JPH05171233A - Method for charging collected dust in smelting reduction equipment - Google Patents

Method for charging collected dust in smelting reduction equipment

Info

Publication number
JPH05171233A
JPH05171233A JP3345096A JP34509691A JPH05171233A JP H05171233 A JPH05171233 A JP H05171233A JP 3345096 A JP3345096 A JP 3345096A JP 34509691 A JP34509691 A JP 34509691A JP H05171233 A JPH05171233 A JP H05171233A
Authority
JP
Japan
Prior art keywords
dust
reduction furnace
smelting reduction
furnace
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3345096A
Other languages
Japanese (ja)
Inventor
Katsuhiro Iwasaki
克博 岩崎
Teruyuki Hasegawa
輝之 長谷川
Kenji Takahashi
謙治 高橋
Masahiro Muroya
正廣 室屋
Osamu Yamase
治 山瀬
Hironori Fukushima
裕法 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3345096A priority Critical patent/JPH05171233A/en
Publication of JPH05171233A publication Critical patent/JPH05171233A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce molten iron in good yield of raw material by recovering dust generated in a smelting reduction apparatus provided with a pre-reduction furnace for iron ore through a cyclone and supplying the dust into the smelting reduction furnace. CONSTITUTION:The iron ore is charged into the fluidized bed type pre-reduction furnace 2 and high temp. reducing exhaust gas generated from the smelting reduction furnace 1 at the following process is passed through a duct 7 and the cyclone 3, and the iron ore and coke powders in the exhaust gas are recovered and introduced into the smelting reduction furnace 1 through chutes 10 and 14 by using carrier gas 11 of N2, etc. The high temp. reducing exhaust gas removing the powders by the cyclone 3 is fed into the pre-reduction furnace 2 through a duct 8, and the iron ore in the furnace is preheated and also the pre-reduced iron ore is supplied into the smelting reduction furnace 1 through a chute 5. Dust-mixed exhaust gas generated in the pre- reduction furnace 2 is fed to a cyclone 4 through a duct 9, and after separating and recovering coarse granular iron ore, this iron ore is passed through a piping 12 and introduced into the smelting reduction furnace 1 through a piping 14 together with the powder-mixed raw material from the cyclone 3 and effectively utilized as the raw material of the molten iron.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、予備還元炉を有する溶
融還元設備において、捕集されたダストを溶融還元炉に
装入する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging collected dust in a smelting reduction furnace having a preliminary reduction furnace.

【0002】[0002]

【従来の技術】鉄鉱石等の溶融還元においては、通常、
予備還元炉を有する溶融還元設備が使用され、溶融還元
炉に供給する前の鉱石を溶融還元時に発生するガスによ
って予熱・予備還元する操作を行っている。上記の予備
還元炉としては、一般に、シャフト炉等に比べて設備費
が安く、且つ原料を焼結・塊成化(焼結鉱、ペレット
等)する処理を必要としない流動層形式の炉が用いられ
ている。このような炉を用いた操業においては、微粉或
いは細粒鉱石のダストが予備還炉内から飛散し、炉の排
ガスと共に排出する。このダストは溶融還元から発生す
るガスが予備還元炉へ導入される前に捕集されて溶融還
元炉へ装入される。
2. Description of the Related Art In the smelting reduction of iron ore, etc.,
A smelting reduction equipment having a pre-reduction furnace is used, and the ore before being supplied to the smelting reduction furnace is preheated and pre-reduced by the gas generated during the smelting reduction. As the above-mentioned preliminary reduction furnace, generally, a fluidized bed type furnace which is lower in equipment cost than a shaft furnace or the like and does not require a treatment for sintering and agglomerating raw materials (sinter ore, pellets, etc.). It is used. In the operation using such a furnace, fine powder or fine-grained ore dust is scattered from the preliminary return furnace and discharged together with the exhaust gas of the furnace. This dust is collected and charged into the smelting reduction furnace before the gas generated from the smelting reduction is introduced into the preliminary reduction furnace.

【0003】そして、溶融還元炉内では、上記のように
して予備還元された鉱石や石炭等の炭材が供給されると
共に、酸素が吹き込まれて鉱石の溶融還元が行われる
が、この還元反応時には鉱石や炭材のダストが飛散し、
排ガスと同伴して排出する。このダストも捕集されて溶
融還元炉へ装入される。
Then, in the smelting reduction furnace, carbon materials such as ore and coal preliminarily reduced as described above are supplied, and oxygen is blown into the smelting reduction of the ore to perform the reduction reaction. Occasionally, ore and carbonaceous material dust is scattered,
It is discharged together with the exhaust gas. This dust is also collected and charged into the smelting reduction furnace.

