JPH05170474A - Production of preform for optical fiber - Google Patents

Production of preform for optical fiber

Info

Publication number
JPH05170474A
JPH05170474A JP35369491A JP35369491A JPH05170474A JP H05170474 A JPH05170474 A JP H05170474A JP 35369491 A JP35369491 A JP 35369491A JP 35369491 A JP35369491 A JP 35369491A JP H05170474 A JPH05170474 A JP H05170474A
Authority
JP
Japan
Prior art keywords
optical fiber
target member
longitudinal direction
fiber preform
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35369491A
Other languages
Japanese (ja)
Other versions
JP3526463B2 (en
Inventor
Hitoshi Iinuma
均 飯沼
Hideo Hirasawa
秀夫 平沢
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP35369491A priority Critical patent/JP3526463B2/en
Publication of JPH05170474A publication Critical patent/JPH05170474A/en
Application granted granted Critical
Publication of JP3526463B2 publication Critical patent/JP3526463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce a preform giving an optical fiber excellent in optical characteristics. CONSTITUTION:When a fine glass particle generator is traversed to a rotating target member in the longitudinal direction of the member and fine glass particles are deposited on the periphery of the member to produce a preform for an optical fiber, the amt. of the fine glass particles deposited are varied in the longitudinal direction of the target member in accordance with the core- clad ratio of the member and the difference in specific refractive index.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ファイバ母材の製造方
法、特には光ファイバ母材からの線引きで作られる光フ
ァイバの光学特性を長手方向で精度高く制御することが
できる光ファイバ母材の製造方法に製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical fiber preform, and more particularly to an optical fiber preform capable of accurately controlling the optical characteristics of an optical fiber made by drawing from the optical fiber preform in the longitudinal direction. The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】光ファイバ母材の製造方法についてはコ
アとなるガラスロッドなどからなる回転しているタ−ゲ
ット部材の長さ方向にガラス微粒子発生器を移動(トラ
バ−ス)させ、このガラス微粒子発生器から発生するガ
ラス微粒子をこのタ−ゲット部材の周囲に堆積させ、こ
のトラバ−スを適当な回数繰り返すという方法で行なわ
れている。
2. Description of the Related Art A method of manufacturing an optical fiber preform is as follows: a glass particle generator is moved (traversed) in the length direction of a rotating target member composed of a glass rod or the like serving as a core. It is carried out by depositing glass particles generated from a particle generator around the target member and repeating this traversing an appropriate number of times.

【0003】そして、この場合におけるタ−ゲット部材
の長手方向におけるガラス微粒子堆積量の制御はガラス
微粒子発生器としての酸水素火炎バ−ナ−に供給する四
塩化けい素などのガラス原料ガスや酸素、水素などの燃
料ガスの流量、あるいはバ−ナ−のトラバ−ス速度によ
り調整してこれを一定に保つようにされている(特開昭
63-170223 号公報、特開平2-289439号公報参照)。
In this case, the glass particulate deposition amount in the longitudinal direction of the target member is controlled by controlling the glass raw material gas such as silicon tetrachloride or oxygen supplied to the oxyhydrogen flame burner as the glass particulate generator. , Hydrogen, etc., or the traverse speed of the burner is adjusted to keep this constant.
63-170223, JP-A-2-289439).

【0004】[0004]

【発明が解決しようとする課題】しかし、このような制
御方法ではガラス微粒子堆積量はタ−ゲットの長手方向
で一定に制御されるものの、この光ファイバ母材からの
線引きで作られる光ファイバが光学特性で満足できるも
のにはならないという不利がある。すなわち、このよう
にして得られた光ファイバ母材にはタ−ゲット部材の長
手方向においてコア・クラッド比や比屈折率差に変動が
あるために、クラッドとなるガラス微粒子堆積量を一定
に保ってもカットオフ波長などの光学特性はタ−ゲット
部材の長手方向におけるコア・クラッド比や比屈折率比
の変動の影響を受けて変動してしまうからである。
However, in such a control method, although the glass particulate deposition amount is controlled to be constant in the longitudinal direction of the target, an optical fiber made by drawing from this optical fiber preform is used. It has the disadvantage that the optical characteristics are not satisfactory. That is, since the optical fiber preform thus obtained has a variation in the core-clad ratio and the relative refractive index difference in the longitudinal direction of the target member, the deposition amount of the glass particles serving as the clad is kept constant. However, the optical characteristics such as the cut-off wavelength will change under the influence of changes in the core-clad ratio and the relative refractive index ratio in the longitudinal direction of the target member.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不利
を解決した光ファイバ母材の製造方法に関するものであ
り、これは回転しているタ−ゲット部材に対してガラス
微粒子発生器を該タ−ゲット部材の長さ方向にトラバ−
スさせて該タ−ゲット部材の周囲にガラス微粒子を堆積
させる光ファイバ母材の製造方法において、該タ−ゲッ
ト部材のコア・クラッド比および比屈折率に応じてガラ
ス微粒子堆積量を長手方向に変化させることを特徴とす
るものである。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber preform in which such disadvantages are solved, which comprises a glass particle generator for a rotating target member. Traversing in the length direction of the target member
In the method for producing an optical fiber preform in which glass particles are deposited around the target member by scanning, the amount of glass particle deposition is set in the longitudinal direction according to the core-clad ratio and the relative refractive index of the target member. It is characterized by changing.

【0006】すなわち、本発明者らは光学特性が長手方
向でも安定している光ファイバを与える光ファイバ母材
の製造方法について種々検討した結果、これについては
タ−ゲット部材の長さ方向におけるコア・クラッド比お
よび比屈折率を予じめ測定しておいて、この測定値を記
憶装置に記憶させておき、タ−ゲット部材の特性に応じ
てその長手方向におけるガラス微粒子の堆積量を制御さ
せればこのようにして得られた光ファイバ母材から線引
きして得られる光ファイバが光学特性の安定したものに
なるということを見出して本発明を完成させた。以下に
これをさらに詳述する。
That is, the inventors of the present invention have conducted various studies on a method of manufacturing an optical fiber preform which gives an optical fiber whose optical characteristics are stable in the longitudinal direction. As a result, the core member in the longitudinal direction of the target member has been found. Preliminarily measuring the clad ratio and the relative refractive index, storing the measured values in a storage device, and controlling the deposition amount of glass particles in the longitudinal direction according to the characteristics of the target member. Then, the inventors have found that an optical fiber obtained by drawing the optical fiber preform thus obtained has stable optical characteristics and completed the present invention. This will be described in more detail below.

【0007】[0007]

【作用】本発明は光ファイバ母材の製造方法、特にはこ
の光ファイバ母材を線引きして得られる光ファイバ母材
の光学特性を長手方向で安定化したものとする光ファイ
バ母材の製造方法に関するものである。
The present invention relates to a method of manufacturing an optical fiber preform, and more particularly, to manufacturing an optical fiber preform in which the optical characteristics of the optical fiber preform obtained by drawing the optical fiber preform are stabilized in the longitudinal direction. It is about the method.

【0008】本発明による光ファイバ母材の製造は公知
の外付け法による光ファイバ母材の製造方法において、
タ−ゲット部材のコア・クラッド比および比屈折率差に
応じてガラス微粒子の堆積量を長手方向で変化させるも
のであるが、このガラス微粒子堆積量の制御はガラス原
料ガスの流量または微粒子発生器のトルバ−ス速度を調
整することによって行なえばよい。
The production of the optical fiber preform according to the present invention is carried out by a known method for producing an optical fiber preform by an external attachment method,
The deposition amount of glass particles is changed in the longitudinal direction according to the core-clad ratio and the relative refractive index difference of the target member. The glass particle deposition amount is controlled by the flow rate of the glass raw material gas or the particle generator. It may be carried out by adjusting the torber speed.

【0009】この光ファイバ母材の断面は図1に示した
とおりのものであり、ここにAはコア径、Bはタ−ゲッ
ト部材径、Cは母材の径、tは外付け法で堆積されたク
ラッドの厚み、△は比屈折率差を示したもので、この光
ファイバのカットオフ波長 λc は式 λc =2πan1 2△/2.405 ・・・・(1) [a はファイバコア径(μm)]で示されるが、ファイバ
外径は通常125 μm であることから、これを母材の寸法
で表わすと a=125×A/C=125 (A/B×B/C) ・・・・(2) A/C=母材のコア・クラッド比 A/B=タ−ゲット部材のコア・クラッド比 となるので、このカットオフ波長λc を母材の寸法で表
わすと、これは λc =(2πn1 2△/2.405 )×125 (A/B×B/C) ・・・・(3) となる。
The cross section of this optical fiber preform is as shown in FIG. 1, where A is the core diameter, B is the target member diameter, C is the preform diameter, and t is the external attachment method. The thickness of the deposited clad, Δ is the relative refractive index difference, and the cutoff wavelength λ c of this optical fiber is expressed by the formula λ c = 2πan 1 2 Δ / 2.405 (1) [a is the fiber Core diameter (μm)], but the fiber outer diameter is usually 125 μm, so when expressed in terms of the dimensions of the base material, a = 125 × A / C = 125 (A / B × B / C) ... (2) A / C = base material core-clad ratio A / B = target member core-clad ratio. Therefore, if this cutoff wavelength λ c is expressed by the base material size, This is λ c = (2πn 1 2 Δ / 2.405) × 125 (A / B × B / C) ... (3).

【0010】したがってクラッドの堆積量を一定(すな
わちB/C が一定)に保ってもタ−ゲット部材のコア・ク
ラッド比(A/B) および比屈折率差△に長手方向で変動が
ある場合には式(3) に基づく光ファイバの光学特性とし
て重要なカットオフ波長λcが長手方向で変動すること
になる。
Therefore, even if the clad deposition amount is kept constant (that is, B / C is constant), the core-clad ratio (A / B) and the relative refractive index difference Δ of the target member fluctuate in the longitudinal direction. Therefore, the cutoff wavelength λ c, which is important as the optical characteristics of the optical fiber based on equation (3), varies in the longitudinal direction.

【0011】しかし、この場合、本発明にもとづいてこ
のガラス堆積量をタ−ゲット部材のコア・クラッド比(A
/B) および比屈折率差(△)に応じて長手方向で変化さ
せるべく、例えばこの製造工程におけるタ−ゲット部材
のコア・クラッド比(A/B) および比屈折率差(△)の長
手方向における変化を予じめ測定しておいてこれを記憶
装置に記憶させておき、この記憶にもとづいてガラス微
粒子の堆積量を変化させて上記式(3) にもつづいてこの
カットオフ波長λc が一定となるようにすれば、これか
ら得られる光ファイバの光学特性を長手方向で一定とす
ることができるという有利性が与えられることになる。
However, in this case, according to the present invention, the glass deposition amount is determined by the core-clad ratio (A) of the target member.
/ B) and the relative refractive index difference (△) to change in the longitudinal direction, for example, the length of the core-clad ratio (A / B) and the relative refractive index difference (△) of the target member in this manufacturing process. The change in direction is measured in advance and stored in a storage device.The amount of glass particles deposited is changed based on this storage, and the cutoff wavelength λ If c is kept constant, there is an advantage that the optical characteristics of the optical fiber obtained from this can be kept constant in the longitudinal direction.

【0012】[0012]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例 光ファイバ母材の製造は図2に示した装置を用いて行な
われた。この装置は直径が15mmφで長さが500nm である
合成石英ガラスロッドからなるタ−ゲット部材をチヤッ
ク2に支持して一定速度で回転させ、これに酸水素火炎
バ−ナ−3から四塩化けい素ガスを供給し、この四塩化
けい素の火炎加水分解で発生したシリカ微粒子をこのタ
−ゲット部材1の周囲に堆積させるものである。
EXAMPLES Next, examples of the present invention and comparative examples will be given. Example Manufacturing of the optical fiber preform was carried out using the apparatus shown in FIG. In this device, a target member made of a synthetic quartz glass rod having a diameter of 15 mmφ and a length of 500 nm is supported on a chuck 2 and rotated at a constant speed, and an oxyhydrogen flame burner-3 to silicon tetrachloride is used. A source gas is supplied to deposit fine silica particles generated by flame hydrolysis of the silicon tetrachloride around the target member 1.

【0013】この酸水素火炎バ−ナ−3には流量調節器
(MFC)4で流量が制御された四塩化けい素ガスが供
給されるが、これはガラス微粒子堆積中タ−ゲット部材
に沿って移動させるのでボ−ル軸6を介してモ−タ−7
が付設されているし、これにはそのバ−ナ−位置検出器
5も設けられており、これにはさらにこのガラス微粒子
堆積量を制御するための演算器8、タ−ゲット部材のコ
ア・グラッド比(A/B)および比屈折率差(△)を記憶す
るための記憶装置9が設けられている。
This oxyhydrogen flame burner-3 is supplied with silicon tetrachloride gas whose flow rate is controlled by a flow rate controller (MFC) 4, which flows along the target member during the deposition of glass particles. Motor 7 via the ball shaft 6
Is also provided with a burner position detector 5, which further has an arithmetic unit 8 for controlling the glass particulate deposition amount and a core member of the target member. A storage device 9 for storing the glad ratio (A / B) and the relative refractive index difference (Δ) is provided.

【0014】この実施例では当初四塩化けい素を一定速
度で送入し、その火炎加水分解で発生したガラス微粒子
をタ−ゲット部材に堆積していたのであるが、記憶装置
に記憶されているタ−ゲット部材の比屈折率(△)が第
3図a)に示したようなもので、そのコア・グラッド比(A
/B) が第3図b)に示したものであり、このカットオフ波
長λc を一定のものとするためにはこのクラッド層の長
手方向の厚さを例えば第3図c)に示したように変化させ
る必要があることから、この四塩化けい素の流量および
/または酸水素火炎バ−ナ−のトラバ−ス速度を変えて
ガラス微粒子の堆積量を長手方向で変化させて直径が47
mmφ、流さ500mm の光ファイバ母材を作り、このものの
カットオフ波長をしらべたところ、このものは図4に示
したように全長にわたり略々均一の値を示していること
が確認された。
In this embodiment, silicon tetrachloride was initially fed at a constant rate, and the glass particles generated by the flame hydrolysis were deposited on the target member, which is stored in the memory device. The relative refractive index (△) of the target member is as shown in Fig. 3a), and its core-grad ratio (A
/ B) is shown in Fig. 3b), and in order to make the cutoff wavelength λ c constant, the thickness of the cladding layer in the longitudinal direction is shown in Fig. 3c), for example. Therefore, it is necessary to change the flow rate of silicon tetrachloride and / or the traverse speed of the oxyhydrogen flame burner to change the deposition amount of the glass particles in the longitudinal direction to change the diameter to 47 mm.
When an optical fiber preform having a diameter of mmφ and a flow of 500 mm was prepared and the cutoff wavelength of this product was examined, it was confirmed that this product showed a substantially uniform value over the entire length as shown in FIG.

【0015】比較例 実施例と同じように直径が15mmφで長さが500mm のタ−
ゲット部材を使用し、演算機8、記憶装置9を使用しな
いほかは実施例と同じ装置を用いて光ファイバ母材の製
造を行なったが、この場合にはタ−ゲット部材の比抵抗
率差(△)が図5のa)に示したとおりであり、そのコア
・クラッド比(A/B) が図5のb)に示したとおりであるの
にもかかわらず、クラッド層の長手方向の厚さが略々均
一である31mmとなるようにしたために、得られた光ファ
イバ母材におけるカットオフ波長λc をしらべたとこ
ろ、これは図6に示したように長手方向で1.10〜1.30μ
m と大きく変動しているものとなった。
Comparative Example As in the example, a target having a diameter of 15 mm and a length of 500 mm was used.
An optical fiber preform was manufactured using the same apparatus as the embodiment except that the get member was used and the arithmetic unit 8 and the storage device 9 were not used. In this case, the difference in the specific resistivity of the target member was used. (△) is as shown in a) of FIG. 5 and its core-clad ratio (A / B) is as shown in b) of FIG. When the cutoff wavelength λ c of the obtained optical fiber preform was examined because the thickness was set to 31 mm, which is almost uniform, it was 1.10 to 1.30 μm in the longitudinal direction as shown in FIG.
It changed greatly with m.

【0016】[0016]

【発明の効果】本発明は光学特性のすぐれた光ファイバ
母材を与える光ファイバ母材の製造方法に関するもので
あり、これは前記したよに外付け法による光ファイバ母
材の製造方法において、タ−ゲット部材のコア・クラッ
ド比および比抵抗率差に応じてガラス微粒子の堆積量を
長手方向に変化させることを特徴とするものであり、し
たがってこれはタ−ゲット材のコア・クラッド比および
比屈折率差を予じめ記憶装置に記憶させておき、光ファ
イバ母材製造時にこの記憶にもとづいてそのカットオフ
波長λc が一定になるようにガラス微粒子の堆積量を長
手方向に変化させるものであるが、これによれば得られ
る光ファイバ母材のカットオフ波長を容易に略々一定な
ものとすることができるので、これを線引きして得られ
る光ファイバを光学特性のすぐれたものとすることがで
きる光ファイバ母材を容易に得ることができるという有
利性が与えられる。
The present invention relates to a method for producing an optical fiber preform that provides an optical fiber preform having excellent optical characteristics. As described above, this is a method for producing an optical fiber preform by the external attachment method. The present invention is characterized in that the deposition amount of glass fine particles is changed in the longitudinal direction according to the core-clad ratio and the difference in specific resistivity of the target member. The relative refractive index difference is stored in advance in a storage device, and the amount of glass particles deposited is changed in the longitudinal direction so that the cutoff wavelength λ c becomes constant based on this storage during manufacturing of the optical fiber preform. However, according to this, the cutoff wavelength of the optical fiber preform obtained can easily be made substantially constant, and therefore the optical fiber obtained by drawing this can be used as an optical fiber. An advantage is given that an optical fiber preform that can have excellent characteristics can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】目的とする光ファイバ母材の縦断面図を示した
ものである。
FIG. 1 is a vertical sectional view of a target optical fiber preform.

【図2】実施例で使用された光ファイバ母材製造装置の
縦断面図を示したものである。
FIG. 2 is a vertical cross-sectional view of an optical fiber preform manufacturing apparatus used in Examples.

【図3】図のa)は実施例で使用されたタ−ゲット部材の
比屈折率差(△)の長手方向への変化を示すグラフ、図
のb)はこのタ−ゲット部材のコア・クラッド比(A/B) の
長手方向への変化を示すグラフ、図のc)はクラッド層厚
さの長手方向への変化を示すグラフである。
FIG. 3A is a graph showing a change in relative refractive index difference (Δ) of the target member used in the example in the longitudinal direction, and FIG. 3B is a core of the target member. A graph showing the change in the clad ratio (A / B) in the longitudinal direction, and c) in the figure is a graph showing the change in the clad layer thickness in the longitudinal direction.

【図4】実施例で得られた光ファイバ母材から作られた
光ファイバの長手方向でのカットオフ波長(λc )の変
化を示すグラフである。
FIG. 4 is a graph showing changes in the cutoff wavelength (λ c ) in the longitudinal direction of an optical fiber made of the optical fiber preform obtained in the example.

【図5】図のa)は比較例で使用されたタ−ゲット部材の
比屈折率差(△)の長手方向への変化を示すグラフ、図
のb)はこのタ−ゲット部材のコア・クラッド比(A/B) の
長手方向への変化を示すグラフ、図のc)はクラッド層厚
さの長手方向への変化を示すグラフである。
FIG. 5 a) is a graph showing the change in relative refractive index difference (Δ) of the target member used in the comparative example in the longitudinal direction, and b) is a core of this target member. A graph showing the change in the clad ratio (A / B) in the longitudinal direction, and c) in the figure is a graph showing the change in the clad layer thickness in the longitudinal direction.

【図6】比較例で得られた光ファイバ母材から作られた
光ファイバの長手方向でのカットオフ波長の変化を示す
グラフである。
FIG. 6 is a graph showing changes in the cutoff wavelength in the longitudinal direction of an optical fiber made of the optical fiber preform obtained in the comparative example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】回転しているタ−ゲット部材に対してガラ
ス微粒子発生器を該タ−ゲット部材の長さ方向にトラバ
−スさせて該タ−ゲット部材の周囲にガラス微粒子を堆
積させる光ファイバ母材の製造方法において、該タ−ゲ
ット部材のコア・クラッド比および比屈折率差に応じて
上記ガラス微粒子の堆積量を長手方向に変化させること
を特徴とする光ファイバ母材の製造方法。
1. A light for traversing a glass particle generator with respect to a rotating target member in the longitudinal direction of the target member to deposit glass particles around the target member. In the method for producing a fiber preform, the deposition amount of the glass fine particles is changed in the longitudinal direction according to the core-clad ratio and the relative refractive index difference of the target member. ..
【請求項2】タ−ゲット部材のコア・クラッド比および
比屈折率差の長手方向特性を予じめ記憶装置に記憶させ
ておき、この値に基づいてガラス微粒子の堆積量を原料
ガス流量で制御する請求項1に記載した光ファイバ母材
の製造方法。
2. The longitudinal characteristics of the core-clad ratio and the relative refractive index difference of the target member are stored in advance in a memory device, and the deposition amount of the glass particles is determined by the raw material gas flow rate based on these values. The method for manufacturing an optical fiber preform according to claim 1, wherein the method is controlled.
【請求項3】ガラス微粒子の堆積量をバ−ナ−のトラバ
−ス速度で制御する請求項1に記載した光ファイバ母材
の製造方法。
3. The method for producing an optical fiber preform according to claim 1, wherein the amount of glass particles deposited is controlled by the traverse speed of the burner.
JP35369491A 1991-12-18 1991-12-18 Manufacturing method of optical fiber preform Expired - Fee Related JP3526463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35369491A JP3526463B2 (en) 1991-12-18 1991-12-18 Manufacturing method of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35369491A JP3526463B2 (en) 1991-12-18 1991-12-18 Manufacturing method of optical fiber preform

Publications (2)

Publication Number Publication Date
JPH05170474A true JPH05170474A (en) 1993-07-09
JP3526463B2 JP3526463B2 (en) 2004-05-17

Family

ID=18432591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35369491A Expired - Fee Related JP3526463B2 (en) 1991-12-18 1991-12-18 Manufacturing method of optical fiber preform

Country Status (1)

Country Link
JP (1) JP3526463B2 (en)

Also Published As

Publication number Publication date
JP3526463B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
EP0845441B1 (en) Apparatus and method for making an optical fiber preform
JP2622182B2 (en) Manufacturing method of optical fiber preform base material
JPH0761831A (en) Production of porous glass preform for optical fiber
JPH04292434A (en) Production of optical fiber preform
JPH05170474A (en) Production of preform for optical fiber
JP3707209B2 (en) Optical fiber preform manufacturing method
EP1440949B1 (en) Method for producing optical fiber base material
JPH0354129A (en) Preparation of optical fiber preform
JPH0583500B2 (en)
JP2005139042A (en) Method of manufacturing porous glass preform
JPH054825A (en) Production of glass article
JPS63222035A (en) Production of preform for optical fiber
JPH07242435A (en) Production of porous glass base material for optical fiber
JPH051226B2 (en)
JP2523154B2 (en) Method for manufacturing glass particulate deposit
JP3675581B2 (en) Method for synthesizing optical fiber base material and method for adjusting synthesis condition
JPS63285130A (en) Device for producing optical fiber preform
JPH0579614B2 (en)
JP3826839B2 (en) Manufacturing method of glass base material
JPS62167238A (en) Production of base material for optical fiber
JP4404214B2 (en) Manufacturing method of glass preform for optical fiber
JPS58213644A (en) Piling of oxide powder by vapor-phase axial deposition
JPS6220139B2 (en)
JPH02243530A (en) Production of base material for optical fiber
JPH0692667A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees