JPH05166520A - Manufacture of cathode electrode catalyst layer of fuel cell - Google Patents

Manufacture of cathode electrode catalyst layer of fuel cell

Info

Publication number
JPH05166520A
JPH05166520A JP3351200A JP35120091A JPH05166520A JP H05166520 A JPH05166520 A JP H05166520A JP 3351200 A JP3351200 A JP 3351200A JP 35120091 A JP35120091 A JP 35120091A JP H05166520 A JPH05166520 A JP H05166520A
Authority
JP
Japan
Prior art keywords
electrode catalyst
catalyst layer
fuel cell
conductive polymer
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3351200A
Other languages
Japanese (ja)
Inventor
Takafumi Okamoto
隆文 岡本
Hideo Kato
英男 加藤
Ichiro Baba
一郎 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3351200A priority Critical patent/JPH05166520A/en
Publication of JPH05166520A publication Critical patent/JPH05166520A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a cathode electrode catalyst layer capable of improving the power generating performance of a fuel cell and at the same time efficiently forming a uniform electrode catalyst layer by reducing a voltage loss in the cathode thereof. CONSTITUTION:A paste having a power of alloy including platinum and precious metal, carbon black and an alcohol solvent of ion-conducted polymer mixed is coated on the ion-conducted polymer and dried thereby fixing the paste on the ion-conductive polymer by thermocompression bonding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン導電性ポリマー
を電解質に用いた燃料電池のカソード(酸化剤ガス側)
電極触媒層を製造する方法に関し、特にカソードでの電
圧損失を低減させることにより燃料電池の発電性能向上
を図ることが可能となる均一な電極触媒層の製造方法に
関する。
FIELD OF THE INVENTION The present invention relates to a cathode of a fuel cell (oxidant gas side) using an ion conductive polymer as an electrolyte.
The present invention relates to a method for producing an electrode catalyst layer, and more particularly to a method for producing a uniform electrode catalyst layer that can improve the power generation performance of a fuel cell by reducing the voltage loss at the cathode.

【0002】[0002]

【従来の技術】燃料電池は、一般に電解質板とその両側
に設けられたアノードおよびカソードからなる単位電池
を、セパレータを介して積層してなる。
2. Description of the Related Art A fuel cell is generally formed by stacking unit cells each having an electrolyte plate and anodes and cathodes provided on both sides of the electrolyte plate with a separator interposed therebetween.

【0003】例えば、固体高分子電解質型燃料電池とし
て、電解質板をイオン交換樹脂膜などのイオン導電性ポ
リマーにより作製し、その上に電極触媒層を形成してな
るものが提案されている。この場合、電極触媒層は、ス
プレー法、塗布法などにより形成しているのが普通であ
る。
For example, as a solid polymer electrolyte fuel cell, there has been proposed one in which an electrolyte plate is made of an ion conductive polymer such as an ion exchange resin film and an electrode catalyst layer is formed thereon. In this case, the electrode catalyst layer is usually formed by a spray method, a coating method, or the like.

【0004】従来、このような電極触媒層の形成方法と
しては、還元剤溶液の浸透力を利用しイオン交換膜上に
金属層を析出せしめる方法(特公昭56−36873号
公報)、蒸着または熱圧着により、触媒をイオン交換膜
へ直接担持させる方法(特開昭58−126674号公
報)、導電性カーボンブラック上に支持された白金とC
r、Coを酸性下接触させ、これらを窒素雰囲気中で加
熱、還元させる方法(特開昭59−141169号公
報)、およびカーボン粉末、白金触媒、ポリテトラフル
オロエチレンからなる成分系に、表面を炭素膜で被覆し
た炭化ケイ素ウィスカーを加えて混練し、混練物をシー
ト化したのち熱処理、イオン交換樹脂処理を施す方法
(特開平3−25856号公報)などが開示されてい
る。
Conventionally, as a method for forming such an electrode catalyst layer, a method of depositing a metal layer on an ion exchange membrane by utilizing the osmotic force of a reducing agent solution (Japanese Patent Publication No. 56-36873), vapor deposition or heat treatment. A method of directly supporting a catalyst on an ion exchange membrane by pressure bonding (JP-A-58-126674), platinum and C supported on a conductive carbon black.
r and Co are brought into contact with each other under an acidic condition, and these are heated and reduced in a nitrogen atmosphere (Japanese Patent Laid-Open No. 59-141169), and a component system consisting of carbon powder, a platinum catalyst and polytetrafluoroethylene is coated with the surface. A method is disclosed in which silicon carbide whiskers coated with a carbon film are added and kneaded to form a kneaded product into a sheet, which is then subjected to heat treatment and ion exchange resin treatment (JP-A-3-25856).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の従来技術に示されている方法では、充分な発電性能を
発揮できる均一な電極触媒層を効率的に製造できなかっ
た。
However, the methods disclosed in these prior arts cannot efficiently produce a uniform electrode catalyst layer capable of exhibiting sufficient power generation performance.