【0004】上記した溶融還元炉の発生ガスから捕集さ
れたダスト(以下、溶融還元炉のダストと言う)と、予
備還元炉の排ガスから捕集されたダスト(以下、予備還
元炉のダストと言う)の溶融還元炉への装入に際し、そ
のまま溶融還元炉内へ重力落下によって装入すると、ダ
ストは炉内から発生するガス流によって再び飛散し炉外
に排出されてしまう。これは、これらのダストが微粉状
或いは細粒状である上、その落下速度が精々数m/s程
度にしかならないのに、炉内から発生するガスの上昇流
は数m/s程度あるので、多量のダストが発生ガスに随
伴するためである。
Dust collected from the gas generated in the smelting reduction furnace (hereinafter referred to as dust of the smelting reduction furnace) and dust collected from exhaust gas of the preliminary reduction furnace (hereinafter referred to as dust of the preliminary reduction furnace). When charging into the smelting reduction furnace of (i.e.), if it is charged into the smelting reduction furnace by gravity drop as it is, the dust will be scattered again by the gas flow generated from inside the furnace and will be discharged outside the furnace. This is because these dusts are in the form of fine powder or fine particles, and the falling velocity thereof is only about several m / s, but the upward flow of gas generated from the furnace is about several m / s. This is because a large amount of dust accompanies the generated gas.

【0005】このため、上記ダストの装入は、キャリア
ガスで気流輸送(以下、気送と言う)して炉内の湯面上
に数十m/sの流速で吹き付ける方法(所謂、流し込み
方式)、或いはキャリアガスで気送して炉内の溶融鉄や
スラグ中へ直接吹き込む方法(所謂インジェクション方
式)等によって行われている。
For this reason, the dust is charged by a method in which air is carried by a carrier gas (hereinafter referred to as air feeding) and sprayed onto the molten metal surface in the furnace at a flow rate of several tens m / s (so-called pouring method). ), Or a method of directly blowing it into a molten iron or slag in a furnace by carrier feeding with a carrier gas (so-called injection method).

【0006】[0006]

【発明が解決しようとする課題】しかし、上記何れの方
法によってダストの装入を行っても、次のような問題が
発生する。流し込み方式によって溶融還元炉内へダスト
を装入する場合、特に溶融還元炉のダストは比重が小さ
い炭材を主とするものであるため、非常に再飛散し易
く、且つその飛散量も多いので、その捕集の多寡によっ
て炭材や鉱石の歩留に大いに影響する。又、溶融還元炉
のダスト中の炭材については、再飛散すると、かなりの
割合の揮発分が揮散し、溶融還元炉内の二次燃焼比を低
下させてしまうので、このダストが再捕集されたとして
も、揮発成分相当の炭材の歩留低下と二次燃焼比の低下
による炭材原単位の上昇は避けられない。更に、炭材の
飛散量が多く、且つそのバラツキが大きいので、溶融還
元炉内の炭素バランスが把握し難く、炭材を過剰に投入
した場合には二次燃焼比が低下したり、炭材を過少に投
入した場合には脱炭傾向になってスロッピングが起こっ
たりすると言う操業上の問題がある。
However, even if dust is charged by any of the above methods, the following problems occur. When dust is charged into the smelting reduction furnace by the pouring method, the dust in the smelting reduction furnace is mainly carbonaceous material with a small specific gravity, so it is very easy to re-disperse and the amount of scattering is large. , The amount of collection greatly affects the yield of carbonaceous materials and ores. When the carbonaceous material in the dust of the smelting reduction furnace is re-scattered, a considerable proportion of volatile matter is volatilized and the secondary combustion ratio in the smelting reduction furnace is reduced, so this dust is re-collected. Even if it is done, it is inevitable that the yield of carbonaceous materials corresponding to volatile components will decrease and that the unit consumption of carbonaceous materials will increase due to a decrease in the secondary combustion ratio. Furthermore, since the amount of scattered carbonaceous material is large and the variation is large, it is difficult to understand the carbon balance in the smelting reduction furnace, and if the carbonaceous material is added excessively, the secondary combustion ratio will decrease, If too little is added, there is an operational problem that sloping occurs due to the tendency to decarburize.

【0007】一方、インジェクション方式によって溶融
還元炉内へダストを装入する場合、気送流速が非常に速
いので、ガス中のダストによる配管の磨耗が激しく、
又、炉内への吹き出し口に溶鉄やスラグが凝固し茸状の
付着物(所謂、マッシュルーム)が生成して吹き出し口
が詰まり易く、酸素洗浄による溶解操作を行わなければ
ならない等の設備面に問題がある。更に、粒鉄が多量に
飛散するので、二次燃焼比が下がる傾向になり、操業上
にも問題がある。
On the other hand, when the dust is charged into the smelting reduction furnace by the injection method, the air flow velocity is very high, so that the dust in the gas causes a great abrasion of the pipe,
In addition, molten iron or slag is solidified at the outlet of the furnace, mushroom-like deposits (so-called mushrooms) are generated, the outlet is easily clogged, and it is necessary to perform a melting operation by oxygen cleaning. There's a problem. Further, since a large amount of granular iron scatters, the secondary combustion ratio tends to decrease, which causes a problem in operation.

【0008】そこで、上記2方式のうち、設備上に問題
がない流し込み方式を採用しようとすると、ダストの再
飛散を抑える措置を講じなければならない。本発明は、
溶融還元炉のダストの再飛散を抑制することができる流
し込み方式による捕集ダストの装入方法を提供すること
を目的とする。
Therefore, if one of the above-mentioned two methods is adopted, which has no problem in equipment, it is necessary to take measures to suppress the re-scattering of dust. The present invention is
An object of the present invention is to provide a charging method of collected dust by a pouring method capable of suppressing re-scattering of dust in a smelting reduction furnace.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、第一の発明においては、溶融還元炉の発生ガスか
ら捕集されたダストと予備還元炉の排ガスから捕集され
たダストを気流輸送によってダスト装入経路に合流さ
せ、この合流させた2種類のダストを気流輸送によって
溶融還元炉へ装入する。
In order to achieve the above-mentioned object, in the first invention, the dust collected from the gas generated in the smelting reduction furnace and the dust collected from the exhaust gas of the preliminary reduction furnace are used. The air is transported to join the dust charging path, and the two types of merged dust are loaded to the smelting reduction furnace by air transportation.

