring method using the optical magnetic field sensor of the present invention, the secondary output I 2 of the current transformer 2 attached to the conductor 1 to be measured as shown in FIG. 1 is proportional to the current I 1 to be measured. This secondary side output I 2 is applied to the magnetic core 3 with a gap,
In the magnetic core 3, a magnetic field corresponding to the measured current I 1 is generated. At this time, when the polarized light wave is incident on the Faraday element 27 (FIG. 5) of the optical magnetic field sensor 5 installed in the gap 4 of the magnetic core 3 with a gap, it is generated from the magnetic core 3 with a gap and the Faraday element is generated. The intensity of the light wave changes according to the magnetic field applied to the element 27, and the output P of the optical magnetic field sensor 5 becomes P∝I 2 ∝I 1 , and the sensor output P proportional to the measured current I 1 is obtained.

【0011】例えば被測定電流I1 の範囲が100A〜
100KA、変流器の変流比が50:1とすると、変流
器2の二次側出力I2 の範囲は2A<I2 <2KAとな
り、ギャップ付き磁性コア3を用いた光磁界センサ5に
よる測定方法により十分な精度が得られる。
For example, the range of the measured current I 1 is 100A to
Assuming that the current transformer has a current transformer ratio of 100: 1 and a current transformer ratio of 50: 1, the range of the secondary output I 2 of the current transformer 2 is 2A <I 2 <2KA, and the optical magnetic field sensor 5 using the magnetic core 3 with a gap is shown. Sufficient accuracy can be obtained by the measuring method according to.

【0012】ちなみに、被測定導体1に流れる電流I1
を変流器2を通さずにそのまま測定すると、大電流側に
おいて磁性コア3の飽和またはファラデー素子27の飽
和により十分な精度が得られない。また、大電流で飽和
しない透磁率の小さい材料または十分大きな磁性コア3
を使用すると、前者では低電流側の精度が落ち、後者で
は重量が非常に大きくなる。また、磁性コア3を使用し
ない場合は低電流側の精度が低下する。
Incidentally, the current I 1 flowing through the conductor 1 to be measured is
If it is measured without passing through the current transformer 2, sufficient accuracy cannot be obtained due to the saturation of the magnetic core 3 or the Faraday element 27 on the large current side. In addition, a material having a small magnetic permeability or a sufficiently large magnetic core 3 which is not saturated with a large current
When used, the accuracy on the low current side is reduced in the former case, and the weight is greatly increased in the latter case. Further, when the magnetic core 3 is not used, the accuracy on the low current side decreases.

【0013】[0013]

【実施例】図1に示す実施例は被測定導体1が一本の場
合であり、この場合は、その被測定導体1に変流器2を
設け、同変流器2の二次側出力をギャップ付き磁性コア
3に印加し、同磁性コア3のギャップ4中に設置した光
磁界センサ5により同磁性コア3の磁界に応じて強度変
化する光信号を得、その光信号を図示されていないO/
E変換器で電気変換し、所定の処理をして被測定導体1
に流れる電流を測定するようにしてある。
The embodiment shown in FIG. 1 is a case in which there is one conductor 1 to be measured. In this case, a current transformer 2 is provided on the conductor 1 to be measured, and the secondary side output of the current transformer 2 is provided. Is applied to the magnetic core 3 with a gap, an optical magnetic field sensor 5 installed in the gap 4 of the magnetic core 3 obtains an optical signal whose intensity changes according to the magnetic field of the magnetic core 3, and the optical signal is shown in the figure. Not O /
Conducting electrical conversion with the E converter, performing the specified processing, and measuring conductor 1
The current flowing through is measured.

【0014】図2に示す実施例は被測定導体1が二本以
上の場合であり、この場合は、任意の被測定導体1に変
流器2を設け、各変流器2の二次側出力を個別に共通の
(一つの)ギャップ付き磁性コア3に印加し、同磁性コ
ア3のギャップ4中に設置した光磁界センサ5により同
磁性コア3の磁界に応じて強度変化する光信号を得、そ
の光信号を図示されていないO/E変換器で電気変換
し、所定の処理をして各被測定導体1に流れる電流の和
を計測するようにしてある。
The embodiment shown in FIG. 2 is a case in which there are two or more conductors 1 to be measured. In this case, a current transformer 2 is provided on any conductor 1 to be measured, and a secondary side of each current transformer 2 is provided. The outputs are individually applied to a common (one) magnetic core 3 with a gap, and an optical magnetic field sensor 5 installed in the gap 4 of the magnetic core 3 outputs an optical signal whose intensity changes according to the magnetic field of the magnetic core 3. Then, the optical signal is electrically converted by an O / E converter (not shown), a predetermined process is performed, and the sum of the currents flowing through the conductors 1 to be measured is measured.

【0015】図2に示す実施例は変流器2の二次側巻線
6をギャップ付き磁性コア3に所望回数巻き付けるよう
にしたものである。
In the embodiment shown in FIG. 2, the secondary winding 6 of the current transformer 2 is wound around the magnetic core 3 with a gap a desired number of times.

【0016】本発明で使用する光磁界センサ5には、図
4、図5の光磁界センサと同じものを使用できる。
As the optical magnetic field sensor 5 used in the present invention, the same optical magnetic field sensor as shown in FIGS. 4 and 5 can be used.

【0017】[0017]

【発明の効果】本発明の光磁界センサによる電流測定方
法は次の様な効果がある。 被測定導体1と光磁界センサ4の間に変流器2を入
れることにより、光磁界センサ4に印加される磁界を適
切な範囲に設定することができ、その結果、広い範囲の
電流値を高精度で測定することができる。 多導体の場合、各々の被測定導体1に取りつけた変
流器2の二次側出力を光磁界センサ4のギャップ付き磁
性コア3で合成することによって、多導体に流れる電流
を1台の光磁界センサ4で測定可能になる。このため、
超高電圧を伝送する超高圧送電線のように、分岐された
多導体の夫々の電流を計測するのに特に適する。 多導体の電流を測定する場合でも光磁界センサ4が
1台で済むので電流測定システムの構成が簡潔になり、
計測し易く、しかも安価な電流測定システムとなる。
The current measuring method using the optical magnetic field sensor of the present invention has the following effects. By inserting the current transformer 2 between the conductor to be measured 1 and the optical magnetic field sensor 4, the magnetic field applied to the optical magnetic field sensor 4 can be set in an appropriate range, and as a result, a wide range of current values can be obtained. It can be measured with high accuracy. In the case of multiple conductors, the secondary side output of the current transformer 2 attached to each conductor to be measured 1 is combined by the magnetic core 3 with a gap of the optical magnetic field sensor 4 so that the current flowing through the multiple conductors is converted into one light source. It becomes possible to measure with the magnetic field sensor 4. For this reason,
It is particularly suitable for measuring the current of each of the branched multiconductors, such as an ultra high voltage transmission line transmitting an ultra high voltage. Even when measuring the currents of multiple conductors, only one optical magnetic field sensor 4 is required, which simplifies the configuration of the current measurement system.
The current measurement system is easy to measure and inexpensive.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光磁界センサによる電流測定方法の一
実施例を示す説明図。
FIG. 1 is an explanatory diagram showing an embodiment of a current measuring method using an optical magnetic field sensor of the present invention.

【図2】本発明の光磁界センサによる電流測定方法の他
の実施例を示す説明図。
FIG. 2 is an explanatory view showing another embodiment of the current measuring method by the optical magnetic field sensor of the present invention.

【図3】本発明の光磁界センサによる電流測定方法の更
に他の実施例を示す説明図。
FIG. 3 is an explanatory view showing still another embodiment of the current measuring method by the optical magnetic field sensor of the present invention.

【図4】従来の光磁界センサによる電流測定方法の説明
図。
FIG. 4 is an explanatory diagram of a current measuring method using a conventional optical magnetic field sensor.

【図5】ファラデー素子を使用した光磁界センサの説明
図。
FIG. 5 is an explanatory diagram of an optical magnetic field sensor using a Faraday element.

【図6】従来の光磁界センサによる電流測定方法の他例
を示す説明図。
FIG. 6 is an explanatory view showing another example of a current measuring method using a conventional optical magnetic field sensor.

