JPH05171214A - Production of reinforced titanium - Google Patents

Production of reinforced titanium

Info

Publication number
JPH05171214A
JPH05171214A JP3237782A JP23778291A JPH05171214A JP H05171214 A JPH05171214 A JP H05171214A JP 3237782 A JP3237782 A JP 3237782A JP 23778291 A JP23778291 A JP 23778291A JP H05171214 A JPH05171214 A JP H05171214A
Authority
JP
Japan
Prior art keywords
powder
tib
treated
treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3237782A
Other languages
Japanese (ja)
Other versions
JPH0762161B2 (en
Inventor
Teruo Takahashi
輝男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo Prefectural Government
Original Assignee
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Prefectural Government filed Critical Hyogo Prefectural Government
Priority to JP3237782A priority Critical patent/JPH0762161B2/en
Publication of JPH05171214A publication Critical patent/JPH05171214A/en
Publication of JPH0762161B2 publication Critical patent/JPH0762161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce reinforced Ti usable at a sufficiently high temp. by successively subjecting Ti powder and amorphous boron powder to mechanical alloying and hot isostatic press forming at a specified temp. CONSTITUTION:Ti powder and amorphous boron powder or TiB2 powder are successively subjected to mechanical alloying and hot isostatic press forming or hot pressing in the temp. range of 773-1,273K. Acicular or cylindrical fine TiB is deposited and reinforced Ti usable at a sufficiently high temp. is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強化チタンの製造方法
に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing reinforced titanium.

【0002】[0002]

【従来の技術および背景ならびに発明が解決しようとす
る課題】Tiおよびその合金は比強度が高くしかも耐食
性に優れているため、α型、α+β型あるいはβ型など
多くの合金が開発され、化学プラント、ジェットエンジ
ン、航空機あるいは機械部品などに広範に利用されてい
る。しかし、Ti合金も他の合金と同様に、高温では結
晶粒の粗大化、熱処理による析出粒子の成長などの現象
により著しく強度が低下するため、最高使用温度はせい
ぜい573〜773K程度である。
2. Description of the Related Art Since Ti and its alloys have high specific strength and excellent corrosion resistance, many alloys such as α type, α + β type and β type have been developed and chemical plants have been developed. Widely used in jet engines, aircraft or mechanical parts. However, the Ti alloy, like other alloys, has a marked decrease in strength at high temperatures due to phenomena such as coarsening of crystal grains and growth of precipitated particles due to heat treatment.

【0003】ところで、近年、Ti合金の耐熱性を改善
するために、CVD法で作製されたSiC繊維を複合化
した繊維強化チタン合金の開発が進められている。しか
し、CVD法で作製されたSiC繊維は非常に高価であ
り、なおかつ繊維強化金属基複合材料では高温での使用
時に強化繊維とマトリックス金属間に反応が生じるとい
う問題がある。この界面反応は高温では必然的に生じる
ため、反応を防止するためのコーティング法が種々検討
されているが充分でなく、そのため使用に際しては界面
反応の進行が問題にならない温度以下で使用するといっ
た方法が採用されている。このように、充分な高温特性
を有する繊維強化Ti合金は未だ提供されていない。
By the way, in recent years, in order to improve the heat resistance of the Ti alloy, the development of a fiber reinforced titanium alloy in which SiC fibers produced by the CVD method are compounded has been advanced. However, the SiC fiber produced by the CVD method is very expensive, and the fiber-reinforced metal matrix composite material has a problem that a reaction occurs between the reinforcing fiber and the matrix metal when used at high temperature. Since this interfacial reaction inevitably occurs at high temperatures, various coating methods for preventing the reaction have been studied, but it is not sufficient. Therefore, when used, a method of using at a temperature below the temperature at which progress of the interfacial reaction does not matter Has been adopted. As described above, a fiber reinforced Ti alloy having sufficient high temperature characteristics has not been provided yet.

【0004】そこで、界面反応が存在しないような母金
属と強化繊維の組合せが存在すれば、繊維をコーティン
グする必要もなく、界面反応を抑制するために低い温度
でしか使用できないという制約もなくなる。これに関
し、本発明者は以下のように考えた。すなわち、繊維あ
るいは粒子も含めて強化に寄与する物質は、「マトリッ
クス金属との溶解度積が小さいこと」または「マトリッ
クス金属に対して完全に平衡状態であること」のいずれ
かであれば、その複合材料は良好な特性を有すると考え
られる。本発明の目的の一つは後者の条件を満たすもの
を開発することにある。そのための物質としては、高温
でも安定である酸化物、炭化物、窒化物、ホウ化物が考
えられる。そこで、Ti−O系、Ti−C系、Ti−N
系、Ti−B系状態図を検討すると、NおよびOはTi
に対して非常に大きな固溶量を示し、Cも1193Kで
約0.5重量%固溶するため、これらの元素はTiマト
リックスの強化には寄与する。しかし、侵入型固溶体を
形成するため、同時に合金を脆化させるという一面を有
する。このため、酸化物、炭化物あるいは窒化物は、T
i基合金に対する強化物質として使用できない。一方、
Tiに対してBは殆ど固溶せず、図1に示す如く、Ti
−TiB共晶を形成する。従って、このTiBを微細化
できれば、TiB粒子の分散強化あるいは繊維強化によ
るTiの強化が期待できる。
Therefore, if there is a combination of the mother metal and the reinforcing fiber such that the interfacial reaction does not exist, it is not necessary to coat the fiber, and there is no restriction that the fiber can be used only at a low temperature to suppress the interfacial reaction. In this regard, the present inventor considered the following. That is, a substance that contributes to strengthening, including fibers or particles, is either a "small solubility product with the matrix metal" or a "complete equilibrium state with respect to the matrix metal", and its composite The material is believed to have good properties. One of the objects of the present invention is to develop a material that satisfies the latter condition. As a substance therefor, oxides, carbides, nitrides and borides which are stable even at high temperatures are considered. Therefore, Ti-O type, Ti-C type, Ti-N type
System and Ti-B system phase diagram, N and O are Ti
However, these elements contribute to strengthening the Ti matrix, since C also forms a solid solution of about 0.5% by weight at 1193K. However, since it forms an interstitial solid solution, it has an aspect of simultaneously embrittlement the alloy. Therefore, oxides, carbides or nitrides are
It cannot be used as a strengthening material for i-based alloys. on the other hand,
B hardly dissolves in Ti, and as shown in FIG.
Form a TiB eutectic. Therefore, if the TiB can be made finer, it is expected that the TiB particles can be strengthened by dispersion strengthening or fiber strengthening.

