JPH05172561A - Manufacture of probe for interatomic force microscope - Google Patents

Manufacture of probe for interatomic force microscope

Info

Publication number
JPH05172561A
JPH05172561A JP34451791A JP34451791A JPH05172561A JP H05172561 A JPH05172561 A JP H05172561A JP 34451791 A JP34451791 A JP 34451791A JP 34451791 A JP34451791 A JP 34451791A JP H05172561 A JPH05172561 A JP H05172561A
Authority
JP
Japan
Prior art keywords
probe
cantilever
whisker
tip
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34451791A
Other languages
Japanese (ja)
Other versions
JP2622322B2 (en
Inventor
Hiroyuki Kado
博行 加道
Takao Toda
隆夫 任田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP34451791A priority Critical patent/JP2622322B2/en
Priority to EP92111956A priority patent/EP0530473B1/en
Priority to DE69208979T priority patent/DE69208979T2/en
Publication of JPH05172561A publication Critical patent/JPH05172561A/en
Priority to US08/201,087 priority patent/US5357787A/en
Application granted granted Critical
Publication of JP2622322B2 publication Critical patent/JP2622322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a manufacture of a probe with a small tip curvature ratio and a large aspect ratio by sticking a zinc oxide whisker at the tip of a cantilever 3 to let a whisker-like crystal grow. CONSTITUTION:A tetrapod-shaped zinc oxide whisker 1 which is under growing state is mounted at the tip of a cantilever 3. Thereafter the mounted whisker is allowed to grow to make a tip-pointed whisker 4 and a leg of the whisker vertical to the main surface of the cantilever is used for a probe for AFM.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子間力顕微鏡(以後
AFMと記す)用探針の製造方法に関し、とりわけ先端
曲率が小さく、アスペクト比の大きい探針の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a probe for an atomic force microscope (hereinafter referred to as AFM), and more particularly to a method for manufacturing a probe having a small tip curvature and a large aspect ratio.

【0002】[0002]

【従来の技術】近年、固体表面を原子オーダで観察でき
る装置としてAFMが開発されている。AFMでは微小
な力を検出するために、図5に示すような探針15を有
する長さ100μmから200μm程度のカンチレバー
16が必要である。従来、この探針としては、カンチレ
バー先端のエッジ部分を探針として用いたもの、結晶の
エッチピットを鋳型として利用し作製したもの、異方性
エッチングにより作製したもの等が使用されている。A
FMの分解能は前記探針の先端曲率半径に依存し、曲率
半径が小さいほど分解能は上がる。現在のところ20n
mから30nmの曲率の探針が作製され、このカンチレ
バーを用いてマイカ等の原子像が観察されている。
2. Description of the Related Art In recent years, an AFM has been developed as an apparatus for observing a solid surface in atomic order. In the AFM, in order to detect a minute force, a cantilever 16 having a probe 15 as shown in FIG. 5 and having a length of about 100 μm to 200 μm is required. Heretofore, as the probe, there have been used those using the edge portion of the tip of the cantilever as a probe, those prepared by using a crystal etch pit as a template, those prepared by anisotropic etching, and the like. A
The resolution of FM depends on the radius of curvature of the tip of the probe, and the smaller the radius of curvature, the higher the resolution. Currently 20n
A probe having a curvature of m to 30 nm was produced, and an atomic image of mica or the like is observed using this cantilever.

【0003】[0003]

【発明が解決しようとする課題】しかし、AFMの用途
としては、試料表面の原子レベルでの観察と同時に、ナ
ノメータあるいはミクロンオーダでの凹凸の大きな試料
観察がある。このような試料観察の場合、特にグレーテ
ィング等の深い溝形状を有する試料では、前記のような
探針では、探針が溝部の底まで届かず正確な形状測定が
困難であった。
However, the application of the AFM is not only observation of the sample surface at the atomic level, but also observation of the sample having large irregularities on the order of nanometers or microns. In the case of such sample observation, particularly in the case of a sample having a deep groove shape such as a grating, the above-described probe cannot reach the bottom of the groove portion, and accurate shape measurement is difficult.

【0004】したがって、このような用途においては、
探針の先端曲率が小さいのと同時に、溝部の底まで届く
ような、細長い形状の探針を有するカンチレバーが要望
されている。
Therefore, in such an application,
There is a demand for a cantilever having an elongated probe that can reach the bottom of the groove while having a small tip curvature.