【0010】又、第二の発明においては、溶融還元炉の
発生ガスから捕集されたダストと予備還元炉の排ガスか
ら捕集されたダストを気流輸送によってダスト装入経路
に合流させ、この合流させた2種類のダストを、更に予
備還元炉から溶融還元炉に接続された粗粒鉱石装入経路
中の粗粒鉱石と合流させ、気流輸送によって溶融還元炉
へ装入する。
In the second aspect of the invention, the dust collected from the gas generated in the smelting reduction furnace and the dust collected from the exhaust gas from the preliminary reduction furnace are merged into the dust charging path by air transportation, and the merged flow is merged. The two kinds of dust thus obtained are further merged with the coarse-grained ore in the coarse-grained ore charging route connected to the smelting reduction furnace from the preliminary reduction furnace, and charged into the smelting reduction furnace by air transportation.

【0011】[0011]

【作用】第一の発明において、溶融還元炉のダストと予
備還元炉のダストを合流させて溶融還元炉に装入する
と、炭材を主体とし比重が小さいために飛散し易い溶融
還元炉のダストは、比重が大きい鉱石の粒子であるため
に飛散しにくい予備還元炉のダストに包まれるようにし
て炉内に装入されるため、その飛散が抑えられる。
In the first aspect of the invention, when the dust of the smelting reduction furnace and the dust of the preliminary reduction furnace are combined and charged into the smelting reduction furnace, the dust of the smelting reduction furnace which is mainly composed of carbonaceous material and has a small specific gravity is easily scattered. Is charged into the furnace so that it is wrapped in the dust of the pre-reduction furnace, which is a particle of ore having a large specific gravity and is difficult to scatter, so that the scattering is suppressed.

【0012】又、流し込み方式による場合に飛散するダ
ストは、溶融還元炉から発生するガスの上昇流によって
ダストを気送するキャリアガスの流れが部分的に乱さ
れ、この乱されたガス流中に存在しているダストと、吹
き付けられた湯面から飛散するダストとがある。上記飛
散ダストのうち、キャリアガス流の乱れによるダストの
飛散量は、キャリアガス流と上記上昇流との接触面積を
できるだけ小さくすればよい。この点について、上記2
種類のダストを合流させて装入すれば、ダストの流し込
みが1箇所になって、キャリアガス流と上記上昇流との
接触面積が小さくなり、ダストの飛散量は減少する。
[0012] Further, in the dust scattered by the pouring method, the flow of the carrier gas for carrying the dust is partially disturbed by the upward flow of the gas generated from the smelting reduction furnace, and the dust is scattered in the disturbed gas flow. There is dust that is present and dust that is scattered from the sprayed hot water surface. Of the above-mentioned scattered dust, the amount of dust scattered due to the turbulence of the carrier gas flow should be such that the contact area between the carrier gas flow and the upward flow is as small as possible. Regarding this point,
If the dusts of different types are combined and charged, the dust is poured in only one place, the contact area between the carrier gas flow and the upward flow is reduced, and the amount of dust scattering is reduced.

【0013】第二の発明においては、合流させた上記2
種類のダストを、更に、粒径が大きく飛散しない粗粒鉱
石で包み込むようにして装入するので、溶融還元炉のダ
ストの飛散は一層効果的に抑制される。
In the second invention, the above-mentioned two merged
Further, since various kinds of dust are charged so as to be wrapped with coarse ore having a large particle size and not scattered, the scattering of dust in the smelting reduction furnace is further effectively suppressed.

【0014】[0014]

【実施例】以下、本発明の詳細を図面に基づいて説明す
る。図1は本発明の一実施例の説明図であり、図2は図
1におけるA部の構造の一例を示した図である。図1及
び図2において、1は鉄浴型の溶融還元炉、2は溶融還
元炉1に装入する鉱石を予備還元するための流動層式の
予備還元炉、3は溶融還元炉1から発生するガス中のダ
ストを捕集するためのサイクロン(以下、溶融還元炉の
サイクロンと言う)、4は予備還元炉2から排出するガ
ス中のダストを捕集するためのサイクロン(以下、予備
還元炉のサイクロンと言う)を示す。又、5は溶融還元
炉1から予備還元炉2に接続され、粗粒鉱石の装入経路
である鉱石装入シュ−トがよい、6は炭材の装入経路で
ある炭材装入シュ−トがよいを示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing an example of the structure of part A in FIG. In FIGS. 1 and 2, 1 is an iron bath type smelting reduction furnace, 2 is a fluidized bed type pre-reduction furnace for pre-reducing ore charged in the smelting reduction furnace 1, and 3 is generated from the smelting reduction furnace 1. Cyclone for collecting dust in the gas (hereinafter referred to as "cyclone of smelting reduction furnace"), 4 is a cyclone for collecting dust in gas discharged from the preliminary reduction furnace 2 (hereinafter referred to as preliminary reduction furnace Called a cyclone). Reference numeral 5 is a smelting reduction furnace 1 connected to the preliminary reduction furnace 2, and an ore charging shunt which is a charging path for coarse-grained ore is good. 6 is a carbon material charging shunt which is a charging path for carbonaceous material. -Indicates good performance.