【0006】本発明は、以上のような従来の技術を背景
になされたものであり、カソードでの電圧損失を低減さ
せることにより燃料電池の発電性能向上を図ることが可
能となる均一な電極触媒層の製造方法を提供することを
目的とする。
The present invention has been made against the background of the above conventional techniques, and it is possible to improve the power generation performance of a fuel cell by reducing the voltage loss at the cathode. It is an object to provide a method for producing a layer.

【0007】[0007]

【課題を解決するための手段】本発明は、白金と卑金属
からなる合金の粉末、カーボンブラックおよびイオン導
電性ポリマーのアルコール溶液を混練したペーストを、
イオン導電性ポリマーのシート上に塗布し、乾燥させ、
熱圧着により前記ペーストをイオン導電性ポリマー上に
固定化することを特徴とする燃料電池のカソード電極触
媒層の製造方法を提供するものである。
The present invention provides a paste prepared by kneading a powder of an alloy of platinum and a base metal, carbon black and an alcohol solution of an ion conductive polymer,
Apply on a sheet of ion conductive polymer, dry,
A method for producing a cathode electrode catalyst layer of a fuel cell, which comprises fixing the paste on an ion conductive polymer by thermocompression bonding.

【0008】本発明を以下詳細に説明する。まず、本発
明に使用される白金と卑金属とからなる合金粉末は、例
えば酸素還元能力の高い白金合金電極の中で、白金と卑
金属の合金粉末を物理的気相反応を用いて製造される。
The present invention is described in detail below. First, the alloy powder composed of platinum and a base metal used in the present invention is produced by physically vapor-phase reaction of an alloy powder of platinum and a base metal in a platinum alloy electrode having a high oxygen reducing ability.

【0009】卑金属としては、アルカリ金属、アルカリ
土金属、Al、Zn、Cr、Ti、Coなどが挙げられ
るが、本発明においては少なくともチタンおよび/また
はクロムを用いることが酸素還元能向上の面から好まし
い。
Examples of the base metal include alkali metals, alkaline earth metals, Al, Zn, Cr, Ti and Co. In the present invention, it is preferable to use at least titanium and / or chromium in order to improve the oxygen reducing ability. preferable.

【0010】この物理的気相反応としてはスパッタ法が
挙げられ、例えばあらかじめ合金製のターゲットを製造
しておき、これを用いて常法により合金層を形成する方
法、材質の異なる二枚のターゲット(例えば、一方はP
tと、他方はTi、Cr、Coなど)を相対させて配置
し、各ターゲットにそれぞれ異なる電圧を印加してスパ
ッタすることにより所定の組成比の合金層を形成するい
わゆる対向ターゲット式合金スパッタ法、マグネトロン
スパッタ法、蒸着などが挙げられる。特に、対向ターゲ
ット式合金スパッタ法が好ましい。
Examples of the physical vapor phase reaction include a sputtering method. For example, an alloy target is manufactured in advance, and an alloy layer is formed by using the alloy target by a conventional method. Two targets of different materials are used. (For example, one is P
t, and the other is Ti, Cr, Co, etc., which are arranged so as to face each other, and an alloy layer having a predetermined composition ratio is formed by applying different voltages to each target and performing sputtering, so-called opposed target alloy sputtering method. , Magnetron sputtering, vapor deposition and the like. In particular, the facing target type alloy sputtering method is preferable.

【0011】対向ターゲット式合金スパッタ法を用いる
ことにより、あらかじめ合金製のターゲットを製造して
おく必要がなく、直接、合金のスパッタ層を製造するこ
とができる。なお、組成比については、材質の異なる2
枚のターゲットに印加する電圧をそれぞれ個別に増減さ
せ、調整することにより、所望のものとすることができ
る。例えば、PtとTiのターゲットからPt3 Tiの
合金の層を得ようとする場合、Ptのターゲットと、T
iのターゲットとに印加する電圧の比を約7:10程度
とすればよい。
By using the facing target type alloy sputtering method, it is not necessary to previously manufacture an alloy target, and the alloy sputter layer can be directly manufactured. The composition ratio is 2
A desired voltage can be obtained by individually increasing or decreasing the voltage applied to each target. For example, when trying to obtain a Pt 3 Ti alloy layer from a Pt and Ti target, a Pt target and a T
The ratio of the voltage applied to the target of i may be about 7:10.

【0012】なお、本発明に用いられる合金の一般的な
組成は、例えばPt4-X-Y Tix Y 、あるいはPt
4-X-Y Crx Y (式中、X≧0、Y≧0、MはTiも
しくはCr以外の卑金属を示す)で表される。また、合
金がPtとTiとから構成される場合には、Pt/Ti
(原子比)=0.5/3.5〜4/0.5程度である。
さらに、この合金粉末の粒径は、通常、0.07〜3μ
m、好ましくは数μm程度である。
The general composition of the alloy used in the present invention is, for example, Pt 4-XY Ti x M Y or Pt.
4-XY Cr x M Y (where X ≧ 0, Y ≧ 0, M represents a base metal other than Ti or Cr). Further, when the alloy is composed of Pt and Ti, Pt / Ti
(Atomic ratio) = about 0.5 / 3.5 to 4 / 0.5.
Further, the grain size of this alloy powder is usually 0.07-3 μm.
m, preferably about several μm.

【0013】このように白金電極剤の一部を卑金属で代
替することにより白金使用量の低減および発電のイニシ
ャルコスト低減を図ることができる。
As described above, by substituting a part of the platinum electrode agent with the base metal, it is possible to reduce the amount of platinum used and the initial cost of power generation.

【0014】次いで、前記合金粉末とカーボンブラック
とイオン導電性ポリマーのアルコール溶液とを混練り
し、ペースト状となす。この際、イオン導電性ポリマー
としては、燃料電池に使用されるイオン交換膜と同質材
料であることが好ましい。この点から、使用される導電
性ポリマーとしては、ポリパーフルオロスルフォニック
酸などが好ましい。
Next, the alloy powder, carbon black and an alcohol solution of an ion conductive polymer are kneaded to form a paste. At this time, the ion conductive polymer is preferably the same material as the ion exchange membrane used in the fuel cell. From this point, the conductive polymer used is preferably polyperfluorosulfonic acid or the like.

【0015】また、合金粉末とイオン導電性ポリマーの
配合割合は、通常、合金粉末が3.3〜57重量%、好
ましくは20〜30重量%、イオン導電性ポリマーが
2.8〜50重量%、好ましくは20〜30重量%程度
である。合金粉末が少なすぎると触媒能が期待できず、
一方多すぎると他の機能(イオン導電性、電子導電性、
吸・撥水性、ガス透過性)が衰え、またコスト高にもつ
ながる。このペーストの作製の具体例は、合金粉末、導
電性ポリマー粉末、カーボンブラック、およびバインダ
ーとなるフッ素樹脂粉末〔デュポン社製、テフロン粉
末〕を、アルコール・水混合液中に分散させ、溶媒を適
度に蒸発させながら混練してペースト状にする。
The mixing ratio of the alloy powder and the ion conductive polymer is usually 3.3 to 57% by weight of the alloy powder, preferably 20 to 30% by weight, and 2.8 to 50% by weight of the ion conductive polymer. , Preferably about 20 to 30% by weight. If the alloy powder is too small, the catalytic ability cannot be expected,
On the other hand, if there are too many other functions (ionic conductivity, electronic conductivity,
Water absorption / water repellency, gas permeability) deteriorates, which also leads to higher costs. Specific examples of preparation of this paste include alloy powder, conductive polymer powder, carbon black, and fluororesin powder serving as a binder (Teflon powder manufactured by DuPont) dispersed in an alcohol / water mixed solution, and a solvent appropriately added. Kneading while evaporating into a paste.

【0016】ここで、カーボンブラックとしては、アセ
チレンブラック、オイルファーナスブラックなどが挙げ
られる。また、アルコールとしては、飽和アルコール、
例えばメタノール、エタノール、ブタノール、ペンタノ
ール、ヘキサノールなどが用いられる。なお、ペースト
中の組成割合は、合金粉末20〜30.重量部、イオン
導電性ポリマー2.8〜50重量部、カーボンブラック
12〜60重量部、バインダー0〜35重量部程度であ
る。また、合金粉末とカーボンブラックの代わりに、白
金合金を担持したカーボンブラックを用いてもよい。
Here, examples of the carbon black include acetylene black and oil furnace black. Further, as alcohol, saturated alcohol,
For example, methanol, ethanol, butanol, pentanol, hexanol, etc. are used. The composition ratio in the paste is 20 to 30% of the alloy powder. Parts by weight, ion conductive polymer 2.8 to 50 parts by weight, carbon black 12 to 60 parts by weight, and binder 0 to 35 parts by weight. Further, carbon black supporting a platinum alloy may be used instead of the alloy powder and carbon black.

【0017】次いで、上記ペーストを、イオン導電性ポ
リマーのシート上、例えば陽イオン交換膜上に印刷など
の手段で塗布し、乾燥後、ホットプレスなどの熱圧着に
よって陽イオン交換膜上に結着固定させる。
Next, the above-mentioned paste is applied onto a sheet of an ion conductive polymer, for example, a cation exchange membrane by a means such as printing, dried and then bonded on the cation exchange membrane by thermocompression bonding such as hot pressing. Fix it.

【0018】印刷方法としては、スクリーン印刷法を用
いるが、これは枠に張ったスクリーンを通してペースト
を塗布する公知の技術である。このスクリーン印刷法に
よるペーストの塗布量は、乾燥重量で0.5〜20mg
/cm2 程度である。ホットプレスによる熱圧着処理
は、温度80〜250℃、好ましくは100〜120℃
程度、圧力50〜200kg/cm2 、好ましくは10
0〜150kg/cm2 程度の条件下で行う。上記の方
法によりイオン交換膜型燃料電池カソード電極触媒層が
形成される。
A screen printing method is used as a printing method, which is a known technique of applying a paste through a screen stretched on a frame. The amount of paste applied by this screen printing method is 0.5 to 20 mg by dry weight.
It is about / cm 2 . Thermocompression treatment by hot pressing is performed at a temperature of 80 to 250 ° C, preferably 100 to 120 ° C.
Degree, pressure 50 to 200 kg / cm 2 , preferably 10
It is performed under the condition of 0 to 150 kg / cm 2 . An ion exchange membrane fuel cell cathode electrode catalyst layer is formed by the above method.

【0019】[0019]

【作用】本発明では、白金と卑金属からなる合金の粉末
とカーボンブラックとイオン導電性ポリマーのアルコー
ル溶液を混練した電極触媒用ペーストを作製し、イオン
導電性ポリマーのシート上に塗布し、乾燥させ、熱圧着
により前記ペーストをイオン導電性ポリマー上に固定化
することにより燃料電池のカソード電極触媒層を製造さ
せており、これにより均一な電極触媒層を効率的に形成
することができるばかりか、さらには本発明の電極触媒
層を用いればカソードの活性化過電圧などを減少させる
ことができるため、燃料電池の発電性能を向上し得る。
In the present invention, an electrode catalyst paste prepared by kneading an alloy powder of platinum and a base metal, carbon black and an alcohol solution of an ion conductive polymer is applied, coated on a sheet of the ion conductive polymer, and dried. The cathode electrocatalyst layer of a fuel cell is produced by immobilizing the paste on the ion conductive polymer by thermocompression bonding, which not only enables efficient formation of a uniform electrocatalyst layer, Furthermore, when the electrode catalyst layer of the present invention is used, the activation overvoltage of the cathode can be reduced, so that the power generation performance of the fuel cell can be improved.

【0020】[0020]

【実施例】以下に実施例を挙げ、本発明をさらに詳細に
説明する。なお、本発明は、本実施例に拘束されるもの
ではない。 実施例1 ナフィオン117〔デュポン(株)製、ポリパーフルオ
ロスルフォニック酸〕の10cm×10cmのフィルム
(厚さ175μm)に対して、スパッタ装置により投入
電力20Wにて、それぞれ5、15、30、45分間A
rプラズマエッチング処理を施した。その後、対向ター
ゲット式合金スパッタ法により、一方のターゲットをP
t、他方のターゲットをTiとしてPt3 Ti粒子が堆
積されるように印加電圧を調製し、0.2mg/cm2
の厚さになるまでスパッタ処理を施した。次いで、得ら
れたスパッタ層を、ブラシで擦落させ、平均粒径が0.
3μmのPt3 Ti合金粉末を得た。
EXAMPLES The present invention will be described in more detail with reference to the following examples. The present invention is not limited to this embodiment. Example 1 For a 10 cm × 10 cm film (thickness: 175 μm) of Nafion 117 (manufactured by DuPont Co., Ltd., polyperfluorosulfonic acid), 5, 15, 30, respectively, at an input power of 20 W by a sputtering device. 45 minutes A
r Plasma etching treatment was performed. After that, one of the targets is exposed to P by the facing target type alloy sputtering method.
t, with the other target being Ti, the applied voltage was adjusted so that Pt 3 Ti particles were deposited, and 0.2 mg / cm 2
Was sputtered to a thickness of. Then, the obtained sputtered layer was rubbed off with a brush so that the average particle size was 0.
3 μm Pt 3 Ti alloy powder was obtained.

【0021】このようにして得られた合金粉末2g、カ
ーボンブラック(Cabot社製、Vulcan XC
−72)1gおよびテフロン粉末〔デュポン社製、フッ
素樹脂、平均粒径=0.2μm〕1gを、ナフィオン
〔デュポン(株)製、ポリパーフルオロスルフォニック
酸〕のプロパノール水混合溶液(アルドリッチ社製、5
重量%溶液)40mlと混合し、電極触媒用のペースト
を調製した。
2 g of the alloy powder thus obtained, carbon black (Vulcan XC manufactured by Cabot)
-72) 1 g and Teflon powder [manufactured by DuPont, fluororesin, average particle size = 0.2 μm] 1 g were mixed with a solution of Nafion [manufactured by DuPont, polyperfluorosulfonic acid] in propanol (manufactured by Aldrich) 5,
40% by weight solution) to prepare an electrode catalyst paste.

【0022】次に、ナフィオン117〔デュポン(株)
製、ポリパーフルオロスルフォニック酸〕の10cm×
10cmのフィルム(厚さ175μm)をアセトンで洗
浄し、続いて塩酸処理を施したのち、乾燥した。これに
対しスパッタ装置により50mmφの大きさに、30分
間プラズマエッチング処理を施した。
Next, Nafion 117 [Dupont Co., Ltd.
Made of polyperfluorosulfonic acid] 10 cm x
A 10 cm film (thickness: 175 μm) was washed with acetone, subsequently treated with hydrochloric acid, and then dried. On the other hand, a plasma etching process was performed for 30 minutes in a size of 50 mmφ using a sputtering device.

【0023】このフィルムに対して、上述したペースト
を、切り抜き製版スクリーンにより50mmφの大きさ
にベタ印刷を行った。なお、塗布量は、乾燥重量で約2
mg/cm2 とした。さらに、加熱プレスにて100
℃、150kg/cm2 で、1分間ホットプレスを行
い、イオン交換膜型燃料電池用のカソード電極触媒層を
得た。
The above-mentioned paste was solid-printed on this film with a cut-out plate making screen to a size of 50 mmφ. The coating amount is about 2 in dry weight.
It was set to mg / cm 2 . Furthermore, it is 100 with a heating press.
Hot pressing was performed at 150 ° C. and 150 kg / cm 2 for 1 minute to obtain a cathode electrode catalyst layer for an ion exchange membrane fuel cell.

【0024】このようにして得られた電極触媒層におい
ては、カソードの酸素還元反応をすみやかに進めること
が可能となり、これによってカソードでの電圧損失(カ
ソード過電圧)を低減させることにより燃料電池発電性
能の向上を図ることができる。
In the electrode catalyst layer thus obtained, the oxygen reduction reaction at the cathode can be promptly promoted, whereby the voltage loss at the cathode (cathode overvoltage) is reduced and the fuel cell power generation performance is reduced. Can be improved.

【0025】[0025]

【発明の効果】以上に詳述したとおり、本発明の電極触
媒層においては、白金と卑金属からなる合金の粉末とカ
ーボンブラックとイオン導電性ポリマーのアルコール溶
液を混練した電極触媒用ペーストを作製し、イオン導電
性ポリマーのシート上に塗布し、乾燥させ、熱圧着によ
り前記ペーストをイオン導電性ポリマー上に固定化して
いるので、均一な電極触媒層を効率的に形成することが
できるばかりか、さらに本発明によるカソードの電極触
媒層は活性化過電圧などを減少させる効果を有するため
発電性能を向上し得る。
As described in detail above, in the electrode catalyst layer of the present invention, an electrode catalyst paste prepared by kneading powder of an alloy of platinum and base metal, carbon black and an alcohol solution of an ion conductive polymer is prepared. Since the paste is fixed on the ion-conductive polymer by thermocompression bonding, it is possible to efficiently form a uniform electrode catalyst layer, Further, the electrode catalyst layer of the cathode according to the present invention has an effect of reducing activation overvoltage and the like, so that power generation performance can be improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 白金と卑金属からなる合金の粉末、カー
ボンブラックおよびイオン導電性ポリマーのアルコール
溶液を混練したペーストを、イオン導電性ポリマーのシ
ート上に塗布し、乾燥させ、熱圧着により前記ペースト
をイオン導電性ポリマー上に固定化することを特徴とす
る燃料電池のカソード電極触媒層の製造方法。
1. A paste obtained by kneading a powder of an alloy of platinum and a base metal, carbon black and an alcohol solution of an ion conductive polymer is applied onto a sheet of the ion conductive polymer, dried, and thermocompression bonded to the paste. A method for producing a cathode electrode catalyst layer of a fuel cell, which comprises immobilizing it on an ion conductive polymer.
【請求項2】 卑金属として少なくともチタンおよび/
またはクロムを用いる請求項1記載の燃料電池のカソー
ド電極触媒層の製造方法。
2. A base metal containing at least titanium and / or
Alternatively, the method for producing a cathode electrode catalyst layer of a fuel cell according to claim 1, wherein chromium is used.
JP3351200A 1991-12-13 1991-12-13 Manufacture of cathode electrode catalyst layer of fuel cell Pending JPH05166520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3351200A JPH05166520A (en) 1991-12-13 1991-12-13 Manufacture of cathode electrode catalyst layer of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351200A JPH05166520A (en) 1991-12-13 1991-12-13 Manufacture of cathode electrode catalyst layer of fuel cell

Publications (1)

Publication Number Publication Date
JPH05166520A true JPH05166520A (en) 1993-07-02

Family

ID=18415727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351200A Pending JPH05166520A (en) 1991-12-13 1991-12-13 Manufacture of cathode electrode catalyst layer of fuel cell

Country Status (1)

Country Link
JP (1) JPH05166520A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075382A (en) * 2000-09-01 2002-03-15 Honda Motor Co Ltd Electrode structure for fuel cell and its manufacturing method
JP2002075383A (en) * 2000-09-01 2002-03-15 Honda Motor Co Ltd Electrode structure for fuel cell and its manufacturing method
JP2002075407A (en) * 2000-09-01 2002-03-15 Honda Motor Co Ltd Electrode structure for fuel cell and its manufacturing method
WO2002027844A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and production method therefor
WO2014007397A1 (en) 2012-07-06 2014-01-09 ダイキン工業株式会社 Sheet, electrode and fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075382A (en) * 2000-09-01 2002-03-15 Honda Motor Co Ltd Electrode structure for fuel cell and its manufacturing method
JP2002075383A (en) * 2000-09-01 2002-03-15 Honda Motor Co Ltd Electrode structure for fuel cell and its manufacturing method
JP2002075407A (en) * 2000-09-01 2002-03-15 Honda Motor Co Ltd Electrode structure for fuel cell and its manufacturing method
WO2002027844A1 (en) * 2000-09-29 2002-04-04 Sony Corporation Fuel cell and production method therefor
US7037619B2 (en) 2000-09-29 2006-05-02 Sony Corporation Gas diffusion electrode and fuel cell including same
WO2014007397A1 (en) 2012-07-06 2014-01-09 ダイキン工業株式会社 Sheet, electrode and fuel cell

Similar Documents

Publication Publication Date Title
EP1137090B1 (en) Method for fabricating membrane-electrode assembly and fuel cell adopting the membrane electrode assembly
US7988834B2 (en) Conductive catalyst particles and process for production thereof, gas-diffusing catalytic electrode, and electrochemical device
KR100777849B1 (en) Suboxide Fuel Cell Catalyst for Enhanced Reformate Tolerance
US5151334A (en) Fuel cell utilizing solidous electrolyte
CA2341494C (en) Screen-printing paste and screen-printing method of fabricating a gas diffusion electrode
EP1229602B1 (en) Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
US7838457B2 (en) Process for production of conductive catalyst particles, process for production of catalyst electrode capable of gas diffusion, apparatus for production of conductive catalyst particles, and vibrating apparatus
JP4746317B2 (en) Method for making a membrane electrode assembly
JPH0652862A (en) Porous electrode and its manufacture
CN1196584A (en) Method of forming metal, its oxide layers on ion-conductive polymer membranes
US3943006A (en) Method of making a fuel cell electrode
JP2008159573A (en) Fuel cell substrate with overcoat
JP3554321B2 (en) Membrane catalyst layer for fuel cell
JPH08236123A (en) Fuel cell electrode and manufacture thereof
JPH09223503A (en) Manufacture of high molecular solid electrolyte type fuel cell electrode
JP2008503038A5 (en) Method, gas diffusion electrode, and electrode assembly for forming a noble metal coating on a gas diffusion medium
JPH05166520A (en) Manufacture of cathode electrode catalyst layer of fuel cell
JP2019083085A (en) Paste for forming electrode catalyst layer, manufacturing method, film-electrode catalyst layer conjugant, gas diffusion electrode, solid polymer fuel cell, and manufacturing method of solid polymer water electrolysis cell
JP3442408B2 (en) Method for producing electrode-electrolyte assembly and fuel cell using the same
US6136463A (en) HSPES membrane electrode assembly
JP2006228546A (en) Electrode catalyst for polymer electrolyte fuel cell and its manufacturing method
KR100981132B1 (en) Catalyst decal improvement method of fuel cell mea using hydrogen ion conductivity membrane and manufactured fuel cell mea for same
US6703076B1 (en) Production of catalyst layers on diaphragms for low-temperature fuel cells
JPH06203848A (en) Manufacture of solid high polymer fuel cell
JP2003297373A (en) Coating for catalyst bed and manufacturing method of electrolyte membrane electrode junction body using it

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020514