【符号の説明】[Explanation of symbols]

1 被測定導体 2 変流器 3 ギャップ付き磁性コア 4 ギャップ 5 光磁界センサ 1 conductor to be measured 2 current transformer 3 magnetic core with gap 4 gap 5 optical magnetic field sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 英一 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Eiichi Nishimura 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同相電流が流れる二以上の被測定導体1
の任意の被測定導体1に変流器2を設置し、夫々の変流
器2の二次側出力を個別に共通のギャップ付き磁性コア
3に印加し、同磁性コア3のギャップ4中に設置した光
磁界センサ5により同磁性コア3の磁界に応じて強度変
化する光信号を得、その光信号を処理して被測定導体1
に流れる電流を測定するようにしたことを特徴とする光
磁界センサによる電流測定方法。
1. Two or more conductors to be measured 1 in which a common mode current flows.
A current transformer 2 is installed on any of the conductors 1 to be measured, and the secondary side output of each current transformer 2 is individually applied to a common magnetic core 3 with a gap. The installed optical magnetic field sensor 5 obtains an optical signal whose intensity changes in accordance with the magnetic field of the magnetic core 3, and processes the optical signal to measure the conductor 1 under measurement.
A method of measuring a current by an optical magnetic field sensor, characterized in that a current flowing through the sensor is measured.
JP3354818A 1991-12-19 1991-12-19 Measurement of electric current by photomagnetic field sensor Pending JPH05172854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3354818A JPH05172854A (en) 1991-12-19 1991-12-19 Measurement of electric current by photomagnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3354818A JPH05172854A (en) 1991-12-19 1991-12-19 Measurement of electric current by photomagnetic field sensor

Publications (1)

Publication Number Publication Date
JPH05172854A true JPH05172854A (en) 1993-07-13

Family

ID=18440108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3354818A Pending JPH05172854A (en) 1991-12-19 1991-12-19 Measurement of electric current by photomagnetic field sensor

Country Status (1)

Country Link
JP (1) JPH05172854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112600A1 (en) * 2006-04-04 2007-10-11 Abb Research Ltd Fiber-optic current sensor with sum detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112600A1 (en) * 2006-04-04 2007-10-11 Abb Research Ltd Fiber-optic current sensor with sum detection
CN101449174A (en) * 2006-04-04 2009-06-03 Abb研究有限公司 Optical fiber current sensor having sum detection
US7876448B2 (en) 2006-04-04 2011-01-25 Abb Research Ltd. Fiber-optic current sensor with sum detection

Similar Documents

Publication Publication Date Title
US3605013A (en) Current-measuring system utilizing faraday effect element
Song et al. A prototype clamp-on magneto-optical current transducer for power system metering and relaying
US3597683A (en) Current transformer utilizing an electromagnetic wave, a faraday rotator, circular waveguides, horn antennae, and mode converters to measure current in a high voltage transmission line
JPH05172854A (en) Measurement of electric current by photomagnetic field sensor
US5365175A (en) Method of locating ground faults
CN110726862A (en) Integrated optical sensor probe for measuring broadband high-amplitude current
JP2001264364A (en) Optical current transformer
ATE154443T1 (en) CURRENT MEASURING ARRANGEMENT FOR A CABLE ROUTE
JP2818674B2 (en) Accident point locating method and apparatus for overhead transmission line
CN111224387B (en) Phase difference protection method and system based on magneto-optical measurement element
JP3347449B2 (en) Optical current measuring device
RU2442175C1 (en) Device for operational control of the current in phase conductors in high voltage networks
JPH0743392A (en) Lightning current measuring method
JPS62110162A (en) Apparatus for detecting zero phase current
JPS60203863A (en) Gas-insulated three-phase current transformer
SU629557A1 (en) Dc converter
JPH0499970A (en) Detecting apparatus for partial discharge pulse
JPS63196866A (en) Current detection with magnetooptical field sensor
JP2673010B2 (en) Supporting insulator with optical CT
JPS6350761A (en) Optical fiber zero phase current transformer
Kesri et al. Latest Trends in Non-Conventional Instrument Transformers
JPS59198360A (en) Optical current transformer apparatus
Ohki Tokyo Electric Power develops a new compact and flexible optical fiber current sensor
JPS6246276A (en) Magnetic field and current measuring instrument
CN116203299A (en) All-fiber current transformer device based on optical switch and current measurement method thereof