JPH05171217A - Manufacture of sintered compact of alloy of rare earth element - Google Patents

Manufacture of sintered compact of alloy of rare earth element

Info

Publication number
JPH05171217A
JPH05171217A JP35699591A JP35699591A JPH05171217A JP H05171217 A JPH05171217 A JP H05171217A JP 35699591 A JP35699591 A JP 35699591A JP 35699591 A JP35699591 A JP 35699591A JP H05171217 A JPH05171217 A JP H05171217A
Authority
JP
Japan
Prior art keywords
rare earth
carbon
alloy
sintering
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35699591A
Other languages
Japanese (ja)
Inventor
Hisafumi Shintani
尚史 新谷
Takashi Tode
孝 戸出
Junzo Tsuruki
潤三 鶴来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP35699591A priority Critical patent/JPH05171217A/en
Publication of JPH05171217A publication Critical patent/JPH05171217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered compact of an alloy of rare earth elements free from deformation and crack, not contaminated by impurities, especially by carbon and utilized for the heater of an electric furnace, etc., by sintering a compact of powder of the alloy in a vessel made of a metal such as Ti, Zr, Ta or Nb. CONSTITUTION:When a compact of powder of an alloy of rare earth elements is put in a vessel made of a metal acting as a carbon getter and the compact in the vessel is sintered in a sintering furnace to produce a sintered compact of the alloy, Ti, Zr, Ta or Nb are used as the metal acting as a carbon getter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気炉のヒーター材料
として有用な希土類合金粉末を成形、焼結し、焼結体を
製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered body by molding and sintering a rare earth alloy powder useful as a heater material for an electric furnace.

【0002】[0002]

【従来の技術】一般に利用されている粉末冶金用の焼結
炉の加熱方式は電気加熱であり、ヒーター材としてはNi
−Cr,SiC ,W,Mo,Ta,C等があるが、希土類合金は
1,000℃以上の高融点の物が多く、ヒーター材としては
高温域まで安定した加熱の可能なカーボン(C)が適し
ている。しかし、カーボンをヒーターとした場合、焼結
炉内をAr雰囲気や真空にしたとしても、微量のカーボン
が炉材等に残存する酸素が加熱によりカーボンと反応し
てCO,CO2 等が発生する。また、カーボン微粉の飛散が
起り希土類合金と反応して炭化物を作り、変形やクラッ
クを発生させることになる。たとえアルミナルツボ等に
入れ蓋をしてもカーボン微粉の侵入は防止できても、C
O、CO2等の気体は侵入してくるので炭化物の生成は避け
られないという欠点がある。この炭化物は希土類合金成
形体の表面を覆うようにして生成し、成形体への熱伝導
を妨害し、変形、クラックを発生させる。
2. Description of the Related Art The heating method of a commonly used sintering furnace for powder metallurgy is electric heating, and Ni is used as a heater material.
-Cr, SiC, W, Mo, Ta, C, etc., but rare earth alloys
Many of them have a high melting point of 1,000 ° C or higher, and carbon (C) that can stably heat up to a high temperature range is suitable as a heater material. However, when carbon is used as a heater, even if the atmosphere inside the sintering furnace is evacuated or vacuumed, a trace amount of carbon reacts with the carbon due to the oxygen remaining in the furnace material, etc., generating CO, CO 2, etc. . Further, carbon fine powder is scattered and reacts with the rare earth alloy to form a carbide, which causes deformation and cracks. Even if the fine carbon powder can be prevented from entering even if the lid is put in an alumina crucible or the like, C
Since gases such as O and CO 2 enter, there is a drawback that the formation of carbides is unavoidable. The carbide is generated so as to cover the surface of the rare earth alloy molded body, impedes heat conduction to the molded body, and causes deformation and cracks.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的はこれら
の課題を解決し、変形やクラックが無く、不純物、特に
はカーボンに汚染されない希土類合金の焼結体を製造す
る方法を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and to provide a method for producing a sintered body of a rare earth alloy which is free from deformation and cracks and is not contaminated with impurities, especially carbon. It is a thing.

【0004】[0004]

【課題を解決するための手段】本発明者はかかる課題を
解決するために汚染源となるカーボン微粉の処理方法と
してTi,Zr,Ta,Nb等の金属、好ましくはTiがカーボン
のゲッター剤として有効であり、これら金属製の容器内
で希土類合金粉末の成形体を焼結すればカーボン汚染を
防止できるることに着目し、その容器の形状、金属の種
類や焼結条件を詳細に検討して本発明を完成させた。そ
の要旨は、希土類合金粉末を圧縮成形した成形体をカー
ボンのゲッター剤となる金属製容器に入れた状態で焼結
炉内で焼結させることを特徴とする希土類合金焼結体の
製造方法にある。
In order to solve the above problems, the present inventor has found that as a method for treating fine carbon powder as a pollution source, metals such as Ti, Zr, Ta and Nb, preferably Ti is effective as a gettering agent for carbon. Therefore, paying attention to the fact that carbon contamination can be prevented by sintering a molded body of rare earth alloy powder in a container made of these metals, the shape of the container, the type of metal and the sintering conditions are examined in detail. The present invention has been completed. The gist of the invention is a method for producing a rare earth alloy sintered body, which comprises sintering a compact formed by compression molding of rare earth alloy powder in a sintering furnace in a metal container that serves as a getter agent for carbon. is there.

【0005】以下、本発明を詳細に説明する。本発明の
最大の特徴であるカーボンのゲッター剤はTi,Zr,Ta,
Nb等の金属、好ましくはTiが適している。これらの金属
は炭化物生成反応の標準自由エネルギーから選択される
もので、希土類元素よりも炭化物を生成し易く、カーボ
ンのゲッター剤として有効である。自由エネルギーの順
位(Zr<Ti<Ta<Nb)からするとZrが最も好ましいが、
入手の容易さ、価格、加工性等から判断するとTiが好適
である。本発明はこれらカーボンのゲッター剤となる金
属製の焼結用容器内で成形体を焼結することにより、焼
結炉内に飛散しているカーボン微粉による成形体の炭化
を防止する。この焼結用容器は成形体の形状、大きさ等
を考慮してやや余裕のある容積を持つ箱形とし、板材を
溶接加工すれば良い。蓋はカーボン微粉の侵入を防止す
るために側壁長さを十分採るように加工する。図 1は焼
結用容器の縦断面図で成形体1を敷板2の上に置き、焼
結用容器3の中に置いて焼結する。図2は通常の方法で
成形体1を敷板2の上に置きそのまま焼結炉内に置いて
焼結するため不純物による汚染は免れない。
The present invention will be described in detail below. The most characteristic feature of the present invention is carbon gettering agents such as Ti, Zr, Ta,
A metal such as Nb, preferably Ti is suitable. These metals are selected from the standard free energies of the reaction for forming carbides, are more likely to form carbides than rare earth elements, and are effective as gettering agents for carbon. Zr is the most preferable from the order of free energy (Zr <Ti <Ta <Nb),
Judging from the availability, price, workability, etc., Ti is preferable. The present invention prevents carbonization of the compact due to the fine carbon powder scattered in the sintering furnace by sintering the compact in a metal sintering container that serves as a gettering agent for these carbons. This sintering container may be formed in a box shape having a slightly large capacity in consideration of the shape and size of the molded body, and the plate material may be welded. The lid is processed to have a sufficient side wall length to prevent the infiltration of fine carbon powder. FIG. 1 is a vertical cross-sectional view of a sintering container in which a molded body 1 is placed on a floor plate 2 and placed in a sintering container 3 for sintering. In FIG. 2, since the molded body 1 is placed on the floor plate 2 by the usual method and placed in the sintering furnace as it is for sintering, contamination by impurities cannot be avoided.

【0006】本発明が適応される希土類金属としては、
Yを含む La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb
およびLuから選択される1種または2種以上の希土類金
属と遷移金属として4A〜2B族から選択される1種ま
たは2種以上の金属との合金で、具体的にはY-Ni,Er-N
i,La-Ni,Ce-Ni 等が例示される。
The rare earth metal to which the present invention is applicable includes
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb including Y
And an alloy of one or more rare earth metals selected from Lu and one or more metals selected from the groups 4A to 2B as transition metals, specifically Y-Ni, Er- N
Examples include i, La-Ni, Ce-Ni and the like.

【0007】焼結体の製造方法を工程順に述べると、先
ず、平均粒径4〜20μmの希土類合金粉末を所定の金型
に充填して圧縮成形し、得られた成形体を本発明の特定
金属製容器内に入れ、同金属製の蓋をしてカーボンヒー
ターを持つ焼結炉内に置き、1,000〜 1,400℃、1〜10
時間、真空下またはアルゴン等の不活性ガス雰囲気下に
焼結する。この方法によればカーボンのゲッター剤であ
る金属を成形体の焼結用容器としているので、焼結炉内
に飛散する不純物、特にカーボン微粉を遮断し、容器自
らがカーボンを吸着して金属炭化物を生成する。従っ
て、容器内の希土類金属および合金の成形体の炭化を防
止することになり、あわせて変形、クラックのない高品
質の焼結体を製造することができる。
The method of manufacturing a sintered body will be described in order of steps. First, a rare earth alloy powder having an average particle size of 4 to 20 μm is filled in a predetermined die and compression-molded, and the obtained molded body is specified by the present invention. Put in a metal container, put a lid made of the same metal in a sintering furnace with a carbon heater, 1,000 ~ 1,400 ℃, 1 ~ 10
Sintering for a period of time, under vacuum or in an atmosphere of an inert gas such as argon. According to this method, a metal as a gettering agent of carbon is used as a container for sintering a molded body, so that impurities scattered in the sintering furnace, particularly fine carbon powder, are blocked, and the container itself adsorbs carbon to cause metal carbide. To generate. Therefore, it is possible to prevent carbonization of the molded body of rare earth metal and alloy in the container, and it is possible to manufacture a high-quality sintered body without deformation and cracks.

【0008】[0008]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1)Y−Ni(25:75重量%)合金粉末(平均粒
径D50= 7.0μm)を金型成形により 100mmφ×100mmL
の成形体とした後、 120mmφ×120mmLのTi板製容器内に
Mo板を敷板として入れ、Ti板製の蓋をした。これをカー
ボンヒーターを持つ焼結炉内で1,300 ℃×1時間、10-4
トールの真空中で焼結した。得られた焼結体は、相対密
度 TD=95.0%で変形、クラックの無い物が得られた。
また、不純物としてのカーボンは分析の結果、0.01重量
%であった。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Example 1) Y-Ni (25: 75% by weight) alloy powder (average particle diameter D 50 = 7.0 μm) was 100 mmφ × 100 mmL by die molding.
After forming into a molded body of 120mmφ × 120mmL Ti plate container
A Mo plate was put in as a floor plate, and a Ti plate lid was put on. Place this in a sintering furnace equipped with a carbon heater at 1,300 ° C for 1 hour at 10 -4
Sintered in torr vacuum. The obtained sintered body had a relative density TD of 95.0% and was free from deformation and cracks.
As a result of analysis, carbon as an impurity was 0.01% by weight.

【0009】(実施例2)Er-Fe (25 :75重量%)合金
粉末(平均粒径D50= 7.0μm)を金型成形により 150
mmW ×150mmL×5mmT の成形体とした後、 170mmW ×17
0mmL×15mmH のTa板製容器内にMo板を敷板として入れ、
Ta板製の蓋をした。これをカーボンヒーターを持つ焼結
炉内で1,300 ℃×1時間、10-4トールの真空中で焼結し
た。得られた焼結体は、相対密度 TD=95.0%で変形、
クラックの無い物が得られた。また、不純物としてのカ
ーボンは分析の結果、0.01重量%であった。
(Example 2) Er-Fe (25: 75% by weight) alloy powder (average particle diameter D 50 = 7.0 μm) was molded by die molding to give 150
After forming a molded body of mmW × 150 mmL × 5 mmT, 170 mmW × 17
Put a Mo plate as a floorboard in a 0 mmL × 15 mmH Ta plate container,
A lid made of Ta plate was put on. This was sintered in a sintering furnace equipped with a carbon heater at 1,300 ° C. for 1 hour in a vacuum of 10 −4 Torr. The obtained sintered body is deformed at a relative density TD = 95.0%,
A crack-free product was obtained. As a result of analysis, carbon as an impurity was 0.01% by weight.

【0010】(比較例1)成形体をMo敷板上にのせその
まま焼結炉内に置いた以外は実施例 1と同じ組成、条件
で焼結した。得られた焼結体は相対密度 TD=85.5%で
変形が認められた。また、不純物としてのカーボンは分
析の結果、0.69重量%であった。
Comparative Example 1 Sintering was carried out under the same composition and conditions as in Example 1 except that the molded body was placed on a Mo floor plate and placed in a sintering furnace as it was. Deformation was observed in the obtained sintered body at a relative density TD = 85.5%. As a result of analysis, carbon as an impurity was 0.69% by weight.

【0011】(比較例2)成形体をMo敷板上にのせアル
ミナるつぼに入れ、蓋をした以外は実施例2と同じ組
成、条件で焼結した。得られた焼結体は相対密度 TD=
80.0%で変形が認められた。また、不純物としてのカー
ボンは分析の結果、0.53重量%であった。
(Comparative Example 2) A compact was placed on a Mo floor plate, placed in an alumina crucible, and sintered under the same composition and conditions as in Example 2 except that the lid was closed. The obtained sintered body has a relative density TD =
Deformation was observed in 80.0%. As a result of analysis, carbon as an impurity was 0.53% by weight.

【0012】[0012]

【発明の効果】希土類合金粉末の成形体をTi,Zr,Ta,
Nb等のカーボンのゲッター剤となる金属容器内で焼結す
ることにより、変形、クラックが無く、カーボンを主と
する不純物に汚染されない希土金属およびその合金の焼
結体を製造することができ、工業上その利用価値は極め
て高い。
[Effects of the Invention] Molded bodies of rare earth alloy powders are manufactured using Ti, Zr, Ta,
By sintering in a metal container that serves as a gettering agent for carbon such as Nb, it is possible to produce a sintered body of a rare earth metal and its alloy that is free from deformation and cracks and is not contaminated by impurities mainly composed of carbon. Its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の実施態様の一例を示す縦断面図であ
る。
FIG. 1 is a vertical sectional view showing an example of an embodiment of the present invention.

【図2】比較例の一例を示す縦断面図である。FIG. 2 is a vertical sectional view showing an example of a comparative example.

【符号の説明】[Explanation of symbols]

1 成形体 2 敷板 3 焼結用容器 1 molded body 2 floor plate 3 sintering container

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】希土類合金粉末を圧縮成形した成形体をカ
ーボンのゲッター剤となる金属製容器に入れた状態で焼
結炉内で焼結させることを特徴とする希土類合金焼結体
の製造方法。
1. A method for producing a rare earth alloy sintered body, which comprises sintering a compact obtained by compression molding rare earth alloy powder in a sintering furnace in a state of being placed in a metal container serving as a getter agent for carbon. ..
【請求項2】カーボンのゲッター剤となる金属がTi,Z
r,Ta,Nbであることを特徴とする請求項1に記載の希
土類合金焼結体の製造方法。
2. A metal as a gettering agent for carbon is Ti or Z.
The method for producing a rare earth alloy sintered body according to claim 1, wherein the sintered body is r, Ta, or Nb.
JP35699591A 1991-12-24 1991-12-24 Manufacture of sintered compact of alloy of rare earth element Pending JPH05171217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35699591A JPH05171217A (en) 1991-12-24 1991-12-24 Manufacture of sintered compact of alloy of rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35699591A JPH05171217A (en) 1991-12-24 1991-12-24 Manufacture of sintered compact of alloy of rare earth element

Publications (1)

Publication Number Publication Date
JPH05171217A true JPH05171217A (en) 1993-07-09

Family

ID=18451837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35699591A Pending JPH05171217A (en) 1991-12-24 1991-12-24 Manufacture of sintered compact of alloy of rare earth element

Country Status (1)

Country Link
JP (1) JPH05171217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107971492A (en) * 2016-10-25 2018-05-01 梁福鹏 A kind of fused raw material generation method for 3 D-printing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107971492A (en) * 2016-10-25 2018-05-01 梁福鹏 A kind of fused raw material generation method for 3 D-printing

Similar Documents

Publication Publication Date Title
EP0345045B1 (en) Method of making tungsten-titanium sputtering targets
AU766574B2 (en) Low oxygen refractory metal powder for powder metallurgy
JP4989636B2 (en) High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method
US7311874B2 (en) Sputter target and method for fabricating sputter target including a plurality of materials
JP5001159B2 (en) Method for controlling the oxygen content of a powder
JP2649245B2 (en) Method for producing tough and porous getter by hydrogen grinding and getter produced therefrom
Wang et al. Deoxidization mechanism of hydrogen in TiH2 dehydrogenation process
US20030056619A1 (en) Low oxygen refractory metal powder for powder metallurgy
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
CN109023004B (en) Plasma tungsten-containing single-phase refractory high-entropy alloy and preparation method thereof
KR950703668A (en) HIGH MELTING POINT METALLIC SILICIDE TARGET AND METHOD FOR PRODUCING THE SAME, HIGH MELTING POINT METALLIC SILICIDE FILM AND SEMICOMDUCTOR DEVICE
US7138019B2 (en) Method for producing magnetostrictive element and sintering method
US20210023625A1 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
JP4798341B2 (en) Rare earth magnet sintering method
Leichtfried 12 Refractory metals
JPH05171217A (en) Manufacture of sintered compact of alloy of rare earth element
JP2002020828A (en) Aluminum alloy material, its production method and basket and cask using the same
JP4600690B2 (en) Manufacturing method of rare earth sintered magnet
JPH06145711A (en) Production of rare earth metal sintered body
JPH0762467A (en) Dispersion-strengthening type copper alloy and its production
JP6440282B2 (en) Manufacturing method of magnetic material
JPH06128604A (en) Production of metallic material
JPS648063B2 (en)
Leichtfried et al. Pressing and Sintering of Refractory Metal Powders
JP3471858B2 (en) Manufacturing method of metal sintered member