JPH05171417A - Manufacture of tantalum metallic thin film - Google Patents

Manufacture of tantalum metallic thin film

Info

Publication number
JPH05171417A
JPH05171417A JP34511391A JP34511391A JPH05171417A JP H05171417 A JPH05171417 A JP H05171417A JP 34511391 A JP34511391 A JP 34511391A JP 34511391 A JP34511391 A JP 34511391A JP H05171417 A JPH05171417 A JP H05171417A
Authority
JP
Japan
Prior art keywords
tantalum
metal
niobium
thin film
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34511391A
Other languages
Japanese (ja)
Other versions
JP2741814B2 (en
Inventor
Yoshiro Akagi
与志郎 赤木
Yasunari Okamoto
康成 岡本
Shigeru Uenishi
繁 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3345113A priority Critical patent/JP2741814B2/en
Publication of JPH05171417A publication Critical patent/JPH05171417A/en
Application granted granted Critical
Publication of JP2741814B2 publication Critical patent/JP2741814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the method for manufacturing a low resistance tantalum metallic thin film used for an integrated circuit element, an optical integrated circuit element, photoelectric converting circuit element and an optical display circuit element accompanied by fine working. CONSTITUTION:This is the method for manufacturing a thin film by a sputtering method characterized, for selectively obtaining the cubic crystals (alpha phase) of tantalum metal, by using a tantalum metal target 2 mixed with niobium metal or using tantalum metal and niobium metal as each independent target 2 or vapor-depositing tantalum metal on a niobium metal vapor-deposited film. Furthermore, it is executed in an atmosphere mixed with a trace amt. of nitrogen gas or nitrogen series gas as a manufacturing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は低抵抗タンタル金属薄
膜製造方法に関するものであり、特に微細な加工を伴う
集積回路素子、光集積回路素子、光電変換回路素子、光
学表示回路素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low-resistance tantalum metal thin film, and more particularly to an integrated circuit device, an optical integrated circuit device, a photoelectric conversion circuit device, and an optical display circuit device which require fine processing.

【0002】[0002]

【従来の技術】タンタル金属は機械的強度に優れ、酸化
膜であるTa2 5 が極めて少ない誘電ロス、比較的高
い比誘電率を有することに加えて、優れた耐酸、耐アル
カリ性を示すことから、各種プロセスに耐える薄膜配線
材料として利用価値が高く、多用されてきた。
2. Description of the Related Art Tantalum metal has excellent mechanical strength, Ta 2 O 5 which is an oxide film has extremely low dielectric loss and relatively high relative dielectric constant, and also has excellent acid resistance and alkali resistance. Therefore, it has a high utility value and has been widely used as a thin film wiring material that can withstand various processes.

【0003】一方タンタルには結晶構造が2相あり、低
い抵抗率(13μΩcm)を示す立方晶構造(α相)の他
に、著しく高抵抗率(〜200μΩcm)の正方晶構造
(β相)が準安定にあることが知られている。この両相
のうち、β相は抵抗率が高く温度変化が小さいため、精
密抵抗器への応用があり、一方低抵抗のα相は薄膜配線
材料としての用途展開がなされてきた。
On the other hand, tantalum has two phases of crystal structure, and in addition to a cubic crystal structure (α phase) showing a low resistivity (13 μΩcm), a tetragonal structure (β phase) having a remarkably high resistivity (up to 200 μΩcm). It is known to be metastable. Of these two phases, the β phase has a high resistivity and a small temperature change, and thus has application to precision resistors, while the low resistance α phase has been used as a thin film wiring material.

【0004】しかし、薄膜の状態では準安定な高抵抗β
相ができやすく、低抵抗α単一相製膜方法が種々提案さ
れてきた。そのうちでも、窒素ガスを導入して真空中で
スパッタ蒸着する方法は、比較的容易にβ相を排除し、
選択的にα相を製膜しうるため、配線薄膜形成プロセス
としてよく用いられてきた。
However, a high resistance β which is metastable in a thin film state
Various low-resistance α single-phase film forming methods have been proposed. Among them, the method of introducing nitrogen gas and sputter-depositing in a vacuum removes β phase relatively easily,
Since the α phase can be selectively formed, it has been often used as a wiring thin film forming process.

【0005】[0005]

【発明が解決しようとする課題】しかし、この窒素添加
スパッタ法によってタンタル薄膜を製造すると、両相の
出現率(α/β)が製膜条件、例えば窒素ガス分圧、同
流量、スパッタ電力、基板温度、蒸着速度、製膜室形状
などに大きく依存する。特に、両相の出現率(α/β)
は窒素ガス分圧に依存し、タンタル薄膜は10-6〜10
-5Torr以下の分圧領域ではβ相からα、β混相とな
り、10-5Torr付近でα相が多くなる。更に分圧を
10-5Torrより増加させると金属的なα、β相に加
えて絶縁体の窒化物TaN0.1 ,TaN0.25,Ta6
2.57,TaN0.5 ,TaN0.8 ,TaN,Ta3 4
どが出現し、抵抗値は再び増加する。
However, when a tantalum thin film is manufactured by this nitrogen-added sputtering method, the appearance ratio (α / β) of both phases is determined by film forming conditions such as nitrogen gas partial pressure, same flow rate, sputtering power, It largely depends on the substrate temperature, the deposition rate, the shape of the film forming chamber, and the like. Especially the appearance rate of both phases (α / β)
Depends on the partial pressure of nitrogen gas, and for a tantalum thin film 10 −6 to 10
In the partial pressure region of -5 Torr or less, the β phase changes to the α / β mixed phase, and the α phase increases near 10 -5 Torr. When the partial pressure is further increased from 10 -5 Torr, in addition to metallic α and β phases, insulator nitrides TaN 0.1 , TaN 0.25 and Ta 6 N are added.
2.57 , TaN 0.5 , TaN 0.8 , TaN, Ta 3 N 4 etc. appear, and the resistance value increases again.

【0006】従ってα相を得るためには、窒素分圧が1
-5Torr付近になるよう窒素流量を制御する必要が
ある。しかし実際の生産では基板全般にわたって、この
圧力を制御することは困難であり、とくに蒸着面積が大
きくなれば非常に困難になってしまう。さらにこの方法
ではタンタル金属薄膜中に絶縁体膜が混入、形成され、
得られるα相抵抗値は純粋タンタル金属の値(13μΩ
cm)よりも3〜4倍高くなることは避けられない。
Therefore, in order to obtain the α phase, the nitrogen partial pressure is 1
It is necessary to control the nitrogen flow rate so that it is around 0 -5 Torr. However, in actual production, it is difficult to control this pressure over the whole substrate, and it becomes very difficult especially when the deposition area becomes large. Furthermore, in this method, an insulator film is mixed and formed in the tantalum metal thin film,
The obtained α-phase resistance value is the value of pure tantalum metal (13μΩ
It is inevitable that it will be 3 to 4 times higher than cm).

【0007】これらに加えて、此の方法では膜中に窒素
原子が多量存在するため、薄膜を構成するタンタル原子
間隔が大きくなり、薄膜全体に歪みを生じることにな
る。
In addition to these, since a large amount of nitrogen atoms are present in the film in this method, the interval between tantalum atoms forming the thin film becomes large, which causes strain in the entire thin film.

【0008】[0008]

【課題を解決するための手段】この発明はタンタル金属
の体心立方晶(α相)を選択的に得るために、ニオブ金
属を混入させたタンタル金属タ−ゲットを用いたり、タ
ンタル金属とニオブ金属を各独立ターゲットとして用い
たり、ニオブ金属蒸着膜上にタンタル金属を蒸着させる
ことを特徴とするスパッタ法による薄膜製造方法に関す
る。さらに製造雰囲気として、微量の窒素ガスもしくは
窒素系ガスを混入させた雰囲気中で実施する方法に関す
る。
The present invention uses a tantalum metal target mixed with niobium metal, or a tantalum metal and niobium in order to selectively obtain a body-centered cubic crystal (α phase) of tantalum metal. The present invention relates to a thin film manufacturing method by a sputtering method, which is characterized in that metals are used as independent targets or tantalum metal is vapor-deposited on a niobium metal vapor deposition film. Further, the present invention relates to a method of carrying out in a production atmosphere in which a slight amount of nitrogen gas or nitrogen-based gas is mixed.

【0009】本発明者たちの永年の研究結果、次のよう
な驚くべき事実を発見した。即ち、タンタル金属α相で
ある体心立方格子の成長は、面間エネルギ−が小さい
(110)、(111)などの高次ミラ−面を介した異
種原子間ヘテロエピタキシャル成長が支配し、β相であ
る正方晶の成長を抑制することが分かった。タンタル
(Ta)と同じ体心立方結晶をもつ金属はRb,V,N
b,Cs,Ba等が挙げられる。
As a result of many years of research conducted by the present inventors, the following surprising facts have been discovered. That is, the growth of a body-centered cubic lattice, which is a tantalum metal α phase, is dominated by heteroepitaxial heteroepitaxial growth via a high-order mirror plane such as (110) or (111) having a small interplane energy, and β phase. It was found to suppress the growth of tetragonal crystals. Metals having the same body-centered cubic crystal as tantalum (Ta) are Rb, V, N
b, Cs, Ba and the like.

【0010】なかでも、ニオブ金属(Nb)は格子定数
3.303Åの体心立方格子の結晶構造を有し、タンタ
ル金属(Ta)α相は格子定数3.3058Åの体心立
方格子の結晶構造であり、極めて近い格子定数である。
ヘテロエピタキシャル成長させる時のタンタルの異種原
子として、同じような体心立方格子定数をもつニオブを
適用することが、極めて有効であることが分かり、この
発明に至ったのである。
Among them, niobium metal (Nb) has a crystal structure of body centered cubic lattice with a lattice constant of 3.303Å, and tantalum metal (Ta) α phase has a crystal structure of body centered cubic lattice with a lattice constant of 3.3058Å. Which is an extremely close lattice constant.
It has been found that it is extremely effective to apply niobium having a similar body-centered cubic lattice constant as a heteroatom of tantalum in heteroepitaxial growth, and the present invention has been completed.

【0011】ニオブ金属はタンタル金属α相形成の核と
しての働きをすれば良いのであり、量は少なくてよい。
実施例で詳細を論ずるが、混合金属タ−ゲットにおいて
も、各独立したタ−ゲットのおいても、スパッタされた
蒸着膜中のタンタル金属中のニオブ金属の組成比は0.
1%から10%の間が良く、ニオブの予備蒸着厚さは5
nmから100nmの間が良い。この3方法のうち、混
合金属タ−ゲット方法が作製の平易さから推奨される。
The niobium metal has only to function as a nucleus for forming the tantalum metal α phase, and the amount thereof may be small.
Although the details will be discussed in the examples, the composition ratio of niobium metal in the tantalum metal in the sputtered vapor-deposited film is 0.1% in both the mixed metal target and the independent targets.
1% to 10% is preferable, and the pre-deposition thickness of niobium is 5
The range between 100 nm and 100 nm is good. Of these three methods, the mixed metal target method is recommended because of the ease of production.

【0012】ニオブ金属と窒素ガス併用系におけるニオ
ブ金属の最小値は必ずしも明確ではないが、タンタル薄
膜中での混入割合が0.1%でも十分であり、ニオブ蒸
着膜厚さも10nm以下で十分効果を発揮する。添加す
る窒素ガス量の最小値は必ずしも明確ではないが、0.
5sccmも添加すれば十分な効果を発揮する。
Although the minimum value of niobium metal in the combined use system of niobium metal and nitrogen gas is not always clear, a mixing ratio of 0.1% in the tantalum thin film is sufficient, and a niobium vapor deposition film thickness of 10 nm or less is sufficiently effective. Exert. Although the minimum value of the amount of nitrogen gas added is not always clear,
If 5 sccm is added, a sufficient effect is exhibited.

【0013】添加されるガス成分としては純粋な窒素ガ
スのほかに窒素系ガスとして、NH 3 NH2 −NH
2 (ヒドラジン)などが挙げられる。この発明のスパッ
タ法によるタンタル薄膜は通常製造条件でよく、窒素ガ
ス流量は4〜6sccm、アルゴンガス分圧は0.2〜
0.6Pa、アルゴンガス流量は40〜80sccm、
スパッタ電圧は−100〜−3000V、基板材料はガ
ラス、シリコンウェハーなど、基板温度は室温〜250
℃、蒸着速度は100〜1000Å、ベース真空度は1
×10-4Pa程度である。
Pure nitrogen gas is used as the added gas component.
In addition to gas, NH as a nitrogen-based gas 3NH2-NH
2(Hydrazine) and the like. The spatter of this invention
The tantalum thin film produced by the
Flow rate is 4 to 6 sccm, and argon gas partial pressure is 0.2 to
0.6 Pa, the flow rate of argon gas is 40 to 80 sccm,
Sputtering voltage is -100 to -3000V, and substrate material is gas.
The substrate temperature of lath, silicon wafer, etc. is room temperature to 250
℃, vapor deposition rate 100 ~ 1000Å, base vacuum degree is 1
× 10-FourIt is about Pa.

【0014】陰極タ−ゲット形状も通常のものが採用で
き、数cm〜数10cmの円板もので、タ−ゲット金属
純度は約99,9%のものが利用できる。
As the cathode target shape, an ordinary shape can be adopted, and a disk having a size of several cm to several tens of cm and a target metal purity of about 99.9% can be used.

【0015】[0015]

【実施例】タンタルの異種原子として、ニオブを混入さ
せる具体的な方法として次の4つの製造方法を提案し、
詳細を論ずる。 I.窒素ガスを使用しない方法。 1.ニオブ金属を混入させたタンタル金属タ−ゲットを
用いる方法。
[Example] The following four manufacturing methods were proposed as specific methods for mixing niobium as a different atom of tantalum,
Discuss the details. I. Method without using nitrogen gas. 1. A method using a tantalum metal target mixed with niobium metal.

【0016】2.タンタル金属とニオブ金属を各独立タ
ーゲットとして用いる方法。 3.ニオブ金属蒸着膜上にタンタル金属を蒸着させる方
法。 II.微量の窒素ガスを併用する方法。 4.タンタル金属中にニオブ金属の混入が微小である条
件のとき、ニオブ量の不足を補充するため、微量の窒素
ガスまたは窒素系ガスを混入する方法。
2. A method of using tantalum metal and niobium metal as independent targets. 3. A method for depositing tantalum metal on a niobium metal vapor deposition film. II. A method that uses a small amount of nitrogen gas together. 4. A method of mixing a trace amount of nitrogen gas or nitrogen-based gas in order to replenish the lack of niobium amount under the condition that the mixing of niobium metal into tantalum metal is minute.

【0017】実施例1 ニオブ金属の混入量を変化させたタンタル金属タ−ゲッ
トを使用して、薄膜の金属組成比変更した時の結果を図
11に示す。製膜は図1に示すような装置を使用して実
施した。図1において、1は基板、2はタ−ゲット、3
は排気口、4はマグネット、5はDC電源、6はアルゴ
ン,窒素ガス導入口である。
Example 1 FIG. 11 shows the results when the metal composition ratio of the thin film was changed using a tantalum metal target in which the amount of niobium metal mixed was changed. The film formation was performed using an apparatus as shown in FIG. In FIG. 1, 1 is a substrate, 2 is a target, and 3
Is an exhaust port, 4 is a magnet, 5 is a DC power source, and 6 is an argon or nitrogen gas inlet.

【0018】製膜条件はアルゴン流量50sccm、窒
素流量0sccm、圧力0.4Pa、入力電力3.0K
W、基板はガラスである。図11において横軸にはタン
タル金属とニオブ金属の薄膜組成比、縦軸には両相の出
現率(α/β)をとりプロットした。図で明確なよう
に、タンタル金属100%では両相の出現率(α/β)は非
常に悪いが、1%を越えるとほぼα相のみになり安定し
てくる。ところが、0.1%では必ずしも安定とばかり
はいえない。一方、図12において横軸にはタンタル金
属とニオブ金属の薄膜組成比、縦軸にはタンタル膜の比
抵抗をとりプロットした。図で明確なようにニオブ金属
が10%を越えると、タンタル膜の比抵抗は急に悪化し
てくる。これらの結果から明らかなように、タンタル金
属中のニオブ金属の組成比は0.1%から10%、のぞ
ましくは1%から10%の間が良好である。
The film forming conditions are: argon flow rate 50 sccm, nitrogen flow rate 0 sccm, pressure 0.4 Pa, input power 3.0 K.
W, the substrate is glass. In FIG. 11, the horizontal axis represents the thin film composition ratio of tantalum metal and niobium metal, and the vertical axis represents the appearance ratio (α / β) of both phases. As is clear from the figure, the appearance rate (α / β) of both phases is very poor when the tantalum metal is 100%, but when it exceeds 1%, almost only the α phase becomes stable and becomes stable. However, 0.1% is not always stable. On the other hand, in FIG. 12, the horizontal axis represents the thin film composition ratio of tantalum metal and niobium metal, and the vertical axis represents the resistivity of the tantalum film. As is clear from the figure, when the niobium metal content exceeds 10%, the resistivity of the tantalum film suddenly deteriorates. As is clear from these results, the composition ratio of niobium metal in tantalum metal is preferably 0.1% to 10%, and more preferably 1% to 10%.

【0019】実施例2 次に、タンタル金属とニオブ金属を各独立ターゲットと
して用いて、薄膜の組成比を変更した。使用した装置は
図1に示したものとほぼ同様のものであるが、タ−ゲッ
トを2種もち、タンタル金属およびニオブ金属用とし
た。タ−ゲットへの入力電圧力を変更し、薄膜の金属組
成を変化させ、タ−ゲットに混合金属を用いた前記結果
と同様、薄膜組成と両相の出現率(α/β)、タンタル
膜の比抵抗の関係を求めた。同様に、図13において横
軸にはタンタル金属とニオブ金属の薄膜組成比、縦軸に
は両相の出現率(α/β)をとりプロットした。さら
に、図14においては横軸にタンタル金属とニオブ金属
の薄膜組成比、縦軸にはタンタル膜の比抵抗をとりプロ
ットした。
Example 2 Next, the composition ratio of the thin film was changed using tantalum metal and niobium metal as independent targets. The apparatus used was almost the same as that shown in FIG. 1, except that it had two types of targets for tantalum metal and niobium metal. Similar to the above results using the mixed metal for the target by changing the input voltage force to the target and changing the metal composition of the thin film, the thin film composition, the appearance rate of both phases (α / β), the tantalum film The relationship of the specific resistance of was calculated. Similarly, in FIG. 13, the horizontal axis represents the thin film composition ratio of tantalum metal and niobium metal, and the vertical axis represents the appearance rate (α / β) of both phases. Further, in FIG. 14, the horizontal axis represents the thin film composition ratio of tantalum metal and niobium metal, and the vertical axis represents the resistivity of the tantalum film.

【0020】図13で明確なように、タンタル金属100%
では両相の出現率(α/β)は非常に悪いが、1%を越
えるとほぼα相のみになり安定してくる。ところが、1
%より低い0.1%では必ずしも安定とばかりはいえな
い。一方、図14で明確なようにニオブ金属が10%を
越えると、タンタル膜の比抵抗は急に悪化してくる。こ
れらの結果から明らかなように、タンタル金属中のニオ
ブ金属の組成比は0.1%から10%、のぞましくは1
%から10%の間が良いのは前記結果と同様である。
As clearly shown in FIG. 13, 100% tantalum metal
Then, the appearance rate (α / β) of both phases is very bad, but when it exceeds 1%, it becomes almost only the α phase and becomes stable. However, 1
If it is lower than 0.1%, it is not always stable. On the other hand, as clearly shown in FIG. 14, when the niobium metal content exceeds 10%, the specific resistance of the tantalum film suddenly deteriorates. As is clear from these results, the composition ratio of niobium metal in tantalum metal is 0.1% to 10%, preferably 1%.
It is similar to the above result that the range between 10% and 10% is preferable.

【0021】この結果より分かることは、窒素無添加法
によるスパッタリング蒸着薄膜製造方法においては、タ
ンタル金属α相生成は蒸着膜組成に依存し、製造方法に
大きく左右されないということである。また、合金ター
ゲットを用いた場合に見られる選択スパッタも大きな問
題とはならない。
From this result, it can be seen that in the sputtering deposition thin film manufacturing method by the nitrogen-free method, the tantalum metal α-phase formation depends on the composition of the deposited film and is not largely influenced by the manufacturing method. Further, the selective sputtering observed when using the alloy target does not cause a big problem.

【0022】本実施例では独立タ−ゲットの入力電力を
変化させて金属組成を制御したが、この他にタ−ゲット
面積を変化させたり、ターゲット配置を変化させる方法
などがあげられる。
In the present embodiment, the metal composition was controlled by changing the input power of the independent target, but other methods such as changing the target area or changing the target arrangement may be used.

【0023】実施例3 次いで、ニオブをあらかじめ蒸着させた基板上にタンタ
ルを蒸着させた結果を開示する。図1の製造装置におい
て、基板1のガラス上に予めニオブを5nmから100
nmまで蒸着させておき、その上にタンタルを前記条件
で蒸着させ両相の出現率(α/β)、タンタル膜の比抵
抗を測定した。
Example 3 Next, the results of evaporating tantalum on a substrate on which niobium was previously evaporated will be disclosed. In the manufacturing apparatus shown in FIG. 1, niobium having a thickness of 5 nm to 100 is previously formed on the glass of the substrate 1.
After vapor deposition up to nm, tantalum was vapor-deposited thereon under the above conditions, and the appearance rates of both phases (α / β) and the specific resistance of the tantalum film were measured.

【0024】図15はニオブの予備蒸着厚さと両相の出
現率(α/β),図16はタンタル膜の比抵抗の関係で
ある。図15で明確なように、ニオブ蒸着のないタンタ
ル金属100%では両相の出現率(α/β)は非常に悪い
が、10nmを越えるとほぼα相のみになり安定してく
る。ところが、5nmでは必ずしも安定とばかりはいえ
ない。これらの結果から明らかなように、ニオブの予備
蒸着厚さは5nmから100nmの間が良好である。こ
こで、上限は素子もしくはプロセス条件によって決定さ
れる値である。
FIG. 15 shows the relationship between the predeposition thickness of niobium and the appearance ratio (α / β) of both phases, and FIG. 16 shows the relationship between the specific resistance of the tantalum film. As is clear from FIG. 15, the appearance rate (α / β) of both phases is very poor with 100% tantalum metal without vapor deposition of niobium, but beyond 10 nm, almost only the α phase becomes stable. However, it is not always stable at 5 nm. As is clear from these results, the predeposition thickness of niobium is good between 5 nm and 100 nm. Here, the upper limit is a value determined by the device or process conditions.

【0025】この発明は本質的に、タンタルの異種原子
としてニオブを混入させ、タンタル金属α相である体心
立方格子を成長させる方法であり、添加窒素量は零か微
量である。即ち、従来の窒素の分圧制御による方法では
ないので、膜中に多量の窒素が残存したり、窒素による
膜の歪み、反りが発生することはない。図8に本発明お
よび従来の窒素ガス添加法で製膜したタンタルのα−T
a(110)格子定数を掲げた。図中、横軸は窒素流量
であり、窒素流量0の値α−Ta(110)=約3.3
2Å(●印)が本発明になるものである。従来法では窒
素流量が2〜4sccmの範囲ではα、β両相が混在
し、そのうちα相の値を選択的にプロットした。全相が
α相となるのは窒素流量が6sccmであり、この時α
−Ta(110)=約3.37Åである。明らかに、窒
素が面間隔を増加させおり、本発明のタンタル膜の値は
バルク金属の値(3.306Å)に近く、優秀なことが
分かる。
The present invention is essentially a method of mixing niobium as a different atom of tantalum to grow a body-centered cubic lattice which is a tantalum metal α phase, and the amount of added nitrogen is zero or very small. That is, since it is not the conventional method of controlling the partial pressure of nitrogen, a large amount of nitrogen does not remain in the film, or the film is not distorted or warped by nitrogen. FIG. 8 shows α-T of tantalum formed by the present invention and the conventional nitrogen gas addition method.
The a (110) lattice constant is listed. In the figure, the horizontal axis is the nitrogen flow rate, and the value at the nitrogen flow rate 0 is α-Ta (110) = approximately 3.3.
2Å (marked with ●) is the present invention. In the conventional method, both α and β phases were mixed in a nitrogen flow rate range of 2 to 4 sccm, and the value of the α phase was selectively plotted. The flow rate of nitrogen is 6 sccm when all phases are α phase.
−Ta (110) = approximately 3.37Å. Clearly, nitrogen increases the interplanar spacing, and the value of the tantalum film of the present invention is close to the value of bulk metal (3.306Å), which is excellent.

【0026】図9に本発明および従来の窒素ガス添加法
で製膜したタンタルの比抵抗を掲げた。図中、横軸は窒
素流量であり、窒素流量0の値が本発明のタンタルの比
抵抗(●印)約40μΩcmである。従来の窒素の分圧
制御による方法ではβ相の混在や窒化物によって比抵抗
の増大が見られる。本発明による方法は、タンタルの異
種原子としてニオブを混入させてはいるものの、体心立
方晶のニオブの比抵抗率(14.2μΩcm)とタンタ
ルのものと(13μΩcm)きわめて近く、従来法のよ
うな窒化絶縁物による高抵抗化現象は発生しない。
FIG. 9 shows the specific resistance of tantalum formed by the present invention and the conventional nitrogen gas addition method. In the figure, the horizontal axis is the nitrogen flow rate, and the value of the nitrogen flow rate of 0 is about 40 μΩcm for the specific resistance (marked with ●) of tantalum of the present invention. In the conventional method by controlling the partial pressure of nitrogen, the increase of the specific resistance is observed due to the mixture of β phase and the nitride. In the method according to the present invention, niobium is mixed as a heteroatom of tantalum, but the resistivity of body-centered cubic niobium (14.2 μΩcm) and that of tantalum (13 μΩcm) are very close to each other, which is similar to the conventional method. The phenomenon of resistance increase due to such nitrided insulator does not occur.

【0027】実施例4 実施例4ではタンタル金属とニオブ金属混合タ−ゲット
を使用した例を開示する。タンタル金属薄膜製造する条
件は、前述の図1で示した装置および作製条件に類似す
る方法で実施した。
Example 4 Example 4 discloses an example using a tantalum metal and niobium metal mixed target. The conditions for producing the tantalum metal thin film were the same as the apparatus and the production conditions shown in FIG.

【0028】即ち、製膜条件はアルゴン流量50scc
m、窒素流量0sccm、圧力0.4Pa、入力電力
3.0KW、基板はガラスで、ニオブ金属の含有割合は
約1%である。この条件にて作製した薄膜のX線回折分
析結果、図2に示すように立方晶構造のα−Ta(11
0)、Bragg角(2θ)=約33.2°のX線回折
強度のみが観測され、β−Ta(200)Bragg角
(2θ)=約37.8°は観測されなかった。更に、比
抵抗率も20〜60μΩcmの低い値を示し、α相構造
をサポ−トしている。
That is, the film forming condition is an argon flow rate of 50 scc.
m, nitrogen flow rate 0 sccm, pressure 0.4 Pa, input power 3.0 KW, substrate is glass, and niobium metal content is about 1%. As a result of X-ray diffraction analysis of the thin film produced under these conditions, as shown in FIG. 2, α-Ta (11
0), Bragg angle (2θ) = about 33.2 ° X-ray diffraction intensity was observed, and β-Ta (200) Bragg angle (2θ) = about 37.8 ° was not observed. Further, the specific resistance also shows a low value of 20 to 60 μΩcm, and supports the α-phase structure.

【0029】比較例1 図10には比較例として、ニオブ金属混合しないタンタ
ル金属タ−ゲットを使い、他の条件は同じとした時のX
線回折結果を示した。明らかにα−Ta(110)の他
にβ−Ta(200)が支配的に現れている。α単一相
を得る方法として、タンタルの異種原子としてニオブを
混入させる方法が極めて有効であることが分かった。
Comparative Example 1 In FIG. 10, as a comparative example, X was obtained by using a tantalum metal target which was not mixed with niobium metal under the same other conditions.
The line diffraction results are shown. Apparently, β-Ta (200) appears predominantly in addition to α-Ta (110). It has been found that a method of mixing niobium as a different atom of tantalum is extremely effective as a method of obtaining the α single phase.

【0030】実施例5 実施例5ではタンタル金属と少量のニオブ金属混合タ−
ゲットを使用し、さらに少量の窒素ガスを添加した例を
開示する。タンタル金属薄膜製造する条件は、前述の図
1で示した装置および作製条件に類似する方法で実施し
た。
Example 5 In Example 5, a mixture of tantalum metal and a small amount of niobium metal was used.
An example in which a get is used and a small amount of nitrogen gas is added is disclosed. The conditions for producing the tantalum metal thin film were the same as the apparatus and the production conditions shown in FIG.

【0031】即ち、製膜条件はアルゴン流量50scc
m、窒素流量0.2〜1sccm、圧力0.4Pa、入
力電力3.0KW、基板はガラスで、ニオブ金属の含有
割合は約0.1%である。この条件にて作製した薄膜の
X線回折分析結果、図3に示すように立方晶構造のα−
Ta(110)、Bragg角(2θ)=約33.2°
のX線回折強度のみが観測され、β−Ta(200)B
ragg角(2θ)=約37.8°は観測されなかっ
た。更に、比抵抗率も40〜60μΩcmの低い値を示
し、α相構造をサポ−トしている。
That is, the film forming condition is an argon flow rate of 50 scc.
m, nitrogen flow rate 0.2 to 1 sccm, pressure 0.4 Pa, input power 3.0 KW, substrate is glass, and niobium metal content is about 0.1%. As a result of X-ray diffraction analysis of the thin film produced under these conditions, as shown in FIG.
Ta (110), Bragg angle (2θ) = about 33.2 °
X-ray diffraction intensity of β-Ta (200) B
The ragg angle (2θ) = about 37.8 ° was not observed. Furthermore, the specific resistance also shows a low value of 40 to 60 μΩcm, and supports the α-phase structure.

【0032】さらに、金属薄膜中の窒素両を分析した結
果0.1〜1atomic%となり、従来法によるα相作製時
した時の1/10〜1/2 の値であった。
Further, as a result of analyzing both nitrogen in the metal thin film, the value was 0.1 to 1 atomic%, which was 1/10 to 1/2 of the value when the α phase was prepared by the conventional method.

【0033】比較例2 図17には比較例として、ニオブ金属混合しないタンタ
ル金属タ−ゲットを使い、他の条件は同じとした時のX
線回折結果を示した。明らかにα−Ta(110)の他
にβ−Ta(200)が混在している。α単一相を得る
方法として、タンタルの異種原子としてニオブを混入さ
せる方法が極めて有効であることが分かった。
Comparative Example 2 In FIG. 17, as a comparative example, a tantalum metal target not mixed with niobium metal was used, and the other conditions were the same.
The line diffraction results are shown. Apparently, β-Ta (200) is mixed with α-Ta (110). It has been found that a method of mixing niobium as a different atom of tantalum is extremely effective as a method of obtaining the α single phase.

【0034】実施例6 実施例6ではタンタル金属とニオブ金属の各独立タ−ゲ
ットを使用した例を開示する。タンタル金属薄膜製造す
る条件は、前述の図1で示した装置および作製条件に類
似する方法で実施した。前述の実施例4、5と異なるの
はタ−ゲトを2か所設置し、各タンタル金属用及びニオ
ブ金属用とした。
Example 6 Example 6 discloses an example using independent targets of tantalum metal and niobium metal. The conditions for producing the tantalum metal thin film were the same as the apparatus and the production conditions shown in FIG. The difference from the above-mentioned Examples 4 and 5 was that two targets were provided, one for each tantalum metal and one for niobium metal.

【0035】即ち、製膜条件はアルゴン流量50scc
m、窒素流量0sccm、圧力0.4Pa、タンタル金
属タ−ゲット用入力電力3KW、ニオブ金属タ−ゲット
用入力電力約2KW、基板はガラスである。タ−ゲット
金属組成は各99.9%のものを適用した。この条件に
て作製した薄膜のX線回折分析結果、図4に示すように
立方晶構造のα−Ta(110)、Bragg角(2
θ)=約33.2°のX線回折強度のみが観測され、β
−Ta(200)Bragg角(2θ)=約37.8°
は観測されなかった。更に、比抵抗率も20〜60μΩ
cmの低い値を示し、α相構造をサポ−トしている。
That is, the film forming condition is an argon flow rate of 50 scc.
m, nitrogen flow rate 0 sccm, pressure 0.4 Pa, tantalum metal target input power 3 KW, niobium metal target input power about 2 KW, and substrate is glass. The target metal composition was 99.9% each. As a result of X-ray diffraction analysis of the thin film produced under these conditions, as shown in FIG. 4, α-Ta (110) and Bragg angle (2
θ) = only about 33.2 ° X-ray diffraction intensity is observed, β
-Ta (200) Bragg angle (2θ) = about 37.8 °
Was not observed. Furthermore, the specific resistance is 20 to 60 μΩ.
It shows a low value of cm and supports the α phase structure.

【0036】この時、タンタル金属へのニオブ金属の混
入割合は約5%であった。同様に比較例として、タンタ
ル金属タ−ゲットのみを使い、他の条件は同じとした時
のX線回折結果を測定したところ、α−Ta(110)
の他にβ−Ta(200)が支配的に現れた。α単一相
を得る方法として、タンタルの異種原子としてニオブを
混入させる方法が極めて有効であることが分かった。
At this time, the mixing ratio of niobium metal to tantalum metal was about 5%. Similarly, as a comparative example, when only the tantalum metal target was used and the other conditions were the same, the X-ray diffraction results were measured, and α-Ta (110) was obtained.
In addition, β-Ta (200) appeared predominantly. It has been found that a method of mixing niobium as a different atom of tantalum is extremely effective as a method of obtaining the α single phase.

【0037】実施例7 実施例7ではタンタル金属とニオブ金属の各独立タ−ゲ
ットを使用し、さらに微量の窒素ガスを添加した例を開
示する。タンタル金属薄膜製造する条件は、前述の図1
で示した装置および作製条件に類似する方法で実施し
た。前述の実施例6と異なるのは微量の窒素ガスを添加
したことである。
Example 7 Example 7 discloses an example in which independent targets of tantalum metal and niobium metal are used, and a trace amount of nitrogen gas is further added. The conditions for producing a tantalum metal thin film are as shown in FIG.
It was carried out by a method similar to the apparatus and manufacturing conditions shown in. The difference from Example 6 is that a slight amount of nitrogen gas was added.

【0038】即ち、製膜条件はアルゴン流量50scc
m、窒素流量0.2〜1sccm、圧力0.4Pa、タ
ンタル金属タ−ゲット用入力電力3KW、ニオブ金属タ
−ゲット用入力電力約2KW、基板はガラスである。タ
−ゲット金属組成は各99.9%のものを適用した。こ
の条件にて作製した薄膜のX線回折分析結果、図5に示
すように立方晶構造のα−Ta(110)、Bragg
角(2θ)=約33.2°のX線回折強度のみが観測さ
れ、β−Ta(200)Bragg角(2θ)=約3
7.8°は観測されなかった。更に、比抵抗率も40〜
60μΩcmの低い値を示し、α相構造をサポ−トして
いる。
That is, the film forming condition is an argon flow rate of 50 scc.
m, nitrogen flow rate 0.2 to 1 sccm, pressure 0.4 Pa, input power for tantalum metal target 3 KW, input power for niobium metal target about 2 KW, substrate is glass. The target metal composition was 99.9% each. As a result of X-ray diffraction analysis of the thin film prepared under these conditions, as shown in FIG. 5, α-Ta (110) and Bragg having a cubic crystal structure were obtained.
Only the X-ray diffraction intensity of the angle (2θ) = about 33.2 ° is observed, and β-Ta (200) Bragg angle (2θ) = about 3
7.8 ° was not observed. Furthermore, the specific resistance is 40-
It shows a low value of 60 μΩcm and supports the α-phase structure.

【0039】この時、タンタル金属へのニオブ金属の混
入割合は約2%であり、さらに金属薄膜中の窒素量を分
析した結果0.1〜1atomic%となり、従来法によるα
相作製時した時の1/10〜1/2 の値であった。比較例とし
て、タンタル金属タ−ゲットのみを使い、他の条件は同
じとした時のX線回折を測定したところ、α−Ta(1
10)の他にβ−Ta(200)の混在が観測された。
α単一相を得る方法として、タンタルの異種原子として
ニオブを混入させる方法が極めて有効であることが分か
った。
At this time, the mixing ratio of the niobium metal to the tantalum metal was about 2%, and the result of analyzing the amount of nitrogen in the metal thin film was 0.1 to 1 atomic%.
The value was 1/10 to 1/2 of that at the time of phase preparation. As a comparative example, when only tantalum metal target was used and other conditions were the same, X-ray diffraction was measured, and α-Ta (1
In addition to 10), the mixture of β-Ta (200) was observed.
It has been found that a method of mixing niobium as a different atom of tantalum is extremely effective as a method of obtaining the α single phase.

【0040】実施例8 実施例8ではニオブ金属を予め蒸着した基板上にタンタ
ル金属をエピタキシャル蒸着する例を開示する。タンタ
ル金属薄膜製造する条件は、前述の図1で示した装置お
よび作製条件に類似する方法で実施した。
Example 8 Example 8 discloses an example in which tantalum metal is epitaxially vapor-deposited on a substrate on which niobium metal is vapor-deposited in advance. The conditions for producing the tantalum metal thin film were the same as the apparatus and the production conditions shown in FIG.

【0041】即ち、製膜条件はアルゴン流量50scc
m、窒素流量0sccm、圧力0.4Pa、入力電力
3.0KW、基板はガラスで、予めその上にニオブ金属
を約5〜100nm蒸着させた。この条件にて作製した
薄膜のX線回折分析結果、図6に示すように立方晶構造
のα−Ta(110)、Bragg角(2θ)=約3
3.2°のX線回折強度のみが観測され、β−Ta(2
00)Bragg角(2θ)=約37.8°は観測され
なかった。更に、比抵抗率も20〜60μΩcmの低い
値を示し、α相構造をサポ−トしている。
That is, the film forming condition is an argon flow rate of 50 scc.
m, nitrogen flow rate 0 sccm, pressure 0.4 Pa, input power 3.0 KW, substrate was glass, and niobium metal was vapor-deposited on the substrate in advance at about 5 to 100 nm. As a result of X-ray diffraction analysis of the thin film produced under these conditions, as shown in FIG. 6, cubic crystal structure α-Ta (110) and Bragg angle (2θ) = about 3
Only the X-ray diffraction intensity of 3.2 ° was observed, and β-Ta (2
00) Bragg angle (2θ) = about 37.8 ° was not observed. Further, the specific resistance also shows a low value of 20 to 60 μΩcm, and supports the α-phase structure.

【0042】同様に比較例として、タンタル金属タ−ゲ
ットのみを使い、他の条件は同じとした時のX線回折結
果を測定したところ、α−Ta(110)の他にβ−T
a(200)が支配的に現れた。α単一相を得る方法と
して、タンタルの異種原子としてニオブを混入させる方
法が極めて有効であることが分かった。
Similarly, as a comparative example, when only tantalum metal target was used and the other conditions were the same, the X-ray diffraction results were measured. In addition to α-Ta (110), β-T was obtained.
a (200) appeared predominantly. It has been found that a method of mixing niobium as a different atom of tantalum is extremely effective as a method of obtaining the α single phase.