【0005】本発明は、このような従来の原子間力顕微
鏡用探針の問題を解決するため、深い溝形状を有するよ
うな試料でも、精度良く観察することが可能な、高アス
ペクト比でしかも先端曲率が極めて小さい原子間力顕微
鏡用探針の製造方法を提供することを目的とする。
In order to solve the problem of the conventional probe for atomic force microscope, the present invention has a high aspect ratio and enables observation of a sample having a deep groove shape with high accuracy. An object of the present invention is to provide a method for manufacturing a probe for an atomic force microscope having a very small tip curvature.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の原子間力顕微鏡用探針の第1の製造方法
は、成長途中のテトラポッド形状の酸化亜鉛ウィスカ
を、カンチレバー先端部に固着した後、前記の固着した
ウィスカをさらに成長させ、先端の尖ったウィスカに形
成するという構成を備えたものである。
In order to achieve the above object, a first method of manufacturing an atomic force microscope probe according to the present invention is characterized in that a tetrapod-shaped zinc oxide whisker in the process of growing is attached to a tip of a cantilever. After fixing, the fixed whisker is further grown to form a whisker having a pointed tip.

【0007】次に本発明の原子間力顕微鏡用探針の第2
の製造方法は、酸化亜鉛ウィスカを成長させる原料微粒
子を、カンチレバー先端部に固着した後、前記微粒子か
ら酸化亜鉛ウィスカを成長させるという構成を備えたも
のである。
Next, the second probe of the present invention for atomic force microscope
The manufacturing method of (1) has a structure in which raw material fine particles for growing zinc oxide whiskers are fixed to the tip of the cantilever, and then zinc oxide whiskers are grown from the fine particles.

【0008】前記構成においては、カンチレバーがシリ
コン酸化膜であることが好ましい。また前記構成におい
ては、カンチレバーがシリコン窒化膜であることが好ま
しい。
In the above structure, the cantilever is preferably a silicon oxide film. Further, in the above structure, the cantilever is preferably a silicon nitride film.

【0009】[0009]

【作用】前記本発明の構成によれば、酸化亜鉛ウィスカ
は、先端部の曲率半径が5nm以下で、高アスペクト比
を有した針状単結晶であり、長さ1μmから20μm程
度のものまで容易に得られる。したがってこのウィスカ
を探針に用いれば、分解能の高いAFMが得られる。ま
た、本発明の製造方法を用いて前記探針を作製すること
で、酸化亜鉛ウィスカをカンチレバーに固着する時に起
こるウィスカ先端部の損傷を防ぐことができる。すなわ
ち、本発明の第1及び第2製造方法によれば、いずれも
結晶成長させたウィスカをそのままの状態で探針として
用いることができるからである。
According to the structure of the present invention, the zinc oxide whisker is a needle-shaped single crystal having a high radius of curvature with a tip radius of curvature of 5 nm or less, and easily has a length of about 1 μm to about 20 μm. Can be obtained. Therefore, if this whisker is used as a probe, an AFM with high resolution can be obtained. Further, by manufacturing the probe using the manufacturing method of the present invention, damage to the tip of the whisker that occurs when the zinc oxide whisker is fixed to the cantilever can be prevented. That is, according to the first and second manufacturing methods of the present invention, both whiskers having crystal grown can be used as they are as a probe.

【0010】[0010]

【実施例】以下、実施例を用いて本発明をさらに具体的
に説明する。 実施例1 図1は、本発明の第1実施例におけるAFM用探針の製
造プロセスである。1μmから100μmの亜鉛微粒子
表面を水中で酸化する。前記微粒子を乾燥後、酸素雰囲
気中で920℃に加熱し、テトラポッド形状の酸化亜鉛
ウィスカ1を途中まで成長させた後、前記ウィスカを銀
ペースト2を用いて、フォトリソグラフィーにより作製
した長さ100μm、厚さ1.5μmのV型のSiO2
薄膜カンチレバー3の先端部分に取り付ける。酸化亜鉛
ウィスカ1は、テトラポッド状であるから、3つの脚部
で安定して固着でき、かつ残りの先端部をカンチレバー
3から実質的に垂直方向に配向させることができる。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 FIG. 1 is a manufacturing process of a probe for AFM in a first example of the present invention. The surface of the zinc fine particles of 1 μm to 100 μm is oxidized in water. After drying the fine particles, they were heated to 920 ° C. in an oxygen atmosphere to grow a tetrapod-shaped zinc oxide whisker 1 halfway, and then the whiskers were prepared by photolithography using a silver paste 2 and had a length of 100 μm. , V-type SiO 2 with a thickness of 1.5 μm
It is attached to the tip of the thin film cantilever 3. Since the zinc oxide whisker 1 has a tetrapod shape, it can be stably fixed to the three legs, and the remaining tip can be oriented substantially vertically from the cantilever 3.