【0015】溶融還元炉1には、予備還元炉2で予備還
元処理された粗粒鉱石が鉱石装入シュ−ト5を経由して
装入され、炭材装入シュ−ト6から炭材である石炭が装
入される。この他に、図示は省略したが、石灰等のフラ
ックスが装入されると共に、酸素が吹き込まれ、鉱石の
溶融還元が行われる。
Coarse-grained ore preliminarily reduced in the preliminary reduction furnace 2 is charged into the smelting reduction furnace 1 via an ore charging short 5 and a carbon material charging short 6 is used. The coal is charged. In addition to this, although not shown, a flux such as lime is charged and oxygen is blown in to perform the smelting reduction of the ore.

【0016】溶融還元炉1からはガスが発生するが、こ
のガスは吸引されて予備還元炉2に送られ、鉱石還元用
に使用される。溶融還元炉1の発生ガスは、多量のダス
トを含んでいるので、ダクト7を経由して溶融還元炉の
サイクロン3へ導入されてダストが捕集され、ダクト8
から予備還元炉2へ送られる。
Gas is generated from the smelting reduction furnace 1, and this gas is sucked and sent to the preliminary reduction furnace 2 and used for ore reduction. Since the gas generated in the smelting reduction furnace 1 contains a large amount of dust, it is introduced into the cyclone 3 of the smelting reduction furnace via the duct 7 to collect the dust, and the duct 8
Sent to the preliminary reduction furnace 2.

【0017】予備還元炉2は流動層式であり、その排ガ
スは、鉱石のダスト(微粉或いは細粒の鉱石)を含んで
いるので、ダクト9を経由して予備還元炉のサイクロン
4へ導入されてダストが捕集され、燃料として利用工程
へ送られる。
The pre-reduction furnace 2 is of the fluidized bed type, and its exhaust gas contains ore dust (fine powder or fine-grained ore), so that it is introduced into the cyclone 4 of the pre-reduction furnace via the duct 9. Dust is collected and sent to the utilization process as fuel.

【0018】上記溶融還元炉のサイクロン3及び予備還
元炉のサイクロン4によって捕集されたダストは溶融還
元炉1へ装入される。溶融還元炉のダストはサイクロン
3に接続された配管10に窒素又は溶融還元炉の発生ガ
ス等のキャリアガスが吹き込まれることによって気送さ
れる。11はキャリアガスの配管を示す。この場合に使
用するキャリアガスとしては、予熱された窒素、高温の
まま除塵して回収された上記発生ガス或いは回収後に予
熱された上記発生ガス等であればなおよい。又、予備還
元炉のダストはサイクロン4に接続された配管12から
上記同様のキャリアガスによって気送される。13はキ
ャリアガスの配管を示す。
The dust collected by the cyclone 3 of the smelting reduction furnace and the cyclone 4 of the preliminary reduction furnace is charged into the smelting reduction furnace 1. The dust in the smelting reduction furnace is pneumatically fed by blowing nitrogen or a carrier gas such as the gas generated in the smelting reduction furnace into a pipe 10 connected to the cyclone 3. Reference numeral 11 denotes a carrier gas pipe. The carrier gas used in this case is preferably preheated nitrogen, the above-mentioned generated gas recovered by dust removal at a high temperature, or the above-mentioned generated gas preheated after recovery. Further, the dust in the preliminary reduction furnace is pneumatically fed from the pipe 12 connected to the cyclone 4 by the same carrier gas as above. Reference numeral 13 denotes a carrier gas pipe.

【0019】上述の2種類のダストの気送においては、
固気比(ダスト重量とキャリアガス重量の比)を5〜2
0程度、通常10程度にして行う。そして、配管10に
よって気送された溶融還元炉のダストと、配管12によ
って気送された予備還元炉のダストは、合流した後、数
十m/sの流速でシュ−ト14から溶融還元炉1内へ装
入される。この時、シュ−ト14から溶融還元炉ヘのダ
ストの気送流速は、少なくとも20m/s以上、好まし
くは50〜100m/s程度で行う。
In the above-mentioned pneumatic transportation of the two types of dust,
Solid-air ratio (ratio of dust weight to carrier gas weight) is 5 to 2
About 0, usually about 10 is performed. Then, the dust of the smelting reduction furnace pneumatically conveyed by the pipe 10 and the dust of the preliminary reduction furnace pneumatically conveyed by the pipe 12 merge and then flow from the shunt 14 to the smelting reduction furnace at a flow rate of several tens m / s. It is loaded into 1. At this time, the air flow rate of dust from the shunt 14 to the smelting reduction furnace is at least 20 m / s or more, preferably about 50 to 100 m / s.

【0020】まず、気送流速が少なくとも20m/s以
上必要な理由は、次のごとくである。必要な気送流速
は、装入シュ−ト下端とスラグ浴面との間隔によって異
なるものであり、その間隔が小さい場合(1〜3m程
度)には、10m/sを超える流速にすれば、装入した
ダストの飛散率は重力落下方式よりも良好になるが、上
記間隔が4〜10m程度に広がった場合には、20m/
s程度以上でないと、装入したダストの飛散率は重力落
下方式と大差なくなってしまう。
First, the reason why the pneumatic flow velocity is required to be at least 20 m / s or more is as follows. The required air flow velocity differs depending on the distance between the lower end of the charging shunt and the slag bath surface. If the distance is small (about 1 to 3 m), if the flow velocity exceeds 10 m / s, The scattering rate of the charged dust is better than that of the gravity fall method, but when the above interval is expanded to about 4 to 10 m, 20 m /
If it is not more than about s, the scattering rate of the charged dust will be almost the same as that of the gravity fall method.

【0021】ダストの飛散は、粒子径が大きく、粒子の
見掛け比重が大きく、周囲のガス流速が小さいほど起こ
りにくい。そして、本実施例で装入されるダストは、鉱
石に由来し比較的比重が大きく(比重2〜3)粒径数十
μm〜1mm以下の粒子、炭材に由来し比重が0.7〜
1程度で粒径が数百μm〜数mmの粒子、及びごく少量
のスラグ飛散物や粒鉄等の混合物である。上記したダス
トの気送流速は、炉内の空塔流速2〜3m/s程度、炉
口付近での最大ガス流速5〜10m/s程度の操業条件
における値である。しかし、炉内圧力の低下等により、
炉内空塔流速が増大したり、投入物の性状(粒径、見掛
け比重等)が変わった場合には、上記ダストの気送流速
も変えなければならない。
Dust scattering is less likely to occur as the particle size is larger, the apparent specific gravity of the particles is larger, and the surrounding gas flow velocity is smaller. The dust charged in this example is derived from ore and has a relatively large specific gravity (specific gravity 2 to 3), a particle diameter of several tens of μm to 1 mm or less, and a carbonaceous material having a specific gravity of 0.7 to
Particles having a particle size of about 1 and a particle size of several hundreds of μm to several mm, and a very small amount of a mixture of slag scattering material, granular iron, and the like. The above-mentioned air flow velocity of dust is a value under operating conditions of a superficial velocity of about 2 to 3 m / s in the furnace and a maximum gas velocity of about 5 to 10 m / s near the furnace opening. However, due to the decrease in furnace pressure,
When the flow velocity of the superficial space in the furnace increases or the properties of the input material (particle size, apparent specific gravity, etc.) change, the air flow velocity of the dust must also be changed.

【0022】次に、気送流速の好ましい範囲が50〜1
00m/s程度である理由は、次のごとくである。気送
流速が100m/sを超えると、シュ−ト内管壁の磨耗
が顕在化し、200m/sを超える条件においては、非
常に高い圧力のキャリアガスを供給しなければならず、
設備上の問題も発生する。
Next, the preferred range of the pneumatic flow velocity is 50 to 1
The reason why it is about 00 m / s is as follows. When the pneumatic flow velocity exceeds 100 m / s, wear of the inner wall of the shoot becomes obvious, and under the condition of exceeding 200 m / s, the carrier gas of very high pressure must be supplied,
Equipment problems also occur.

【0023】ダストを気送によってシュ−ト14から溶
融還元炉1内へ装入する際の吹き込む方向は、鉛直下方
であるのがのが最もよいが、少なくとも、鉛直線に対し
30°未満の範囲であることが望ましい。ダストの吹き
込み角度が鉛直線に対して大きくなると、吹き込み点か
ら湯面までの距離が長くなって、キャリアガス流と炉内
発生ガスの上昇流との接触面積が大きくなり、従って、
ダストの飛散量が増加する。
When dust is charged into the smelting reduction furnace 1 from the shunt 14 by air, the blowing direction is the most preferably vertically downward, but at least less than 30 ° with respect to the vertical line. It is desirable that it is in the range. When the blowing angle of dust becomes large with respect to the vertical line, the distance from the blowing point to the molten metal surface becomes long, and the contact area between the carrier gas flow and the ascending flow of the gas generated in the furnace becomes large.
The amount of dust scattering increases.

【0024】なお、溶融還元炉のダストと予備還元炉の
ダストの合流は、配管10と配管12を図2のように接
続して行うのがよい。図2は配管10と配管12を接続
する場合の一例であり、サイクロン4から予備還元炉の
ダストを気送する配管12を溶融還元炉にダストを装入
するシュ−ト14に接続し、このシュ−ト14の中心部
にサイクロン3から溶融還元炉のダストを気送する配管
10を挿入して接続している。2系統のダスト配管が上
記のようになっていると、比重の小さい炭材を多く含む
溶融還元炉のダストは殆どが比重の大きい鉱石である予
備還元炉のダストで包まれた状態で溶融還元炉内へ装入
される。
The merging of the dust of the smelting reduction furnace and the dust of the preliminary reduction furnace is preferably performed by connecting the pipe 10 and the pipe 12 as shown in FIG. FIG. 2 shows an example in which the pipe 10 and the pipe 12 are connected to each other. The pipe 12 for carrying dust from the pre-reduction furnace from the cyclone 4 is connected to the shunt 14 for charging the dust into the smelting reduction furnace. A pipe 10 for feeding dust from the smelting reduction furnace from the cyclone 3 is inserted and connected to the center of the shoot 14. When the two systems of dust piping are as described above, most of the dust in the smelting reduction furnace that contains a large amount of carbonaceous material with a low specific gravity is smelted and reduced while being wrapped in the dust in the preliminary reduction furnace, which is an ore with a large specific gravity. It is loaded into the furnace.