【0043】実施例9 実施例9ではニオブ金属を予め蒸着した基板上に、微量
の窒素ガスが混入された雰囲気でタンタル金属をエピタ
キシャル蒸着する例を開示する。タンタル金属薄膜製造
する条件は、前述の図1で示した装置および作製条件に
類似する方法で実施した。実施例8と異なるのは微量の
窒素ガスが混入されている点である。
Example 9 Example 9 discloses an example in which tantalum metal is epitaxially vapor-deposited on a substrate on which niobium metal has been vapor-deposited in advance in an atmosphere in which a slight amount of nitrogen gas is mixed. The conditions for producing the tantalum metal thin film were the same as the apparatus and the production conditions shown in FIG. The difference from Example 8 is that a trace amount of nitrogen gas is mixed.

【0044】即ち、製膜条件はアルゴン流量50scc
m、窒素 流量0.2〜1sccm、圧力0.4Pa、
入力電力3.0KW、基板はガラスで、予めその上にニ
オブ金属を約5〜100nm蒸着させた。この条件にて
作製した薄膜のX線回折分析結果、図7に示すように立
方晶構造のα−Ta(110)、Bragg角(2θ)
=約33.2°のX線回折強度のみが観測され、β−T
a(200)Bragg角(2θ)=約37.8°は観
測されなかった。更に、比抵抗率も40〜60μΩcm
の低い値を示し、α相構造をサポ−トしている。
That is, the film forming condition is an argon flow rate of 50 scc.
m, nitrogen Flow rate 0.2 to 1 sccm, pressure 0.4 Pa,
The input power was 3.0 kW, the substrate was glass, and niobium metal was vapor-deposited on it in a thickness of about 5 to 100 nm in advance. As a result of X-ray diffraction analysis of the thin film produced under these conditions, as shown in FIG. 7, cubic crystal structure α-Ta (110) and Bragg angle (2θ) were obtained.
= Only about 33.2 ° X-ray diffraction intensity was observed, and β-T
The a (200) Bragg angle (2θ) = about 37.8 ° was not observed. Furthermore, the specific resistance is 40 to 60 μΩcm.
Shows a low value, and supports the α-phase structure.

【0045】比較例として、タンタル金属タ−ゲットの
みを使い、他の条件は同じとした時のX線回折を測定し
たところ、α−Ta(110)の他にβ−Ta(20
0)の混在が観測された。α単一相を得る方法として、
タンタルの異種原子としてニオブを混入させる方法が極
めて有効であることが分かった。
As a comparative example, when only tantalum metal target was used and the other conditions were the same, X-ray diffraction was measured, and in addition to α-Ta (110), β-Ta (20
A mixture of 0) was observed. As a method to obtain α single phase,
It was found that the method of mixing niobium as a different atom of tantalum is extremely effective.

【0046】[0046]

【発明の効果】この発明は本質的に、タンタルの異種原
子としてニオブを混入させ、タンタル金属α相である体
心立方格子を成長させる方法であり、添加窒素量は零か
微量である。即ち、従来の窒素の分圧制御による方法で
はないので、膜中に多量の窒素が残存したり、窒素によ
る膜の歪み、反りが発生することはない。
The present invention is essentially a method of mixing niobium as a different atom of tantalum to grow a body-centered cubic lattice which is a tantalum metal α phase, and the amount of added nitrogen is zero or very small. That is, since it is not the conventional method of controlling the partial pressure of nitrogen, a large amount of nitrogen does not remain in the film, or the film is not distorted or warped by nitrogen.

【0047】即ち、絶縁体であるTaN0.1 ,TaN
0.25,Ta6 2.57,TaN0.5 ,TaN0.8 ,Ta
N,Ta3 4 などの金属窒化物を排除することによ
り、抵抗の低いα相タンタル薄膜を形成する方法であ
る。さらに薄膜歪みの主たる原因となる膜中窒素を極力
低減しうる点に特徴を有するスパッタ蒸着法である。
That is, TaN 0.1 and TaN which are insulators
0.25 , Ta 6 N 2.57 , TaN 0.5 , TaN 0.8 , Ta
This is a method of forming an α-phase tantalum thin film having a low resistance by eliminating a metal nitride such as N, Ta 3 N 4 . Furthermore, the sputter deposition method is characterized in that nitrogen in the film, which is a main cause of thin film distortion, can be reduced as much as possible.

【0048】さらに、本発明による方法は、タンタルの
異種原子としてニオブを混入させてはいるものの、体心
立方晶のニオブの比抵抗率(14.2μΩcm)とタン
タルのものと(13μΩcm)きわめて近く、従来法の
ような窒化絶縁物による高抵抗化現象は発生しない。
Further, in the method according to the present invention, although niobium is mixed as a different atom of tantalum, the resistivity of body-centered cubic niobium (14.2 μΩcm) and that of tantalum (13 μΩcm) are very close to each other. The high resistance phenomenon due to the nitrided insulator unlike the conventional method does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】スパッタ装置の概略図である。FIG. 1 is a schematic view of a sputtering apparatus.

【図2】実施例4のX線回折図である。2 is an X-ray diffraction diagram of Example 4. FIG.

【図3】実施例5のX線回折図である。FIG. 3 is an X-ray diffraction pattern of Example 5.

【図4】実施例6のX線回折図である。4 is an X-ray diffraction pattern of Example 6. FIG.

【図5】実施例7のX線回折図である。5 is an X-ray diffraction diagram of Example 7. FIG.

【図6】実施例8のX線回折図である。6 is an X-ray diffraction pattern of Example 8. FIG.

【図7】実施例9のX線回折図である。FIG. 7 is an X-ray diffraction pattern of Example 9.

【図8】タンタル薄膜製造における窒素流量と格子定数
の関係である。
FIG. 8 is a relationship between a nitrogen flow rate and a lattice constant in the production of a tantalum thin film.

【図9】タンタル薄膜製造における窒素流量と比抵抗の
関係である。
FIG. 9 is a relationship between nitrogen flow rate and specific resistance in the production of tantalum thin film.

【図10】ニオブ金属混入しない時のX線回折図であ
る。
FIG. 10 is an X-ray diffraction diagram when niobium metal is not mixed.

【図11】タンタル/ニオブ組成比と両相の出現率(α
/β)の関係図である。
FIG. 11: Tantalum / niobium composition ratio and appearance rate of both phases (α
FIG. 6 is a relationship diagram of / β).

【図12】タンタル/ニオブ組成比とタンタル膜の比抵
抗の関係図である。
FIG. 12 is a relationship diagram of the tantalum / niobium composition ratio and the specific resistance of the tantalum film.

【図13】独立タ−ゲットを使用したときのタンタル/
ニオブ組成比と両相の出現率(α/β)の関係である。
FIG. 13: Tantalum / when using an independent target
It is the relationship between the niobium composition ratio and the appearance rate (α / β) of both phases.

【図14】独立タ−ゲットを使用したときのタンタル/
ニオブ組成比とタンタル膜の比抵抗の関係である。
FIG. 14: Tantalum when using an independent target /
This is the relationship between the niobium composition ratio and the specific resistance of the tantalum film.

【図15】ニオブを予備蒸着したときのタンタル/ニオ
ブ組成比と両相の出現率(α/β)の関係である。
FIG. 15 is a relationship between the tantalum / niobium composition ratio and the appearance ratio (α / β) of both phases when preliminarily vapor-depositing niobium.

【図16】ニオブを予備蒸着したときのタンタル/ニオ
ブ組成比とタンタル膜の比抵抗の関係である。
FIG. 16 shows the relationship between the tantalum / niobium composition ratio and the specific resistance of the tantalum film when niobium was pre-deposited.

【図17】ニオブ金属を混入せず、微量の窒素ガスを混
入した時のX線回折図である。
FIG. 17 is an X-ray diffraction diagram when a trace amount of nitrogen gas is mixed without mixing niobium metal.

【符号の説明】[Explanation of symbols]

1 タンタル金属薄膜を蒸着する基板 2 スパッタ用ゲ−ト 3 真空排気口 4 マグネット 5 直流電源 6 スパッタ用ガス導入口 1 Substrate on which a tantalum metal thin film is deposited 2 Sputtering gate 3 Vacuum exhaust port 4 Magnet 5 DC power supply 6 Sputtering gas inlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】タンタル金属薄膜をスパッタ法により作製
するに際し、 i)ニオブ金属を混入させたタンタル金属をタ−ゲット
として同時に蒸着を行うか、 ii)タンタル金属とニオブ金属を別々のターゲットとし
て同時に蒸着を行うか、 予めニオブ金属の蒸着を行った後にタンタル金属の蒸着
を行って、体心立方晶タンタル金属薄膜を優先的に形成
することを特徴とするタンタル金属薄膜製造方法。
1. When a tantalum metal thin film is formed by a sputtering method, i) tantalum metal mixed with niobium metal is simultaneously vapor-deposited as a target, or ii) tantalum metal and niobium metal are simultaneously used as separate targets. A method for producing a tantalum metal thin film, which comprises performing vapor deposition, or performing vapor deposition of niobium metal in advance and then performing vapor deposition of tantalum metal to preferentially form a body-centered cubic tantalum metal thin film.
【請求項2】窒素ガスもしくは窒素系ガスを混入させた
雰囲気中で実施する、請求項1項の製造方法。
2. The manufacturing method according to claim 1, which is carried out in an atmosphere in which nitrogen gas or a nitrogen-based gas is mixed.
JP3345113A 1991-12-26 1991-12-26 Method for producing tantalum metal thin film Expired - Fee Related JP2741814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3345113A JP2741814B2 (en) 1991-12-26 1991-12-26 Method for producing tantalum metal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3345113A JP2741814B2 (en) 1991-12-26 1991-12-26 Method for producing tantalum metal thin film

Publications (2)

Publication Number Publication Date
JPH05171417A true JPH05171417A (en) 1993-07-09
JP2741814B2 JP2741814B2 (en) 1998-04-22

Family

ID=18374372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3345113A Expired - Fee Related JP2741814B2 (en) 1991-12-26 1991-12-26 Method for producing tantalum metal thin film

Country Status (1)

Country Link
JP (1) JP2741814B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019743A (en) * 2004-06-30 2006-01-19 Headway Technologies Inc Magnetic memory structure, tunnel magneto-resistance effect type reproducing head, and their manufacturing method
WO2011010655A1 (en) * 2009-07-21 2011-01-27 株式会社アルバック Method for forming coating film which is composed of α-tantalum, and the coating film
US8715525B2 (en) 2010-06-30 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electrode material
US8808917B2 (en) 2009-09-11 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device having olivine type positive electrode active material with oriented crystal structure
CN115458675A (en) * 2022-11-11 2022-12-09 阿里巴巴达摩院(杭州)科技有限公司 Tantalum metal film processing method, quantum device and quantum chip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498425A (en) * 1972-03-28 1974-01-25
JPH01230767A (en) * 1988-03-08 1989-09-14 Toshiba Corp Sputtering target and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498425A (en) * 1972-03-28 1974-01-25
JPH01230767A (en) * 1988-03-08 1989-09-14 Toshiba Corp Sputtering target and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019743A (en) * 2004-06-30 2006-01-19 Headway Technologies Inc Magnetic memory structure, tunnel magneto-resistance effect type reproducing head, and their manufacturing method
WO2011010655A1 (en) * 2009-07-21 2011-01-27 株式会社アルバック Method for forming coating film which is composed of α-tantalum, and the coating film
US8808917B2 (en) 2009-09-11 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Power storage device having olivine type positive electrode active material with oriented crystal structure
US8715525B2 (en) 2010-06-30 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electrode material
CN115458675A (en) * 2022-11-11 2022-12-09 阿里巴巴达摩院(杭州)科技有限公司 Tantalum metal film processing method, quantum device and quantum chip

Also Published As

Publication number Publication date
JP2741814B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
Kwon et al. Evidence of heteroepitaxial growth of copper on beta-tantalum
Chain The influence of deposition temperature on the structure and optical properties of vanadium oxide films
JPH06158272A (en) Resistance film and production thereof
JP3603112B2 (en) Low temperature production of alumina crystalline thin film
JPWO2006101255A1 (en) Superconducting magnesium boride thin film and manufacturing method thereof
Sato Nucleation properties of magnetron-sputtered tantalum
JP2741814B2 (en) Method for producing tantalum metal thin film
Gasser et al. Reactively sputtered Ru–Si–O films
US5543208A (en) Resistive film
JP2002115056A (en) Manufacturing method of metal thin film consisting of large single crystal grain
JP2001332514A (en) Method of forming oriented metal thin film and function device therewith
Yang et al. Process effects on radio frequency diode reactively sputtered ZrO2 films
Kawamura et al. Orientation of metal films deposited by sputtering using Ar/N2 gas mixtures
JPS6316464B2 (en)
JP2001335917A (en) Method for producing crystalline alumina thin film at low temperature
JPH11354303A (en) Thin film resistor, its manufacture, and wiring board incorporating the same
JPH04318934A (en) Metallic thin-film and manufacture thereof
JPH0365502A (en) Preparation of superconductive thin film
JPS5927519A (en) Fabrication of indium-antimony-arsenic system compound semiconductor thin film
KR19990048866A (en) Fabrication of SNO2 Thin Films for Gas Sensors from SN Taeget using Dual-ion Beam Sputtering
JP2001335919A (en) METHOD FOR PRODUCING alpha-TANTALUM FILM, alpha-TANTALUM FILM AND ELEMENT USING THE SAME
JPH0320093A (en) Thin film manufacturing device
CN114875371A (en) Nano-structure high-entropy superalloy and preparation method thereof
JPS60251198A (en) Preparation of superconducting film
Rastogi et al. Silicide formation by solid state reaction of Mo-Ni and Mo-Co films with Si (100)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees