JPH05170970A - Bouncing and expanding material - Google Patents

Bouncing and expanding material

Info

Publication number
JPH05170970A
JPH05170970A JP35427691A JP35427691A JPH05170970A JP H05170970 A JPH05170970 A JP H05170970A JP 35427691 A JP35427691 A JP 35427691A JP 35427691 A JP35427691 A JP 35427691A JP H05170970 A JPH05170970 A JP H05170970A
Authority
JP
Japan
Prior art keywords
bouncing
repulsive
frequency
elastic modulus
repulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35427691A
Other languages
Japanese (ja)
Inventor
Tadao Inahata
忠雄 稲畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INAHATA KENKYUSHO KK
Original Assignee
INAHATA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INAHATA KENKYUSHO KK filed Critical INAHATA KENKYUSHO KK
Priority to JP35427691A priority Critical patent/JPH05170970A/en
Publication of JPH05170970A publication Critical patent/JPH05170970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To obtain the subject material which can be prepared by dispersing hollow microparticles uniformly in the bouncing and stretchable body, thus changing the critical frequency where impact absorbance shifts to impact resilience or the properties of impact resilience so as to show optimal characteristics. CONSTITUTION:(A) A stretchable and bouncing body includes (B) hollow microparticles dispersed therein uniformly by 10 to 50 v/v%. Component (A) is, for example, a boron atom-containing silicone bouncing putty which is prepared by adding boron oxide to polymerized dimethyl silicone followed by heating, or water glass of aqueous alkali silicate solution. The component (B) is, for example, ceramic balloons of SiO2/Al2O3, glass bubbles, or microballoons of polymer such as phenolic resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スポーツ用品、安全用
具あるいは機械部品等の衝撃吸収材として有用な反発・
延伸性材料に関する。
BACKGROUND OF THE INVENTION The present invention is useful as a shock absorbing material for sports equipment, safety equipment, machine parts and the like.
Extendable material.

【0002】[0002]

【従来の技術】特公昭26−6944号に示されている
硼素原子を含むシロキサンに代表される反発延伸性材料
は、その配位結合が疑似結合を含むため独特の周波数依
存性を有しており、ゆっくり変形する時はその系は粘性
流体のようになり、素早く変形する時は剛体のようにな
る。
2. Description of the Related Art A repulsive stretchable material represented by siloxane containing a boron atom shown in Japanese Patent Publication No. 266944 has a unique frequency dependence because its coordination bond includes a pseudo bond. The system becomes like a viscous fluid when slowly deforming, and becomes like a rigid body when rapidly deforming.

【0003】すなわち、異なった周波数の信号を材料に
与えると、図1に示すように弾性率G´が変化し、0.
1Hz付近では弾性率が小さく、周波数が高くなるにつ
れて弾性率が顕著に高くなり、この性質を利用して米国
特許第2,609,201号のようなゴルフボールコ
ア、その他液体絶縁媒体、防水材等の様々な用途に利用
することが提案されている。
That is, when signals having different frequencies are applied to the material, the elastic modulus G'changes as shown in FIG.
The elastic modulus is small in the vicinity of 1 Hz, and the elastic modulus remarkably increases as the frequency increases, and by utilizing this property, golf ball cores such as US Pat. No. 2,609,201, other liquid insulating media, and waterproof materials. It is proposed to use it for various purposes such as.

【0004】図2は80℃における上記材料の周波数に
対する弾性率G´,延伸率G″及び衝撃吸収から反発に
移行する分岐点である弾性率G´に対する延伸率G″の
比δの正切である損失係数tanδ=G″/G´を示す
ものである。
FIG. 2 is a normal cut of the elastic modulus G ', the elastic modulus G "with respect to the frequency of the material at 80.degree. C., and the ratio .delta. Of the elastic modulus G" to the elastic modulus G', which is a branch point where shock absorption changes to repulsion. It shows a certain loss coefficient tan δ = G ″ / G ′.

【0005】しかし、この反発性パテの性質は温度依存
性を有しており、衝撃吸収から反発への分岐点の周波数
及び反発弾性率は温度が一定であれば一定であるが、温
度が変化するとその特性も変化し、温度が高くなると液
体から剛体へ移行する周波数が高い領域へ移行する。一
例として80℃における周波数依存性を図2に示す。し
たがって、この反発性パテを工業的に使用するには、使
用環境を十分検討しなければならず、このことは用途の
多様性を妨げる要因となっていた。
However, the property of the repulsive putty has temperature dependence, and the frequency of the branch point from impact absorption to repulsion and the repulsion elastic modulus are constant if the temperature is constant, but the temperature changes. Then, the characteristics also change, and when the temperature rises, the frequency shifts from the liquid to the rigid body in the high frequency region. As an example, the frequency dependence at 80 ° C. is shown in FIG. Therefore, in order to industrially use this repulsive putty, it is necessary to thoroughly consider the use environment, which has been a factor that hinders the variety of applications.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、衝撃
吸収から反発に移行する分岐点の周波数或いは反発弾性
率等の性質を変化させ、使用目的に応じて最適の特性を
有する反発性パテを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to change the properties such as the frequency of a branch point at which a shock absorption changes to a repulsion or the repulsion elastic modulus, so that a repulsive putty having optimum characteristics according to the purpose of use. To provide.

【0007】[0007]

【課題を解決するための手段】本発明の反発・延伸性材
料は、上記課題を達成するために、反発・延伸体に微小
中空体を10〜50Vol%均一に分散させたことを特
徴とする構成を有する。
In order to achieve the above-mentioned object, the repulsive / stretchable material of the present invention is characterized in that the repulsive / stretchable material has fine hollow bodies uniformly dispersed therein in an amount of 10 to 50% by volume. Have a configuration.

【0008】反発・延伸性材料の基材としては、重合ジ
メチル・シリコーンに酸化硼素を加え、加熱処理して得
られた硼素原子を含むシロキサンよりなるシリコーンバ
ウンシングパテ、合成ゴム等の高分子化合物に界面活性
剤を配合し、加水混練して水性分散物とした水性分散高
分子化合物又はケイ酸アルカリ液を水溶液とした水ガラ
スなどを用い、微小中空体としては、(SiO2 +Al
2 3 )系セラミックス、その他のセラミックスバルー
ン、グラスバブルあるいはフェノール樹脂,塩化ビニリ
デン,アクリルニトリル共重合体,エポキシ樹脂,ユリ
ア・ホルムアルデヒド樹脂等の高分子マイクロバルーン
を用いる。これら樹脂の未発泡体を基材に混入した後に
発泡させることもできる。
As a base material of the repulsive / stretchable material, a polymer compound such as a silicone bouncing putty made of siloxane containing a boron atom obtained by adding boron oxide to polymerized dimethyl silicone and heat-treating it, a synthetic rubber, etc. An aqueous dispersion polymer compound prepared by blending a surfactant and hydrolyzing and kneading to form an aqueous dispersion, or water glass prepared by using an alkali silicate solution as an aqueous solution is used, and as the micro hollow body, (SiO 2 + Al
2 O 3 ) -based ceramics, other ceramics balloons, glass bubbles or polymer microballoons such as phenol resin, vinylidene chloride, acrylonitrile copolymer, epoxy resin, urea-formaldehyde resin are used. It is also possible to mix the unfoamed body of these resins with the base material and then to foam it.

【0009】選択に際しては、使用時の強度、軽量化の
必要度、加工過程における所要強度、加工時の温度条件
等を考慮して行う。なお、微小中空体の混合割合は使用
目的に応じて適宜決定されるものであるが、10Vol
%未満では特性分岐点移動等の効果が乏しく、50Vo
l%以上では工業的に均一分散させることが困難である
ので10〜50Vol%の範囲から選ばれる。
The selection is made in consideration of strength at the time of use, necessity of weight reduction, required strength in the working process, temperature condition at the time of working and the like. The mixing ratio of the micro hollow bodies is appropriately determined according to the purpose of use, but is 10 Vol.
If it is less than 50%, the effect of moving the characteristic branch point is poor, and 50Vo
If it is 1% or more, it is difficult to uniformly disperse it industrially, so it is selected from the range of 10 to 50 Vol%.

【0010】[0010]

【実施例】【Example】

実施例1 シリコーンバウンシングパテに粒度が100〜200μ
mのシリカ中空球を混合させた。
Example 1 A silicone bouncing putty with a particle size of 100-200μ
m silica hollow spheres were mixed.

【0011】図3はシリコーンバウンシングパテに対し
てシリカ中空球の混合率0%,15%,30%について
の周波数FREQ(HZ)に対する反発弾性率G´の曲
線G´−1,G´−2,G´−3と損失係数tanδの
曲線T−1,T−2,T−3の相関関係を示すものであ
り、反発弾性率G´の曲線G´−1,G´−2,G´−
3と損失係数tanδの曲線T−1,T−2,T−3と
の交点である特性分岐点PがP−1,P−2,P−3と
して示されている。 実施例2 シリコーンバウンシングパテに粒度が10〜30μmの
アクリル中空球を混合させた。
FIG. 3 shows the curves G'-1, G'-2 of the repulsive elastic modulus G'with respect to the frequency FREQ (HZ) for the mixing ratios 0%, 15% and 30% of silica hollow spheres with respect to the silicone bouncing putty. , G′-3 and the curves T-1, T-2, T-3 of the loss coefficient tan δ, and the curves G′-1, G′-2, G ′ of the repulsion elastic modulus G ′. −
3 and the characteristic branch points P which are the intersections of the curves T-1, T-2 and T-3 of the loss coefficient tan δ are shown as P-1, P-2 and P-3. Example 2 Acrylic hollow spheres having a particle size of 10 to 30 μm were mixed with a silicone bouncing putty.

【0012】図4はシリコーンバウンシングパテに対し
てアクリル中空球の混合率0%,15%,30%につい
ての周波数FREQ(HZ)に対する反発弾性率G´の
曲線G´−1,G´−2,G´−3と損失係数tanδ
の曲線T−1,T−2,T−3の相関関係を示すもので
あり、反発弾性率G´の曲線G´−1,G´−2,G´
−3と損失係数tanδの曲線T−1,T−2,T−3
との交点である特性分岐点PがP−1,P−2,P−3
として示されている。 実施例3 水ガラスに粒度が100〜200μmのシリカ中空球を
混合させた。
FIG. 4 shows curves G'-1, G'-2 of the repulsive elastic modulus G'with respect to the frequency FREQ (HZ) for the mixing ratios 0%, 15%, 30% of acrylic hollow spheres with respect to the silicone bouncing putty. , G′-3 and loss coefficient tan δ
3 shows the correlation between the curves T-1, T-2, and T-3, and the curves G'-1, G'-2, and G'of the impact resilience G '.
-3 and the curves T-1, T-2, T-3 of the loss coefficient tan δ
The characteristic branch point P that is the intersection point with P-1, P-2, P-3
As shown. Example 3 Silica hollow spheres having a particle size of 100 to 200 μm were mixed with water glass.

【0013】図5は水ガラスに対してシリカ中空球の混
合率0%,15%,30%についての周波数FREQ
(HZ)に対する反発弾性率G´の曲線G´−1,G´
−2,G´−3と損失係数tanδの曲線T−1,T−
2,T−3の相関関係を示すものであり、反発弾性率G
´の曲線G´−1,G´−2,G´−3と損失係数ta
nδの曲線T−1,T−2,T−3との交点である特性
分岐点PがP−1,P−2,P−3として示されてい
る。
FIG. 5 shows the frequency FREQ at 0%, 15% and 30% mixing ratios of hollow silica spheres to water glass.
Curves G'-1, G'of the rebound elastic modulus G'to (HZ)
Curves T-1 and T- of −2, G′-3 and loss coefficient tan δ
2 shows the correlation between T and 2, and the impact resilience G
'Curves G'-1, G'-2, G'-3 and loss coefficient ta
Characteristic branch points P, which are the intersections of nδ with the curves T-1, T-2, and T-3, are shown as P-1, P-2, and P-3.

【0014】図6は微小中空体混合率Vf(%)に対す
る図3乃至図5に示す実施例1乃至5の反発弾性率G´
の曲線と損失係数tanδの曲線との交点である特性分
岐点Pを示すものである。
FIG. 6 shows the impact resilience G'of Examples 1 to 5 shown in FIGS. 3 to 5 with respect to the mixing ratio Vf (%) of minute hollow bodies.
3 shows a characteristic branch point P which is an intersection of the curve of 1 and the curve of loss coefficient tan δ.

【0015】図3乃至図5及び図6から明らかなよう
に、反発・延伸体中の微小中空体の混入率が増加する
と、特性分岐点Pは低い周波数になる。
As apparent from FIGS. 3 to 5 and 6, when the mixing ratio of the hollow micro-body in the repulsion / stretching body increases, the characteristic branch point P becomes a low frequency.

【0016】本発明の用途としては、衝撃吸収と適度の
剛性を必要とするもの、例えばシューズ等のスポーツ用
品,ヘルメット,自動車用の安全具,老人或いは児童用
の安全装置や、高周波時の高反発性を必要とするもの、
例えばゴルフ用具等のスポーツ用品や、機械器具の衝撃
吸収材などが考えられる。
Applications of the present invention include those requiring shock absorption and appropriate rigidity, for example, sports equipment such as shoes, helmets, safety equipment for automobiles, safety equipment for the elderly or children, and high frequency equipment. Something that requires resilience,
For example, sports equipment such as golf equipment and shock absorbing materials for machinery and equipment are conceivable.

【0017】[0017]

【発明の効果】本発明は、従来の反発・延伸体に微小中
空体を多数均一に混合したので、微小中空体の種類及び
混合割合を変えることにより、衝撃吸収から反発に移行
する分岐点の周波数や反発弾性率或いは重量等の特性を
変化させることができ、使用目的に応じて最適の性質を
有する反発・延伸性材料を得ることが可能となると同時
に、その軽量化及びコスト低減を達成するものである。
According to the present invention, since a large number of micro hollow bodies are uniformly mixed with the conventional repulsion / stretched body, by changing the type and the mixing ratio of the micro hollow bodies, the branch point of transition from shock absorption to repulsion can be obtained. Properties such as frequency, impact resilience, and weight can be changed, and it becomes possible to obtain a repulsive / stretchable material having optimal properties according to the purpose of use, and at the same time achieve weight reduction and cost reduction. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の反発性パテの周波数特性を示す線図FIG. 1 is a diagram showing a frequency characteristic of a conventional repulsive putty.

【図2】従来の反発性パテの一定温度における周波数特
性を示す線図
FIG. 2 is a diagram showing frequency characteristics of a conventional repulsive putty at a constant temperature.

【図3】実施例1の微小中空体の反発・延伸体に対する
各混合率についての周波数の変化に対する反発弾性率と
損失係数を示す線図
FIG. 3 is a diagram showing a repulsion elastic modulus and a loss coefficient with respect to a change in frequency with respect to each mixing ratio of the repulsion / stretched body of the micro hollow body of Example 1.

【図4】実施例2の微小中空体の反発・延伸体の混合率
に対する各混合率についての周波数の変化に対する反発
弾性率と損失係数を示す線図
FIG. 4 is a diagram showing a repulsion elastic modulus and a loss coefficient with respect to a change in frequency for each mixing ratio with respect to the mixing ratio of the repulsion / stretched body of the micro hollow body of Example 2.

【図5】実施例1の微小中空体の反発・延伸体に対する
各混合率についての周波数の変化に対する反発弾性率と
損失係数を示す線図
FIG. 5 is a diagram showing a repulsion elastic modulus and a loss coefficient with respect to a change in frequency for each mixing ratio of the repulsive / stretched body of the micro hollow body of Example 1.

【図6】図3乃至図5における微小中空体の反発・延伸
体の混合率に対する特性分岐点の線図
FIG. 6 is a diagram of characteristic branch points with respect to the mixing ratio of the repulsive / extended body of the micro hollow body in FIGS. 3 to 5.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年2月14日[Submission date] February 14, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【課題を解決するための手段】本発明の反発・延伸性材
料は、上記課題を達成するために、反発・延伸体に微小
中空体を10以上50未満Vo1%均一に分散させたこ
とを特徴とする構成を有する。
The repulsive / stretchable material of the present invention is characterized in that, in order to achieve the above-mentioned object, the repulsive / stretchable material has a fine hollow body uniformly dispersed in a range of 10 to less than 50 Vo1%. And has a configuration.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】選択に際しては、使用時の強度、軽量化の
必要度、加工過程における所要強度、加工時の温度条件
等を考慮して行う。なお、微小中空体の混合割合は使用
目的に応じて適宜決定されるものであるが、10Vo1
%未満では特性分岐点移動等の効果が乏しく、50Vo
1%以上では工業的に均一分散させることが困難である
ので10以上50未満Vo1%の範囲から選ばれる。
The selection is made in consideration of strength at the time of use, necessity of weight reduction, required strength in the working process, temperature condition at the time of working and the like. The mixing ratio of the micro hollow bodies is appropriately determined according to the purpose of use.
If it is less than 50%, the effect of moving the characteristic branch point is poor, and 50Vo
If it is 1% or more, it is difficult to uniformly disperse it industrially, so it is selected from the range of 10 to less than 50 Vo1%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反発・延伸体に微小中空体を10〜50
Vol%均一に分散したことを特徴とする反発・延伸性
材料。
1. A repulsion / stretching body comprising 10 to 50 minute hollow bodies.
Vol% A repulsive / stretchable material characterized by being uniformly dispersed.
JP35427691A 1991-12-20 1991-12-20 Bouncing and expanding material Pending JPH05170970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35427691A JPH05170970A (en) 1991-12-20 1991-12-20 Bouncing and expanding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35427691A JPH05170970A (en) 1991-12-20 1991-12-20 Bouncing and expanding material

Publications (1)

Publication Number Publication Date
JPH05170970A true JPH05170970A (en) 1993-07-09

Family

ID=18436455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35427691A Pending JPH05170970A (en) 1991-12-20 1991-12-20 Bouncing and expanding material

Country Status (1)

Country Link
JP (1) JPH05170970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614622A1 (en) * 1993-02-23 1994-09-14 Jay Medical, Ltd. Pressure-compensating compositions and pads made therefrom
JPH07216138A (en) * 1994-01-28 1995-08-15 Meiji Rubber & Chem Co Ltd Vibrationproof rubber composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614622A1 (en) * 1993-02-23 1994-09-14 Jay Medical, Ltd. Pressure-compensating compositions and pads made therefrom
JPH07216138A (en) * 1994-01-28 1995-08-15 Meiji Rubber & Chem Co Ltd Vibrationproof rubber composition

Similar Documents

Publication Publication Date Title
JP4486361B2 (en) Energy absorbing material
JP3156005B2 (en) Viscoelastic sound insulating foam having an adhesive surface and method of using the same
US8114919B2 (en) Microwave foam
JPH03188905A (en) Silicone defoaming agent composition
KR970015670A (en) Low dielectric resin composition
CN106189087A (en) Low dielectric poss type epoxy resin composite material and preparation method thereof
CN107541070A (en) A kind of thixotroping foam silicone rubber and preparation method thereof
JPS6211897A (en) Composition for acoustic lens
US6602945B2 (en) Vibration damping silicone composition
DE60203807D1 (en) LIQUID SILICONE RUBBER MIXTURE WITH LOW SPECIFIC WEIGHT AND SHAPED OBJECTS
JPH0812317A (en) Three-dimensional network structure consisting of silica spherical particles
US5936021A (en) Masterbatch and resin systems incorporating same
JPH05170970A (en) Bouncing and expanding material
JPH02116537A (en) Photo-setting resin and method for forming three-dimensional shape
JPH0641325A (en) Surface member and its production
JPH02311540A (en) Expandable silicon composition, silicone sponge and silicone sponge roll
EP0338693A3 (en) Method for making silicone foam masses
JP2004506052A (en) Composition for trauma reduction and pressure relief
JP2824922B2 (en) Vibration absorbing member
JPS60215014A (en) Vibration-damping material
JPS60215013A (en) Vibration-damping material
JPH06254380A (en) Composite microballoon
CN106916437B (en) A kind of wide temperature range wave-absorption vibration composite material and preparation method of fire-retardant high abrasion
JP2000159896A5 (en)
JP2640974B2 (en) Spherical silicone rubber foamed fine particles and method for producing the same