【0005】本発明は、以上説明したような従来の技術
の有する問題点に鑑みてなされたものであって、その目
的は、TiBの分散強化あるいは繊維強化による充分な
高温で使用可能な強化Tiの製造方法を提供することに
ある。
The present invention has been made in view of the problems of the prior art as described above, and the purpose thereof is to strengthen the Ti which can be used at a sufficiently high temperature by dispersion strengthening of TiB or fiber strengthening. It is to provide a manufacturing method of.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の要旨は、Ti粉および非晶質ホウ素粉または
TiB2 粉をメカニカルアロイングした後、773K〜
1273Kの温度で高温静水圧成形またはホットプレス
を行うことを特徴とする強化チタンの製造方法にある。
In order to achieve the above-mentioned object, the gist of the present invention is to mechanically alloy Ti powder and amorphous boron powder or TiB 2 powder, and thereafter 773K ~
A method for producing reinforced titanium is characterized in that hot isostatic pressing or hot pressing is performed at a temperature of 1273K.

【0007】[0007]

【実施例および作用】以下に、本発明の作用をその最適
実験例とともに説明する。
EXAMPLES AND OPERATION The operation of the present invention will be described below together with its optimum experimental example.

【0008】〔実験概要〕まず、本発明を適用した実験
の概要について説明すると、本実験に用いた原料は、高
純度Ti粉、非晶質B粉およびTiB2 であり、それら
の走査型電子顕微鏡(SEM)像を図2(a) 〜(c) に示
す。図2(a) 、図2(b) 、図2(c) はそれぞれTi粉、
B粉、TiB2 粉のSEM像である。なお、TiB2
は、図2(a) および図2(b) に示す高純度Ti粉および
非晶質B粉を所定の比に混合した後、自己燃焼合成法に
より得られたものを粉砕したものである。これらの粉末
を以下の表1に示すように、TiBの体積率が10.0
%、20.0%および30.0%となるように配合し、
高エネルギーボールミルによりアルゴン中で3.6×1
3 〜72.0×103 sec (以下「3.6ks〜7
2.0ks」という)間メカニカルアロイング(以下
「MA」という)し、得られたMA粉を673〜127
3Kの温度で3.6ks、高温静水圧成形(以下「HI
P」という)することにより固化成形した。
[Outline of Experiment] First, an outline of an experiment to which the present invention is applied will be described. The raw materials used in this experiment are high-purity Ti powder, amorphous B powder and TiB 2 , and their scanning electron Microscopic (SEM) images are shown in FIGS. 2 (a)-(c). 2 (a), 2 (b) and 2 (c) are Ti powder,
B powder, a SEM image of TiB 2 powder. As the TiB 2 powder, the high-purity Ti powder and the amorphous B powder shown in FIGS. 2 (a) and 2 (b) were mixed at a predetermined ratio, and then pulverized by the self-combustion synthesis method. It was done. These powders have a TiB volume ratio of 10.0 as shown in Table 1 below.
%, 20.0% and 30.0%,
3.6 × 1 in Argon with high energy ball mill
0 3 to 72.0 × 10 3 sec (hereinafter “3.6 ks to 7
Mechanical alloying (hereinafter referred to as “MA”) for 2.0 ks), and the obtained MA powder is 673 to 127.
High temperature isostatic pressing for 3.6ks at a temperature of 3K (hereinafter referred to as "HI
P)) to solidify and mold.

【0009】[0009]

【表1】 [Table 1]

【0010】以下に、実験工程順にその結果を説明す
る。
The results will be described below in the order of the experimental steps.

【0011】〔MA処理による合金粉の変化〕図3は合
金粉No.3(Ti−B系、30体積%TiB)のMA
処理による形態の変化を示す。3.6ksのMA処理に
より粉末は細かく粉砕されると共にそれらが凝集して造
粒が開始されている様子が確認できる(図3(b) 参
照)。そして、18.0ksでは造粒が進行し、粉末形
状は丸みを帯びるようになり(図3(c) 参照)、72.
0ks後には100〜200μmとなった(図3(d) 参
照)。
[Change of Alloy Powder by MA Treatment] FIG. MA of 3 (Ti-B system, 30% by volume TiB)
The change in morphology due to treatment is shown. It can be confirmed that the powder is finely pulverized by the MA treatment for 3.6 ks and that they are aggregated to start the granulation (see FIG. 3 (b)). Then, at 18.0 ks, granulation proceeds and the powder shape becomes rounded (see FIG. 3 (c)).
It became 100 to 200 μm after 0 ks (see FIG. 3 (d)).

【0012】図4(a) 、図4(b) はそれぞれ合金粉N
o.3(Ti−B系、30体積%TiB)、No.4
(Ti−TiB2 系、30体積%TiB)のMA処理に
よるX線回折図形の変化を示す。図4(a) においては、
MA処理の進行と共にTiの回折像はブロード化してい
る。これは歪みの蓄積と結晶粒の微細化に起因するもの
と思われる。また、図4(b) においても、Tiの回折像
はMA処理の進行と共にブロード化している。一方、T
iB2 の回折像は72.0ksのMA処理によって僅か
にブロード化しているが、Tiほど充分に粉砕されてい
ないものと思われる。というのは、TiB2 のビッカー
ス硬さは約3400と非常に硬いので、TiB2 を取り
囲む柔らかいTiのみが選択的に粉砕されたと考えられ
るからである。
4 (a) and 4 (b) are alloy powder N, respectively.
o. 3 (Ti-B system, 30% by volume TiB), No. Four
(Ti-TiB 2 based, 30 vol% TiB) shows the change in X-ray diffraction pattern by MA process. In Figure 4 (a),
The Ti diffraction image is broadened with the progress of the MA treatment. This is thought to be due to the accumulation of strain and the refinement of crystal grains. Also in FIG. 4B, the Ti diffraction image is broadened with the progress of MA processing. On the other hand, T
The iB 2 diffraction image is slightly broadened by the MA treatment for 72.0 ks, but it is considered that it is not pulverized sufficiently as Ti. This is because TiB 2 has a very high Vickers hardness of about 3400, and it is considered that only soft Ti surrounding TiB 2 was selectively crushed.

【0013】〔MA処理後の合金粉の熱処理による変
化〕図5(a) 、図5(b) はそれぞれ72.0ksMA処
理した合金粉No.3(Ti−B系、30体積%Ti
B)、No.4(Ti−TiB2 系、30体積%Ti
B)を真空中で3.6ks熱処理した場合のX線回折図
形の変化を示す。図5(a) では、773KですでにTi
Bの析出が認められ、平衡状態であるTi−TiB合金
となっている。TiBの回折像は熱処理温度の上昇によ
り僅かに鮮鋭化しているが、1273Kの熱処理でもか
なりブロードである。
[Change of Alloy Powder after MA Treatment by Heat Treatment] FIG. 5 (a) and FIG. 5 (b) show alloy powder No. 7 treated with 72.0 ks MA respectively. 3 (Ti-B system, 30 volume% Ti
B), No. 4 (Ti-TiB 2 system, 30 volume% Ti
The change of the X-ray-diffraction pattern when B) is heat-processed for 3.6 ks in a vacuum is shown. In Fig. 5 (a), Ti is already at 773K.
Precipitation of B was observed, and the Ti-TiB alloy was in an equilibrium state. The diffraction image of TiB is slightly sharpened by the rise of the heat treatment temperature, but is considerably broad even by the heat treatment of 1273K.

【0014】一方、図5(b) に示すように、合金粉N
o.4では773Kの熱処理ではTiおよびTiB2
いずれもMA処理によって蓄積された歪みが開放され、
回折像は鮮鋭化したが、TiBの析出は認められなかっ
た。TiBの析出は873K以上の熱処理温度で認めら
れるようになり、処理温度の上昇と共に増大した。10
73K以上では完全に反応は終了し、平衡状態であるT
i−TiB合金となった。
On the other hand, as shown in FIG. 5 (b), alloy powder N
o. In No. 4, in the heat treatment of 773 K, the strain accumulated by the MA treatment was released in both Ti and TiB 2 ,
The diffraction image was sharpened, but precipitation of TiB was not observed. Precipitation of TiB became visible at a heat treatment temperature of 873 K or higher, and increased with an increase in the treatment temperature. 10
The reaction is completely completed at 73K or higher, and the equilibrium T
It became an i-TiB alloy.

【0015】以上の結果、B源として非晶質B粉を使用
するほうが、TiB2 粉を使用するよりも、より低温で
平衡状態に達することが明らかとなった。
From the above results, it was revealed that the use of the amorphous B powder as the B source reaches the equilibrium state at a lower temperature than the use of the TiB 2 powder.

【0016】〔HIP処理後の微細組織〕図6(a) 、
(b) は、72.0ksMA処理した合金粉No.1(T
i−B系、10体積%TiB)を1073K(図6(a))
または1273K(図6(b))で3.6ksHIP処理し
た場合の分析電子顕微鏡(TEM)像を示す。析出する
TiBは針状あるいは棒状であり、低温の1073Kの
ほうがより微細であるのが認められる。また、1073
Kの熱処理では、Tiの再結晶粒は部分的に認められる
のみであり、その平均粒径は300〜500nmであっ
た。
[Microstructure after HIP treatment] FIG. 6 (a),
(b) is alloy powder No. 7 processed by 72.0 ksMA. 1 (T
i-B system, 10 vol% TiB) was added to 1073K (Fig. 6 (a)).
Or the analytical electron microscope (TEM) image at the time of treating 3.6ksHIP at 1273K (FIG.6 (b)) is shown. The precipitated TiB is needle-shaped or rod-shaped, and it is recognized that 1073K at low temperature is finer. Also, 1073
In the heat treatment of K, the recrystallized grains of Ti were only partially recognized, and the average grain size was 300 to 500 nm.

【0017】図7(a) 、(b) は、72.0ksMA処理
した合金粉No.3(Ti−B系、30体積%TiB)
を873K(図7(a))または1073K(図7(b))で
3.6ksHIP処理した場合のTEM像を示す。87
3Kで析出するTiBは著しく微細であるのが明らかで
ある。一般にAl基、Cu基あるいはTiAl金属間化
合物などのMA合金の組織は非常に微細であることが報
告されているが、本実験でのTi−TiB合金も同様の
傾向を示した。
7 (a) and 7 (b) show alloy powder No. 7 processed by 72.0 ksMA. 3 (Ti-B system, 30% by volume TiB)
Shows a TEM image of the case where the treatment was performed with 873K (Fig. 7 (a)) or 1073K (Fig. 7 (b)) for 3.6ksHIP. 87
It is clear that TiB precipitated at 3K is extremely fine. It is generally reported that the structure of an MA alloy such as an Al group, a Cu group or a TiAl intermetallic compound is very fine, but the Ti-TiB alloy in this experiment also showed the same tendency.

【0018】以上の実験において、いずれのTiB濃度
およびHIP処理温度においても、析出するTiB繊維
はほとんどすべて単結晶であり、非常に大きなアスペク
ト比を有していた。本実験のように繊維状に析出する例
としては、Cu−Ti−B系の液相焼結によって繊維状
TiB2 が、またCu−Al合金の内部酸化によってθ
−Al2 3 が析出することが報告されているが、いず
れも特定の処理温度あるいは濃度で繊維状析出が認めら
れるのみであるが、本実験では873〜1273Kのす
べての処理温度および10〜30体積%の濃度範囲で繊
維状析出が認められた。
In the above experiments, at any TiB concentration and HIP treatment temperature, almost all TiB fibers precipitated were single crystals and had a very large aspect ratio. As an example of fibrous precipitation as in this experiment, fibrous TiB 2 is produced by liquid phase sintering of a Cu—Ti—B system, and θ is produced by internal oxidation of a Cu—Al alloy.
-Al 2 O 3 has been reported to be precipitated, but in each case only fibrous precipitation is observed at a specific treatment temperature or concentration, but in this experiment, all treatment temperatures of 873-1273 K and 10- Fibrous deposition was observed in the concentration range of 30% by volume.

【0019】本実験による合金はTiとTiBの共晶を
利用しているため、両物質間のぬれ性は良好であると考
えられる。また、TiBの硬度はTiB2 のそれよりも
幾分低いが、分散強化材としては充分な硬さを有してい
る。
Since the alloy according to the present experiment utilizes the eutectic of Ti and TiB, it is considered that the wettability between both substances is good. Although the hardness of TiB is somewhat lower than that of TiB 2 , it has sufficient hardness as a dispersion strengthening material.

【0020】一般に繊維強化金属基複合材料は、SiC
あるいはSi3 4 などの繊維とマトリックス金属粉を
均一に混合し、ホットプレス、HIPあるいは熱間押出
しなどにより固化成形することにより製造されている。
しかしながら、混合時あるいは固化成形時に繊維が折損
したり、また繊維を充分均一に分散させることが困難で
あるといった問題が生じる。また、上記したようにSi
CあるいはSi3 4 などの繊維は必ずといってよいほ
どマトリックス金属と界面反応を引き起こすため、複合
材料としての安定性に問題がある。しかしながら、本実
験で示した方法で作製したTi−TiB複合材料は、上
記したすべての問題を解決し得るものと考えられる。
Generally, the fiber-reinforced metal matrix composite material is SiC.
Alternatively, it is produced by uniformly mixing fibers such as Si 3 N 4 and matrix metal powder and solidifying and molding by hot pressing, HIP or hot extrusion.
However, there are problems that the fibers are broken during mixing or solidification molding, and it is difficult to disperse the fibers sufficiently uniformly. In addition, as described above, Si
Since fibers such as C or Si 3 N 4 almost always cause an interfacial reaction with the matrix metal, there is a problem in stability as a composite material. However, it is considered that the Ti—TiB composite material produced by the method shown in this experiment can solve all the problems described above.

【0021】〔HIP処理材の常温機械的性質〕図8は
72.0ksMA処理した合金粉No.1(10体積%
TiB)およびNo.2(20体積%TiB)を、MA
処理状態のまま及びMA処理粉末を873〜1273K
の温度で3.6ksHIP処理した場合の常温硬さの変
化を示している。
[Mechanical Properties of HIP Treated Material at Room Temperature] FIG. 8 shows alloy powder No. 7 treated with 72.0 ksMA. 1 (10% by volume
TiB) and No. 2 (20% by volume TiB), MA
As-processed and MA-treated powder 873-1273K
3 shows the change in room temperature hardness when 3.6 ks HIP treatment was performed at the temperature of.

【0022】MA処理状態において、B添加量が多いN
o.2合金のほうが高い硬さを示している。これはMA
処理によるTi−B固溶体の形成による固溶強化に起因
すると考えられる。
In the MA-treated state, N containing a large amount of B is added.
o. The two alloys have higher hardness. This is MA
It is considered to be due to solid solution strengthening due to the formation of a Ti-B solid solution by the treatment.

【0023】No.1合金またはNo.2合金のいずれ
においてもMA処理後に873KでHIP処理すること
により、硬さは著しく上昇している。MA処理により酸
素含有量は多少増大しているものと考えられるが、熱処
理によりこのように硬さが増大するのは、単繊維状Ti
Bの析出によるものと考えられる。さらにHIP処理温
度を上昇させると硬さは徐々に低下しているが、127
3KでのHIP後の硬さが依然MA処理状態の硬さより
も高い数値を示しており、TiB繊維強化が有効に作用
していることが顕著に示されている。
No. 1 alloy or No. 1 In both of the two alloys, the hardness is remarkably increased by the HIP treatment at 873K after the MA treatment. It is considered that the oxygen content is slightly increased by the MA treatment, but the hardness is increased by the heat treatment in the single fiber Ti.
It is considered that this is due to the precipitation of B. When the HIP treatment temperature is further increased, the hardness gradually decreases.
The hardness after HIP at 3K still shows a higher value than the hardness in the MA-treated state, and it is clearly shown that the TiB fiber reinforcement works effectively.

【0024】図9は72.0ksMA処理した合金粉N
o.1(10体積%TiB)およびNo.2(20体積
%TiB)を、873〜1273Kの温度で3.6ks
HIP処理した試料の圧縮試験結果を示すもので、(a)
は0.2%耐力を、(b) は破壊に至るまでの歪み量を示
している。0.2%耐力はHIP処理温度が上昇するに
従って低下する傾向が認められる。なお、合金粉No.
2では、873Kの値が低いが、これはMA合金粉が硬
いため、HIP処理によってもなお焼結体に微細な空隙
が残留したことに起因するものと考えられる。
FIG. 9 shows alloy powder N treated with 72.0 ks MA.
o. 1 (10% by volume TiB) and No. 2 (20% by volume TiB) at a temperature of 873-1273 K for 3.6 ks
The results of the compression test of the HIP-treated sample are shown in (a)
Indicates the 0.2% proof stress, and (b) indicates the amount of strain until failure. The 0.2% proof stress tends to decrease as the HIP treatment temperature increases. In addition, alloy powder No.
In No. 2, the value of 873K is low, but it is considered that this is because the MA alloy powder is hard, and therefore fine voids remained in the sintered body even after the HIP treatment.

【0025】一方、破壊に至るまでの歪み量は、HIP
処理温度の上昇と共に増大している。これは処理温度の
上昇によるTi結晶粒の粗大化およびTiBの成長に起
因した強度低下によるものと考えられる。
On the other hand, the amount of strain up to destruction is HIP
It increases as the processing temperature rises. It is considered that this is due to the coarsening of Ti crystal grains due to the increase in the processing temperature and the reduction in strength due to the growth of TiB.

【0026】図10(a) 、(b) は、72.0ksMA処
理した合金粉No.1(10体積%TiB)を1073
K(図10(a))または1273K(図10(b))で3.6
ksHIP処理した場合の圧縮破壊破面を示す。これら
の試料は、図9(b) に示す破壊に至るまでの歪み量が1
3%、22%の試料である。図10(a) の1073Kで
HIP処理した試料の破面は非常に脆性的であるが、
(b) の1273KでHIP処理した試料には微細なディ
ンプルパターンが認められ、この試料がより靱性に富ん
でいることを示している。
10 (a) and 10 (b) show alloy powder No. 7 processed by 72.0 ksMA. 1 (10% by volume TiB) to 1073
K (Fig. 10 (a)) or 1273K (Fig. 10 (b)) is 3.6.
The compression fracture fracture surface at the time of ksHIP processing is shown. These samples have a strain amount of 1 before the fracture shown in Fig. 9 (b).
Samples of 3% and 22%. Although the fracture surface of the sample subjected to HIP treatment at 1073K in FIG. 10 (a) is very brittle,
A fine dimple pattern was observed in the sample subjected to HIP treatment at 1273K in (b), indicating that this sample is more tough.

【0027】[0027]

【発明の効果】本発明によれば、Ti粉および非晶質B
粉をMA処理した後、773K以上の温度で3.6ks
HIP処理することにより、針状または棒状の微細なT
iBを析出させ、Tiの強化を図ることができる。
According to the present invention, Ti powder and amorphous B
After the MA treatment of the powder, 3.6 ks at a temperature of 773 K or higher
By HIP processing, needle-like or rod-like fine T
iB can be precipitated to strengthen Ti.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ti−B二元系の状態図である。FIG. 1 is a phase diagram of a Ti-B binary system.

【図2】供試材のSEM像を示す図で、(a) はTiのS
EM像を示す図、(b) は非晶質BのSEM像を示す図、
(c) はTiB2 のSEM像を示す図である。
FIG. 2 is a view showing an SEM image of a test material, (a) is an S of Ti.
The figure which shows an EM image, (b) the figure which shows the SEM image of amorphous B,
(c) is a view showing an SEM image of TiB 2 .

【図3】合金粉No.3(Ti−B系、30体積%Ti
B)のMA処理による形態変化を示す図であり、(a) は
初期状態(MA処理無し)、(b) は3.6ksのMA処
理後、(c) は18.0ksのMA処理後、(d) は72.
0ksのMA処理後の形態を示す図である。
3] Alloy powder No. 3 (Ti-B system, 30 volume% Ti
It is a figure which shows the morphological change by MA processing of B), (a) is an initial state (without MA processing), (b) is MA processing of 3.6ks, (c) is MA processing of 18.0ks, (d) is 72.
It is a figure which shows the form after MA processing of 0ks.

【図4】(a) は合金粉No.3のMA処理に伴うX線回
折図形の変化を示す図、(b) は合金粉No.4のMA処
理に伴うX線回折図形の変化を示す図である。
FIG. 4 (a) shows alloy powder No. 3 is a diagram showing a change in the X-ray diffraction pattern associated with the MA treatment of No. 3, FIG. FIG. 4 is a view showing a change in X-ray diffraction pattern associated with MA treatment of No. 4;

【図5】(a) は72.0ksMA処理した合金粉No.
3を真空中で773〜1273Kの温度で3.6ks熱
処理した場合のX線回折図形の変化を示す図、(b) は7
2.0ksMA処理した合金粉No.4を真空中で77
3〜1073Kの温度で3.6ks熱処理した場合のX
線回折図形の変化を示す図である。
5 (a) is an alloy powder No. 7 treated with 72.0 ksMA.
3 is a diagram showing a change in X-ray diffraction pattern when 3 is heat-treated in vacuum at a temperature of 773-1273 K for 3.6 ks, (b) shows 7
Alloy powder No. treated with 2.0 ksMA. 4 in vacuum 77
X when heat-treated at a temperature of 3 to 1073 K for 3.6 ks
It is a figure which shows the change of a line diffraction pattern.

【図6】(a) は72.0ksMA処理した合金粉No.
1を1073Kで3.6ksHIP処理した場合のTE
M像を示す図、(b) は72.0ksMA処理した合金粉
No.1を1273Kで3.6ksHIP処理した場合
のTEM像を示す図である。
FIG. 6 (a) shows alloy powder No. 7 treated with 72.0 ksMA.
TE when 1 is subjected to 3.6ks HIP processing at 1073K
The figure which shows the M image, (b) is alloy powder No. 7 which processed 72.0ksMA. It is a figure which shows the TEM image at the time of carrying out the 3.6ksHIP process of 1 at 1273K.

【図7】(a) は72.0ksMA処理した合金粉No.
3を873Kで3.6ksHIP処理した場合のTEM
像を示す図、(b) は72.0ksMA処理した合金粉N
o.3を1073Kで3.6ksHIP処理した場合の
TEM像を示す図である。
7 (a) is an alloy powder No. 7 processed by 72.0 ksMA.
TEM when 3 was treated with 873K for 3.6ksHIP
Figure showing image, (b) is alloy powder N treated with 72.0ksMA
o. It is a figure which shows the TEM image at the time of carrying out the 3.6ksHIP process of 3 at 1073K.

【図8】72.0ksMA処理した合金粉No.1およ
びNo.2をMA処理状態のまま及びMA処理粉末を8
73〜1273Kの温度で3.6ksHIP処理した場
合の常温硬さの変化を示す図である。
8] Alloy powder No. 7 treated with 72.0 ks MA 1 and No. 2 in the MA-treated state and MA-treated powder in 8
It is a figure which shows the change of normal temperature hardness at the time of 3.6ksHIP processing at the temperature of 73-1273K.

【図9】(a) は72.0ksMA処理した合金粉No.
1およびNo.2を873〜1273Kの温度で3.6
ksHIP処理した場合の0.2%耐力の変化を示す図
で、(b) は72.0ksMA処理した合金粉No.1お
よびNo.2を873〜1273Kの温度で3.6ks
HIP処理した場合の破壊に至るまでの歪み量の変化を
示す図である。
9 (a) shows alloy powder No. 7 processed by 72.0 ksMA.
1 and No. 2 at a temperature of 873-1273 K for 3.6.
It is a figure which shows the change of 0.2% yield strength at the time of ksHIP processing, (b) is alloy powder No. 72.0ksMA processed. 1 and No. 2 at a temperature of 873-1273K for 3.6ks
It is a figure which shows the change of the amount of strain until it becomes destruction when HIP-processed.

【図10】(a) は72.0ksMA処理した合金粉N
o.1を1073Kで3.6ksHIP処理した場合の
圧縮破壊破面を示す図で、(b) は72.0ksMA処理
した合金粉No.1を1273Kで3.6ksHIP処
理した場合の圧縮破壊破面を示す図である。
FIG. 10 (a) is an alloy powder N treated with 72.0 ksMA.
o. 1B is a diagram showing a compression fracture fracture surface when the No. 1 was subjected to 3.6 ks HIP treatment at 1073 K, (b) shows alloy powder No. 7 treated with 72.0 ks MA. It is a figure which shows the compression fracture fracture surface at the time of carrying out 3.6ksHIP process of 1 at 1273K.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月9日[Submission date] November 9, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】Ti−B二元系の状態図である。FIG. 1 is a phase diagram of a Ti-B binary system.

【図2】供試材のSEM像を示す金属組織の写真で、
(a) はTiのSEM像を示す金属組織の写真、(b) は非
晶質BのSEM像を示す金属組織の写真、(c) はTiB
2 のSEM像を示す金属組織の写真である。
FIG. 2 is a photograph of a metal structure showing an SEM image of the test material,
(a) is a photograph of a metal structure showing an SEM image of Ti, (b) is a photograph of a metal structure showing an SEM image of amorphous B, and (c) is TiB.
2 is a photograph of a metal structure showing an SEM image of 2 .

【図3】合金粉No.3(Ti−B系、30体積%Ti
B)のMA処理による形態変化を示す金属組織の写真で
あり、(a) は初期状態(MA処理無し)、(b) は3.6
ksのMA処理後、(c) は18.0ksのMA処理後、
(d) は72.0ksのMA処理後の各形態を示す金属組
織の写真である。
3] Alloy powder No. 3 (Ti-B system, 30 volume% Ti
3B is a photograph of a metal structure showing a morphological change due to MA treatment in B), where (a) is an initial state (without MA treatment) and (b) is 3.6.
After the MA process of ks, (c) is the MA process of 18.0 ks,
(d) is a photograph of the metal structure showing each form after MA treatment for 72.0 ks.

【図4】(a) は合金粉No.3のMA処理に伴うX線回
折図形の変化を示す図、(b) は合金粉No.4のMA処
理に伴うX線回折図形の変化を示す図である。
FIG. 4 (a) shows alloy powder No. 3 is a diagram showing a change in the X-ray diffraction pattern associated with the MA treatment of No. 3, FIG. FIG. 4 is a view showing a change in X-ray diffraction pattern associated with MA treatment of No. 4;

【図5】(a) は72.0ksMA処理した合金粉No.
3を真空中で773〜1273Kの温度で3.6ks熱
処理した場合のX線回折図形の変化を示す図、(b) は7
2.0ksMA処理した合金粉No.4を真空中で77
3〜1073Kの温度で3.6ks熱処理した場合のX
線回折図形の変化を示す図である。
5 (a) is an alloy powder No. 7 treated with 72.0 ksMA.
3 is a diagram showing a change in X-ray diffraction pattern when 3 is heat-treated in vacuum at a temperature of 773-1273 K for 3.6 ks, (b) shows 7
Alloy powder No. treated with 2.0 ksMA. 4 in vacuum 77
X when heat-treated at a temperature of 3 to 1073 K for 3.6 ks
It is a figure which shows the change of a line diffraction pattern.

【図6】(a) は72.0ksMA処理した合金粉No.
1を1073Kで3.6ksHIP処理した場合のTE
M像を示す金属組織の写真、(b) は72.0ksMA処
理した合金粉No.1を1273Kで3.6ksHIP
処理した場合のTEM像を示す金属組織の写真である。
FIG. 6 (a) shows alloy powder No. 7 treated with 72.0 ksMA.
TE when 1 is subjected to 3.6ks HIP processing at 1073K
A photograph of a metal structure showing an M image, (b) shows alloy powder No. 7 treated with 72.0 ksMA. 1 at 1273K for 3.6ks HIP
It is a photograph of a metal structure showing a TEM image when treated.

【図7】(a) は72.0ksMA処理した合金粉No.
3を873Kで3.6ksHIP処理した場合のTEM
像を示す金属組織の写真、(b) は72.0ksMA処理
した合金粉No.3を1073Kで3.6ksHIP処
理した場合のTEM像を示す金属組織の写真である。
7 (a) is an alloy powder No. 7 processed by 72.0 ksMA.
TEM when 3 was treated with 873K for 3.6ksHIP
A photograph of a metal structure showing an image, (b) shows alloy powder No. 7 processed by 72.0 ksMA. 3 is a photograph of a metal structure showing a TEM image when 3 is treated with 1073 K at 3.6 ks HIP.

【図8】72.0ksMA処理した合金粉No.1およ
びNo.2をMA処理状態のまま及びMA処理粉末を8
73〜1273Kの温度で3.6ksHIP処理した場
合の常温硬さの変化を示す図である。
8] Alloy powder No. 7 treated with 72.0 ks MA 1 and No. 2 in the MA-treated state and MA-treated powder in 8
It is a figure which shows the change of normal temperature hardness at the time of 3.6ksHIP processing at the temperature of 73-1273K.

【図9】(a) は72.0ksMA処理した合金粉No.
1およびNo.2を873〜1273Kの温度で3.6
ksHIP処理した場合の0.2%耐力の変化を示す図
で、(b) は72.0ksMA処理した合金粉No.1お
よびNo.2を873〜1273Kの温度で3.6ks
HIP処理した場合の破壊に至るまでの歪み量の変化を
示す図である。
9 (a) shows alloy powder No. 7 processed by 72.0 ksMA.
1 and No. 2 at a temperature of 873-1273 K for 3.6.
It is a figure which shows the change of 0.2% yield strength at the time of ksHIP processing, (b) is alloy powder No. 72.0ksMA processed. 1 and No. 2 at a temperature of 873-1273K for 3.6ks
It is a figure which shows the change of the amount of strain until it becomes destruction when HIP-processed.

【図10】(a) は72.0ksMA処理した合金粉N
o.1を1073Kで3.6ksHIP処理した場合の
圧縮破壊破面を示す金属組織の写真で、(b) は72.0
ksMA処理した合金粉No.1を1273Kで3.6
ksHIP処理した場合の圧縮破壊破面を示す金属組織
の写真である。
FIG. 10 (a) is an alloy powder N treated with 72.0 ksMA.
o. No. 1 is a metallographic photograph showing the fracture surface under compression when treated with 1073 K for 3.6 ks HIP.
Alloy powder No. 1 at 1273K for 3.6
It is a photograph of a metal structure showing a compression fracture fracture surface in the case of ksHIP treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ti粉および非晶質ホウ素粉またはTi
2 粉をメカニカルアロイングした後、773K〜12
73Kの温度で高温静水圧成形またはホットプレスを行
うことを特徴とする強化チタンの製造方法
1. Ti powder and amorphous boron powder or Ti
After mechanical alloying of B 2 powder, 773K ~ 12
Method for producing reinforced titanium, characterized by performing hot isostatic pressing or hot pressing at a temperature of 73K
JP3237782A 1991-09-18 1991-09-18 Method of manufacturing reinforced titanium Expired - Lifetime JPH0762161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3237782A JPH0762161B2 (en) 1991-09-18 1991-09-18 Method of manufacturing reinforced titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3237782A JPH0762161B2 (en) 1991-09-18 1991-09-18 Method of manufacturing reinforced titanium

Publications (2)

Publication Number Publication Date
JPH05171214A true JPH05171214A (en) 1993-07-09
JPH0762161B2 JPH0762161B2 (en) 1995-07-05

Family

ID=17020356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3237782A Expired - Lifetime JPH0762161B2 (en) 1991-09-18 1991-09-18 Method of manufacturing reinforced titanium

Country Status (1)

Country Link
JP (1) JPH0762161B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063598A (en) * 2006-09-05 2008-03-21 Sumitomo Metal Ind Ltd Titanium weld part
US8562714B2 (en) 2004-11-12 2013-10-22 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639281A (en) * 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite
US4673550A (en) * 1984-10-23 1987-06-16 Serge Dallaire TiB2 -based materials and process of producing the same
JPH04501137A (en) * 1988-07-29 1992-02-27 ダイナメット・テクノロジー・インコーポレイテッド Titanium diboride/titanium alloy metal matrix/microcomposite fired products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639281A (en) * 1982-02-19 1987-01-27 Mcdonnell Douglas Corporation Advanced titanium composite
US4673550A (en) * 1984-10-23 1987-06-16 Serge Dallaire TiB2 -based materials and process of producing the same
JPH04501137A (en) * 1988-07-29 1992-02-27 ダイナメット・テクノロジー・インコーポレイテッド Titanium diboride/titanium alloy metal matrix/microcomposite fired products

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100386B2 (en) 2002-06-14 2018-10-16 General Electric Company Method for preparing a metallic article having an other additive constituent, without any melting
US8562714B2 (en) 2004-11-12 2013-10-22 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
JP2014040674A (en) * 2004-11-12 2014-03-06 General Electric Co <Ge> Article having dispersion of ultrafine titanium boride particles in titanium-base matrix
US10604452B2 (en) 2004-11-12 2020-03-31 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
JP2008063598A (en) * 2006-09-05 2008-03-21 Sumitomo Metal Ind Ltd Titanium weld part

Also Published As

Publication number Publication date
JPH0762161B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US5744254A (en) Composite materials including metallic matrix composite reinforcements
Feng et al. Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering
CN110218907B (en) Boron-containing titanium-based composite powder for 3D printing and preparation method thereof
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
US20110020163A1 (en) Super-Hard Enhanced Hard Metals
JP2002003977A (en) TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD
CN111763842A (en) Low-oxygen powder metallurgy TiAl alloy part and preparation method thereof
JP2539712B2 (en) Nitride powder
CN100457933C (en) Preparation method of intensified tantalum and tantalum alloy material
CN112410601B (en) Preparation method of graphene-boron heterostructure titanium-based composite material
JPH02197535A (en) Manufacture of intermetallic compound
JPH05171214A (en) Production of reinforced titanium
Saiyu et al. Effects of molybdenum on the microstructure and mechanical properties of Ti (C, N)-based cermets with low Ni
Moses et al. Dispersion characteristics, microstructural evolution and sintering behaviour of Al2O3-Ti6Al4V composites fabricated by spark plasma sintering
JP3793813B2 (en) High strength titanium alloy and method for producing the same
Bagliuk et al. Microstructure and mechanical properties of P/M titanium matrix composites reinforced with TiB
JP2852414B2 (en) Particle-reinforced titanium-based composite material and method for producing the same
CN1552939A (en) Lanthanum-base amorphous alloy composite material containing infusible metal particle
JPH06306508A (en) Production of low anisotropy and high fatigue strength titanium base composite material
JP2802587B2 (en) Manufacturing method of plate-shaped WC-containing cemented carbide
Gieskes et al. Metal matrix composites: a study of patents, patent applications and other literature
JP4165850B2 (en) Plate-like tungsten carbide-containing powder and method for producing the same
CN109867285B (en) Preparation method of superfine (Ti, W) C solid solution powder
JP3225252B2 (en) Method for producing particle-dispersed sintered titanium-based composite material
JPH032338A (en) Composite reinforced alloy and its manufacture