【0025】図3は本発明の他の実施例の説明図であ
り、図4は図3におけるB部及びC部の構造の一例を示
した図である。図3及び図4において、図1及び図2と
同様の構成部分については、同一の符号を付し説明を省
略する。本実施例においては、図1の場合と同様にし
て、サイクロン3から配管10によって気送される溶融
還元炉のダストと、サイクロン4から配管12によって
気送されてる予備還元炉のダストを、配管15に合流さ
せている。そして、配管15内の上記2種類のダスト
を、鉱石装入シュ−ト5中の粗粒鉱石と合流させ装入す
る。
FIG. 3 is an explanatory view of another embodiment of the present invention, and FIG. 4 is a view showing an example of the structure of the B section and the C section in FIG. 3 and 4, the same components as those in FIGS. 1 and 2 are designated by the same reference numerals and the description thereof will be omitted. In the present embodiment, as in the case of FIG. 1, the dust of the smelting reduction furnace that is pneumatically transported from the cyclone 3 through the pipe 10 and the dust of the preliminary reduction furnace that is pneumatically transported from the cyclone 4 through the pipe 12 Joined 15 Then, the above-mentioned two kinds of dust in the pipe 15 are merged with the coarse-grained ore in the ore charging shoe 5 and charged.

【0026】なお、溶融還元炉のダストと予備還元炉の
ダストの合流、及びこの合流させた2種類のダストと粗
粒鉱石との合流させる際の配管の接続は、図4(a),
(b)ようにし、図1の場合と同様に行うのがよい。即
ち、図4(a)においては、予備還元炉のダストを気送
する配管12を接続配管15に接続し、この配管15の
中心部に溶融還元炉のダストを気送する配管10を挿入
して接続している。そして、図4(b)においては、2
種類のダストを合流させた接続配管15を、鉱石挿入配
管5の中心部に挿入して接続している。
The joining of the dust of the smelting reduction furnace and the dust of the preliminary reducing furnace, and the connection of the pipes at the time of joining the joined two kinds of dust and the coarse-grained ore are shown in FIG.
It is preferable to carry out the same procedure as in FIG. 1 as in (b). That is, in FIG. 4A, a pipe 12 for feeding the dust of the preliminary reduction furnace is connected to a connecting pipe 15, and a pipe 10 for feeding the dust of the smelting reduction furnace is inserted in the center of the pipe 15. Connected. Then, in FIG.
The connection pipe 15 in which various kinds of dust are merged is inserted into the center portion of the ore insertion pipe 5 to be connected.

【0027】このような装入方法によれば、飛散し易い
溶融還元炉のダストは、粒径が大きく飛散しない鉱石に
囲まれて炉内に装入されるので、その飛散は一層抑制さ
れると共に、鉱石粉である予備還元炉のダスト飛散の抑
制もなされる。
According to such a charging method, the dust in the smelting reduction furnace, which is easily scattered, is charged into the furnace while being surrounded by ores having a large particle size and not scattered, so that the scattering is further suppressed. At the same time, dust scattering in the preliminary reduction furnace, which is ore powder, is suppressed.

【0028】(実施例)50ton/日の鉄浴型の溶融
還元炉を使用した操業を行い、図1の方法又は図2の方
法によって捕集した溶融還元炉のダストの装入を行っ
た。この際の操業条件は次の通りにした。 送酸量 ;1600〜1900Nm3 /h 排ガス量;5000〜5500Nm3 /h 圧力 ;1.3〜1.4kg/cm2 G 原料装入;鉱石 30〜40kg/min 、石炭 35〜
43kg/min 原料粒度;鉱石 5mm以下、石炭 8〜22mm
(Example) Operation was carried out using an iron bath type smelting reduction furnace of 50 ton / day, and the dust of the smelting reduction furnace collected by the method of FIG. 1 or the method of FIG. 2 was charged. The operating conditions at this time were as follows. Amount of acid fed; 1600 to 1900 Nm 3 / h Amount of exhaust gas; 5000 to 5500 Nm 3 / h Pressure; 1.3 to 1.4 kg / cm 2 G Raw material charge; Ore 30 to 40 kg / min, Coal 35 to 35
43kg / min Raw material particle size; ore 5mm or less, coal 8-22mm

【0029】[0029]

【表1】 [Table 1]

【0030】上記条件で操業した際に捕集した溶融還元
炉のダストの性状は次の通りであった。その組成は表1
に、ダストの原料源別の粒度分布は図5に、ダストの原
料源別の重量比は図6に示す。表1及び図6によれば、
溶融還元炉のダスト中には、40%程度の鉱石粉の他に
約50%〜60%の炭材粉が含まれている。又、図5に
よれば、炭材粉の粒度は約3mm以下、鉱石粉の粒度は
約0.3mm以下である。
The properties of the dust of the smelting reduction furnace collected when operating under the above conditions were as follows. Its composition is shown in Table 1.
The particle size distribution of each dust source is shown in FIG. 5, and the weight ratio of each dust source is shown in FIG. According to Table 1 and FIG.
The dust of the smelting reduction furnace contains about 50% to 60% of carbonaceous material powder in addition to about 40% of ore powder. Further, according to FIG. 5, the particle size of the carbonaceous material powder is about 3 mm or less, and the particle size of the ore powder is about 0.3 mm or less.

【0031】そして、図1の方法又は図2の方法によっ
て、上記性状の溶融還元炉のダストを装入したところ、
その飛散率の値は表2の通りであった。
Then, when the dust of the smelting reduction furnace having the above-mentioned properties was charged by the method of FIG. 1 or the method of FIG. 2,
The values of the scattering rate are shown in Table 2.

【0032】[0032]

【表2】 [Table 2]

【0033】(比較例)操業条件は実施例と同じにし、
溶融還元炉のダスト、予備還元炉のダスト、及び粗粒鉱
石をそれぞれ別の装入経路から装入したところ、溶融還
元炉のダストの飛散率は表2の通りであった。なお、予
備還元炉のダストの飛散率は3%〜5%であった。
(Comparative Example) The operating conditions were the same as in the Example,
When the dust of the smelting reduction furnace, the dust of the preliminary reduction furnace, and the coarse-grained ore were charged from different charging routes, the scattering rate of the dust of the smelting reduction furnace was as shown in Table 2. The dust scattering rate in the preliminary reduction furnace was 3% to 5%.

【0034】表2における実施例と比較例の値を比べて
みると、実施例での溶融還元炉のダスト飛散率は比較例
の値に対し、図1の方法によれば1/4〜1/2、図2
の方法によれば1/4〜1/7に減少し、きをめて良好
な値である。そして、このダストの捕集率を原料原単位
で表せば、炭材は約50kg/生成溶鉄ton 、鉄分は約
30kg/生成溶鉄ton の歩留向上となった。
Comparing the values of the example and the comparative example in Table 2, the dust scattering rate of the smelting reduction furnace in the example is 1/4 to 1 according to the method of FIG. 1 with respect to the value of the comparative example. / 2, Figure 2
According to the method (1), it is reduced to 1/4 to 1/7, which is a very good value. When the collection rate of this dust is expressed in terms of the raw material unit, the yield was improved by about 50 kg / ton of molten iron produced and about 30 kg of iron / ton of produced molten iron.

【0035】[0035]

【発明の効果】第一の発明は、溶融還元炉のダストと予
備還元炉のダストを気流輸送によってダスト装入経路に
合流させて溶融還元炉へ装入する方法であり、又、第二
の発明は、溶融還元炉のダストと予備還元炉のダストを
気流輸送によってダスト装入経路に合流させ、この合流
させた2種類のダストを、更に粗粒鉱石装入経路中の粗
粒鉱石と合流させて溶融還元炉へ装入する方法である。
The first aspect of the present invention is a method for charging the dust of the smelting reduction furnace and the dust of the pre-reduction furnace into the dust charging path by air transport and charging them into the smelting reduction furnace. According to the invention, the dust of the smelting reduction furnace and the dust of the preliminary reduction furnace are merged into the dust charging route by air flow transportation, and the two kinds of the merged dust are further merged with the coarse grain ore in the coarse grain ore charging route. This is a method of charging the smelting reduction furnace.

【0036】本発明によれば、比重が小さく飛散し易い
溶融還元炉のダストは、比重が大きい鉱石粉又は粗粒鉱
石包まれるようにして装入されるため、その飛散が大幅
に抑えられる。従って、原料歩留が向上する。
According to the present invention, the dust of the smelting reduction furnace, which has a small specific gravity and is easily scattered, is charged so as to be wrapped in an ore powder or a coarse-grained ore having a large specific gravity, so that the scattering is greatly suppressed. Therefore, the raw material yield is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】図1におけるA部の構造の一例を示した図であ
る。
FIG. 2 is a diagram showing an example of a structure of a portion A in FIG.

【図3】本発明の他の実施例の説明図である。FIG. 3 is an explanatory diagram of another embodiment of the present invention.

【図4】図3におけるB部及びC部の構造の一例を示し
た図である。
FIG. 4 is a diagram showing an example of a structure of a B section and a C section in FIG.

【図5】溶融還元炉のダストの粒度分布を示した図であ
る。
FIG. 5 is a diagram showing a particle size distribution of dust in a smelting reduction furnace.

【図6】溶融還元炉のダストに含まれる原料源別の重量
比を示した図である。
FIG. 6 is a view showing a weight ratio of raw material sources contained in the dust of the smelting reduction furnace.

【符号の説明】[Explanation of symbols]

1 溶融還元炉 2 予備還元炉 3 溶融還元炉のサイクロン 4 予備還元炉のサイクロン 5 鉱石装入シュ−ト 6 炭材装入シュ−ト 7、8、9 ダクト 10 溶融還元炉のサイクロンに接続された配管 11、13 キャリアガスの配管 12 予備還元炉のサイクロンに接続された配管 14 溶融還元炉にダストを装入するシュ−ト 15 接続配管 1 Smelting reduction furnace 2 Preliminary reduction furnace 3 Cyclone of smelting reduction furnace 4 Cyclone of preliminary reduction furnace 5 Ore charging shunt 6 Carbon material charging shunt 7, 8, 9 Duct 10 Connected to cyclone of smelting reduction furnace Pipes 11 and 13 Carrier gas pipes 12 Pipes connected to the cyclone of the preliminary reduction furnace 14 Shots for charging dust into the smelting reduction furnace 15 Connection pipes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 室屋 正廣 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 山瀬 治 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 福島 裕法 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masahiro Muroya 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Osamu Yamase 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Tube Co., Ltd. (72) Inventor Yuho Fukushima 1-2 1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 予備還元炉を有する鉄浴型溶融還元設備
における捕集ダストの装入方法において、溶融還元炉の
発生ガスから捕集されたダストと予備還元炉の排ガスか
ら捕集されたダストを気流輸送によってダスト装入経路
に合流させ、この合流させた2種類のダストを気流輸送
によって溶融還元炉へ装入することを特徴とする溶融還
元設備における捕集ダストの装入方法。
1. A method for charging collected dust in an iron bath type smelting reduction equipment having a preliminary reduction furnace, wherein dust collected from gas generated in the smelting reduction furnace and dust collected from exhaust gas from the preliminary reduction furnace. A method for charging trapped dust in a smelting reduction facility, characterized in that the two are combined into a dust charging path by air current transportation, and the two kinds of merged dust are charged into the smelting reduction furnace by air current transportation.
【請求項2】 予備還元炉を有する鉄浴型溶融還元設備
における捕集ダストの装入方法において、溶融還元炉の
発生ガスから捕集されたダストと予備還元炉の排ガスか
ら捕集されたダストを気流輸送によってダスト装入経路
に合流させ、この合流させた2種類のダストを、更に予
備還元炉から溶融還元炉に接続された粗粒鉱石装入経路
中の粗粒鉱石と合流させ、気流輸送によって溶融還元炉
へ装入することを特徴とする溶融還元設備における捕集
ダストの装入方法。
2. A method of charging collected dust in an iron bath type smelting reduction equipment having a preliminary reduction furnace, wherein dust collected from gas generated in the smelting reduction furnace and dust collected from exhaust gas of the preliminary reduction furnace. Are combined with the dust charging path by air flow transportation, and the two kinds of combined dust are further combined with the coarse-grained ore in the coarse-grained ore charging path connected from the preliminary reduction furnace to the smelting reduction furnace, A method for charging collected dust in a smelting reduction facility, characterized by charging the smelting reduction furnace by transportation.
JP3345096A 1991-12-26 1991-12-26 Method for charging collected dust in smelting reduction equipment Pending JPH05171233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3345096A JPH05171233A (en) 1991-12-26 1991-12-26 Method for charging collected dust in smelting reduction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3345096A JPH05171233A (en) 1991-12-26 1991-12-26 Method for charging collected dust in smelting reduction equipment

Publications (1)

Publication Number Publication Date
JPH05171233A true JPH05171233A (en) 1993-07-09

Family

ID=18374260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3345096A Pending JPH05171233A (en) 1991-12-26 1991-12-26 Method for charging collected dust in smelting reduction equipment

Country Status (1)

Country Link
JP (1) JPH05171233A (en)

Similar Documents

Publication Publication Date Title
RU1813099C (en) Method of producing liquid cast iron and installation for performing the method
US9512496B2 (en) Method and device for introducing fine particle-shaped material into the fluidised bed of a fluidised bed reduction unit
RU2555318C2 (en) Method and device for production of moulded products
JP4316673B2 (en) Process for treating granular material in fluidized bed process and reaction vessel and plant for carrying out this process
JP2608736B2 (en) Method of charging exhaust gas dust in smelting reduction furnace
JPH05171233A (en) Method for charging collected dust in smelting reduction equipment
AU717927B2 (en) Two step twin-single fluidized bed type pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
JPH06220513A (en) Circulation layer type preliminary reducing furnace for powdery iron ore
JP2000054014A (en) Device for charging ore in smelting reduction equipment
JPH05171234A (en) Method for charging raw material into smelting reduction furnace and chute for charging raw material into smelting reduction furnace
JPH06145749A (en) Method for reducing ore by circulating fluidized bed
JPH0611884B2 (en) Smelting reduction ironmaking method
JP3787960B2 (en) Smelting reduction smelting method
JPH077313Y2 (en) Pre-reduction equipment for smelting reduction of iron ore
JPH10305923A (en) Transport device for powder and granular material
JPH02209408A (en) Smelting reduction iron-making method
JPS6311609A (en) Prereduction device for iron ore
JPH11310814A (en) Smelting reduction furnace
JP2895520B2 (en) Method and apparatus for supplying carbon material to smelting reduction furnace
JPH0324213A (en) Treatment of drop ore of preliminary reduction furnace
JPH0735525B2 (en) Smelting reduction method of powdery ore and smelting reduction apparatus
JPH0723500B2 (en) Smelting reduction method of powdery ore
JP2502976B2 (en) Iron ore preliminary reduction device
JPH05171235A (en) Method for charging raw material into smelting reduction furnace and chute for charging raw material in smelting reduction furnace
JPH05311253A (en) Method and device for regulating raw material for smelting/reducing blow-in from steel-making dust

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

A131 Notification of reasons for refusal

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040826

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20041102

Free format text: JAPANESE INTERMEDIATE CODE: A02