【0011】その後、再び酸素雰囲気中で920℃に加
熱し、テトラポッド形状の酸化亜鉛ウィスカ4を完全に
成長させる。成長した酸化亜鉛ウィスカの各脚の長さは
5μmから20μmであった。また、酸化亜鉛ウィスカ
の脚の先端部は透過電子顕微鏡により観察した結果5n
m以下の曲率半径を有していた。AFM用探針には、カ
ンチレバー主面に垂直方向に成長したウィスカの脚を用
いる。この製造プロセスではカンチレバーに接着後、ウ
ィスカ先端部を成長させるため、カンチレバーとウィス
カの接着時に起こるウィスカ先端部の損傷を防ぐことが
できる。
Then, it is heated again at 920 ° C. in an oxygen atmosphere to completely grow the tetrapod-shaped zinc oxide whiskers 4. The length of each leg of the grown zinc oxide whiskers was 5 μm to 20 μm. In addition, the tip of the leg of the zinc oxide whisker was observed with a transmission electron microscope,
It had a radius of curvature of m or less. For the AFM probe, whisker legs grown in the direction perpendicular to the main surface of the cantilever are used. In this manufacturing process, since the whisker tip is grown after being adhered to the cantilever, damage to the whisker tip that occurs when the cantilever and the whisker are adhered can be prevented.

【0012】実施例2 第2実施例におけるAFM用探針の製造プロセスを図2
に示す。まず、1μmから100μmの亜鉛微粒子表面
を水中で酸化する。前記微粒子5を乾燥後、銀ペースト
6を用いて、フォトリソグラフィー技術により作製した
厚さ0.6μm、長さ100μmのV型のSi3 4
膜カンチレバー7の先端部分に取り付ける。その後、酸
素雰囲気中で920℃に加熱し、酸化亜鉛ウィスカ8を
成長させる。この製造プロセスでは、第1実施例と同様
に、カンチレバーに接着後、ウィスカを成長させるた
め、カンチレバーとウィスカの接着時に起こるウィスカ
先端部の損傷を防ぐことができる。
Embodiment 2 FIG. 2 shows the manufacturing process of the AFM probe in the second embodiment.
Shown in. First, the surface of zinc microparticles having a size of 1 μm to 100 μm is oxidized in water. After the fine particles 5 are dried, they are attached to the tip portion of a V-type Si 3 N 4 thin film cantilever 7 having a thickness of 0.6 μm and a length of 100 μm, which is manufactured by a photolithography technique, using a silver paste 6. After that, the zinc oxide whiskers 8 are grown by heating to 920 ° C. in an oxygen atmosphere. In this manufacturing process, as in the first embodiment, the whiskers are grown after being adhered to the cantilevers, so damage to the tip of the whiskers that occurs when the cantilevers and whiskers are adhered can be prevented.

【0013】このカンチレバーを原子間力顕微鏡に取り
付け、深さ1μm、幅1μmの溝形状を有する試料の観
察を行い、Siのエッチピットを鋳型としてSi3 4
で探針を作製した従来のカンチレバーとの比較を行っ
た。従来のカンチレバーの場合、探針形状は、Si(1
00)面のエッチピット形状で決定され、頂角が約70
度のピラミッド形状となる。従ってこの探針を有するカ
ンチレバーで溝部を矢印の方向へ走査すれば、図3に示
すように、探針9が溝の底まで届かず、破線で示したよ
うな実際の試料10の表面形状とは異なる像11が得ら
れた。一方、ウィスカを探針として有するカンチレバー
では、図4に示すように、ウィスカの探針12が溝の底
まで達し、試料13の表面形状に忠実な像14が得られ
た。
This cantilever was attached to an atomic force microscope, a sample having a groove shape with a depth of 1 μm and a width of 1 μm was observed, and Si 3 N 4 was used as a Si etch pit as a template.
In comparison with the conventional cantilever which made the probe in. In the case of a conventional cantilever, the probe shape is Si (1
00) surface is determined by the etch pit shape, and the apex angle is about 70.
It becomes a pyramid shape of degree. Therefore, if the groove portion is scanned in the direction of the arrow by the cantilever having this probe, the probe 9 does not reach the bottom of the groove as shown in FIG. 3, and the actual surface shape of the sample 10 as shown by the broken line is obtained. A different image 11 was obtained. On the other hand, in the cantilever having the whisker as the probe, the whisker probe 12 reached the bottom of the groove as shown in FIG. 4, and an image 14 faithful to the surface shape of the sample 13 was obtained.

【0014】なお、酸化亜鉛ウィスカを作製すること自
体は、たとえば亜鉛微粒子表面を水中で酸化後、酸素雰
囲気中で加熱する方法[ジャーナル・オブ・クリスタル
・グロース102(1990年) 第965 頁から第973 頁(J. Cry
stal Growth 102,965-973,1990)]などが知られている
が、本発明方法はこのような公知の技術を広く応用する
こともできる。
The zinc oxide whiskers themselves can be prepared by, for example, a method of oxidizing the surface of zinc fine particles in water and then heating in an oxygen atmosphere [Journal of Crystal Growth 102 (1990) p. 965-p. Page 973 (J. Cry
stal Growth 102, 965-973, 1990)] and the like are known, but the method of the present invention can also widely apply such known techniques.

【0015】[0015]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、従来、作製困難であった5nm以下の
先端曲率半径を有し、しかも高アスペクト比のAFM用
探針を容易に作製することが可能となった。また前記探
針を用いることで、分解能が非常に高く、安定に、再現
性よく試料表面を原子オーダで観察することが可能にな
った。またグレーティング等の深い溝形状を有する試料
を精度よく測定することが可能になった。
As is clear from the above description,
According to the present invention, it has become possible to easily manufacture an AFM probe having a tip curvature radius of 5 nm or less, which has been difficult to manufacture conventionally, and has a high aspect ratio. Further, by using the above-mentioned probe, it has become possible to observe the sample surface in atomic order, with extremely high resolution, stability, and reproducibility. Further, it has become possible to accurately measure a sample having a deep groove shape such as a grating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の原子間力顕微鏡用探針の製
造方法を示すプロセス図である。
FIG. 1 is a process diagram showing a method for manufacturing a probe for an atomic force microscope according to a first embodiment of the present invention.

【図2】本発明の実施例2の原子間力顕微鏡用探針の製
造方法を示すプロセス図である。
FIG. 2 is a process diagram showing a method for manufacturing a probe for an atomic force microscope according to a second embodiment of the present invention.

【図3】従来の製造方法で作製されたカンチレバーで得
られたAFM像の説明図である。
FIG. 3 is an explanatory diagram of an AFM image obtained with a cantilever manufactured by a conventional manufacturing method.

【図4】本発明の実施例により作製されたカンチレバー
で得られたAFM像の説明図である。
FIG. 4 is an explanatory diagram of an AFM image obtained with a cantilever manufactured according to an example of the present invention.

【図5】従来の原子間力顕微鏡用カンチレバーの概略図
である。
FIG. 5 is a schematic view of a conventional cantilever for an atomic force microscope.

【符号の説明】[Explanation of symbols]

1 成長途中の酸化亜鉛ウィスカ 2、6 銀ペースト 3 SiO2 薄膜カンチレバー 4、8 酸化亜鉛ウィスカ 5 表面を酸化した亜鉛微粒子 7 Si3 4 薄膜カンチレバー 4、8 酸化亜鉛ウィスカ 9 Si3 4 探針 10、13 試料 11、14 AFM像 12 ZnOウィスカ探針 15 探針 16 カンチレバー1 Zinc oxide whisker in the process of growth 2, 6 Silver paste 3 SiO 2 thin film cantilever 4, 8 Zinc oxide whisker 5 Fine particles of zinc with oxidized surface 7 Si 3 N 4 thin film cantilever 4, 8 Zinc oxide whisker 9 Si 3 N 4 probe 10, 13 sample 11, 14 AFM image 12 ZnO whisker probe 15 probe 16 cantilever

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 成長途中のテトラポッド形状の酸化亜鉛
ウィスカを、カンチレバー先端部に固着した後、前記の
固着したウィスカをさらに成長させ、先端の尖ったウィ
スカに形成する原子間力顕微鏡用探針の製造方法。
1. A probe for an atomic force microscope, wherein a tetrapod-shaped zinc oxide whisker in the process of growth is fixed to a tip portion of a cantilever, and then the fixed whisker is further grown to form a whisker having a pointed tip. Manufacturing method.
【請求項2】 酸化亜鉛ウィスカを成長させる原料微粒
子を、カンチレバー先端部に固着した後、前記微粒子か
ら酸化亜鉛ウィスカを成長させる原子間力顕微鏡用探針
の製造方法。
2. A method for producing a probe for an atomic force microscope, wherein raw material fine particles for growing zinc oxide whiskers are fixed to the tip of a cantilever, and then zinc oxide whiskers are grown from the fine particles.
【請求項3】 カンチレバーがシリコン酸化膜である請
求項1または2に記載の原子間力顕微鏡用探針の製造方
法。
3. The method for manufacturing a probe for an atomic force microscope according to claim 1, wherein the cantilever is a silicon oxide film.
【請求項4】 カンチレバーがシリコン窒化膜である請
求項1または2に記載の原子間力顕微鏡用探針の製造方
法。
4. The method for manufacturing a probe for an atomic force microscope according to claim 1, wherein the cantilever is a silicon nitride film.
JP34451791A 1991-07-15 1991-12-26 Method of manufacturing probe for atomic force microscope Expired - Fee Related JP2622322B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34451791A JP2622322B2 (en) 1991-12-26 1991-12-26 Method of manufacturing probe for atomic force microscope
EP92111956A EP0530473B1 (en) 1991-07-15 1992-07-14 Cantilever for atomic force microscope and method of manufacturing the same
DE69208979T DE69208979T2 (en) 1991-07-15 1992-07-14 Cantilever cantilever for atomic force microscope and method for its production
US08/201,087 US5357787A (en) 1991-07-15 1994-02-24 Cantilever for atomic force microscope and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34451791A JP2622322B2 (en) 1991-12-26 1991-12-26 Method of manufacturing probe for atomic force microscope

Publications (2)

Publication Number Publication Date
JPH05172561A true JPH05172561A (en) 1993-07-09
JP2622322B2 JP2622322B2 (en) 1997-06-18

Family

ID=18369890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34451791A Expired - Fee Related JP2622322B2 (en) 1991-07-15 1991-12-26 Method of manufacturing probe for atomic force microscope

Country Status (1)

Country Link
JP (1) JP2622322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408366B2 (en) * 2006-02-13 2008-08-05 Georgia Tech Research Corporation Probe tips and method of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408366B2 (en) * 2006-02-13 2008-08-05 Georgia Tech Research Corporation Probe tips and method of making same

Also Published As

Publication number Publication date
JP2622322B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
JP2624873B2 (en) Atomic force microscope probe and method of manufacturing the same
US5580827A (en) Casting sharpened microminiature tips
US5606162A (en) Microprobe for surface-scanning microscopes
JPH04231811A (en) Cantilever for scanning type probe microscope and manufacture thereof
Akamine et al. Low temperature thermal oxidation sharpening of microcast tips
US5357787A (en) Cantilever for atomic force microscope and method of manufacturing the same
JPH03135702A (en) Sensor and manufacture thereof
JPH0762258B2 (en) Manufacturing method of micromechanical sensor for AFM / STM profilometry
JP2004150839A (en) Cantilever for spm and its manufacturing method
JP2622322B2 (en) Method of manufacturing probe for atomic force microscope
JPH1090287A (en) Probe for interatomic force microscope and its manufacture
US7119332B2 (en) Method of fabricating probe for scanning probe microscope
JP3599880B2 (en) Cantilever tip
JP3524326B2 (en) Female substrate used for manufacturing micro short needle, method for manufacturing female substrate, and method for manufacturing micro short needle and probe using female substrate
JP3052974B2 (en) Measurement calibration method
JP2653313B2 (en) Cantilever for atomic force microscope and method of manufacturing the same
Inukai et al. Gold substrates for scanning tunneling microscopy of adsorbed species
JP3079320B2 (en) Method of manufacturing cantilever for atomic force microscope
JPH06123621A (en) Cantilever with probe for interatomic force microscope
KR100617471B1 (en) Cantilever having piezoelectric actuator and tip with high aspect ratio and method for manufacturing the same
RU2121657C1 (en) Process of formation of cantilever of scanning probing microscope
JPH05299015A (en) Manufacture of cantilever for scanning type probe microscope
Garnaes et al. Nano scale defects in Langmuir-Blodgett film observed by atomic force microscopy
JPH05172508A (en) Probe for scanning tunneling microscope and manufacture thereof
JPH03262911A (en) Probe for interatomic force microscope and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees