JPH05166511A - Electrode - Google Patents

Electrode

Info

Publication number
JPH05166511A
JPH05166511A JP3351302A JP35130291A JPH05166511A JP H05166511 A JPH05166511 A JP H05166511A JP 3351302 A JP3351302 A JP 3351302A JP 35130291 A JP35130291 A JP 35130291A JP H05166511 A JPH05166511 A JP H05166511A
Authority
JP
Japan
Prior art keywords
group
electrode
compound
conductive polymer
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3351302A
Other languages
Japanese (ja)
Other versions
JP2515656B2 (en
Inventor
Osamu Oka
修 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP3351302A priority Critical patent/JP2515656B2/en
Publication of JPH05166511A publication Critical patent/JPH05166511A/en
Application granted granted Critical
Publication of JP2515656B2 publication Critical patent/JP2515656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide secondary batter, excellent in charge and discharge cycle life and stability, or provide a display element, excellent in oxidation/reduction- color developing/extinguishing cycle life and stability by providing an electrode active material layer composed of a conjugate conductive high molecular compound and an ion conductive compound on the surface of a conductive base. CONSTITUTION:Electrode active material layer composed of a conjugate conductive high molecular compound (A) and an ion conductive compound (B) is provided on the surface of a conductive base. A polyaniline compound expressed by a formula (R<1-8> are H, halogen, alkyl group, or the like, R<9> is H, alkyl group, or the like, k, l, m, n are >=0, k+1=10-500000, m+n>=0-500000) as the compound (A). A polyether compound, having alkylene oxide chains expressed by (CH2O)n, (CH2CH2O)n and the like, is used as the compound (B). The weight ratio of (A) and (B) is set at a rate of 10:90-95:5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一次または二次電池の
電極や表示素子の電極として好適な電極に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode suitable as an electrode of a primary or secondary battery or an electrode of a display element.

【0002】[0002]

【従来の技術】一般に共役系導電性高分子化合物は、電
気化学的にドープ・脱ドープあるいは酸化・還元反応が
可能であるので、該共役系導電性高分子化合物よりなる
電極活物質層を導電性基体上に設けた電極が提案され、
特に二次電池の電極物質として使用されはじめている。
また共役系導電性高分子化合物は、ドープ・脱ドープあ
るいは酸化・還元反応にともない色変化を起こすので、
表示素子を構成する表示材料としての応用の可能性も高
まっている。そして、該電極活物質層の上に液体又は固
体電解質の相を接触させることによって二次電池や表示
材料として使用されていた。
2. Description of the Related Art Generally, a conjugated conductive polymer compound can be electrochemically doped / dedoped or oxidized / reduced. Therefore, an electrode active material layer made of the conjugated conductive polymer compound is electrically conductive. An electrode provided on a flexible substrate is proposed,
In particular, it has begun to be used as an electrode material for secondary batteries.
Further, the conjugated conductive polymer compound causes a color change due to the doping / dedoping or the oxidation / reduction reaction.
The possibility of application as a display material constituting a display element is also increasing. Then, a phase of a liquid or solid electrolyte is brought into contact with the electrode active material layer to be used as a secondary battery or a display material.

【0003】しかしながら、かかる従来の電極と電解質
とで構成された二次電池や表示素子は、共役系導電性高
分子化合物と電解質相との界面におけるイオンの移動に
対する抵抗が大きいため、充放電サイクルの寿命が短
く、安定した放電電気量が得られないとか、発色・消色
サイクルの寿命が短く、安定性が劣るという問題があ
る。あるいは、導電性基体上に共役系導電性高分子膜を
キャスト等で成形した場合、該共役系導電性高分子化合
物と電解質相との界面は勿論、該共役系導電性高分子層
内でのイオンの移動が非常に遅くなるため、充放電サイ
クルの寿命や酸化・還元すなわち発色・消色サイクルの
寿命が短いという問題が生じる。さらに、共役系導電性
高分子は、ドープ・脱ドープあるいは、酸化・還元反応
の繰り返しにより僅かであるが寸法が変化する。そのた
め、導電性基体上に形成された共役系導電性高分子より
なる膜は脆くなり、充放電あるいは発色・消色のサイク
ル数が減少する点も問題であった。
However, since the secondary battery or display device composed of such a conventional electrode and electrolyte has a large resistance to the movement of ions at the interface between the conjugated conductive polymer compound and the electrolyte phase, it has a charge / discharge cycle. Has a short life and a stable quantity of discharged electricity cannot be obtained, and the life of the coloring / decoloring cycle is short, resulting in poor stability. Alternatively, when a conjugated conductive polymer film is formed on a conductive substrate by casting or the like, not only the interface between the conjugated conductive polymer compound and the electrolyte phase but also the inside of the conjugated conductive polymer layer Since the movement of ions becomes very slow, there arises a problem that the life of charge / discharge cycle and the life of oxidation / reduction, that is, color development / decolorization cycle are short. Further, the conjugated conductive polymer changes its size slightly even by repeating doping / dedoping or oxidation / reduction reaction. Therefore, the film made of the conjugated conductive polymer formed on the conductive substrate becomes brittle, and the number of cycles of charging / discharging or coloring / decoloring is also a problem.

【0004】[0004]

【発明が解決しようとする問題点】本発明は、従来の技
術における上記のような問題を解決することを目的とす
るものである。即ち、本発明の目的は、電極活物質層内
における共役系導電性高分子化合物と電解質相との界面
および該導電性高分子内でのイオンの移動を妨げない電
極を提供することにあり、該電極を用いて、充放電サイ
クルの寿命および放電電気量の安定した二次電池、ある
いは、発色・消色サイクルの寿命および吸光度の安定し
た表示素子を提供することにある。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned problems in the prior art. That is, an object of the present invention is to provide an electrode which does not prevent the interface between the conjugated conductive polymer compound and the electrolyte phase in the electrode active material layer and the movement of ions in the conductive polymer, The object of the present invention is to provide a secondary battery having stable charge / discharge cycle life and discharge electricity quantity, or a display element having stable color development / decolorization cycle life and absorbance, using the electrode.

【0005】[0005]

【問題を解決するための手段】本発明者は、上記問題を
解決すべく鋭意検討した結果、導電性基体の表面に共役
系導電性高分子化合物とイオン導電性高分子化合物から
なる電極活物質層を設けることによりドープ・脱ドープ
(酸化・還元反応)のサイクル、すなわち、充放電サイ
クルあるいは発色・消色サイクルが非常に安定になるこ
とを見いだし、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that an electrode active material comprising a conjugated conductive polymer compound and an ion conductive polymer compound on the surface of a conductive substrate. By providing a layer, it was found that the cycle of doping / dedoping (oxidation / reduction reaction), that is, the charging / discharging cycle or the coloring / decoloring cycle was very stable, and the present invention was completed.

【0006】本発明の電極に用いられる導電性基体は、
導電性を有するものであれば特に制限はないが、通常金
属板、金属箔、金属繊維シート、あるいは紙やフィルム
やガラス板や焼結体ガラス等に金属や金属酸化物を蒸着
したもの等を挙げることができる。金属としては通常、
金、白金、銀、銅、ニッケル、スズ、アルミニウム等の
単体やステンレス鋼、金−スズ等の合金が用いられる。
金属酸化物としては酸化インジウム、酸化スズ等が使用
可能である。蒸着方法としては、公知の方法、例えば真
空蒸着法、スパッタリング法、イオンプレーティング
法、あるいはCVD法等の中から任意の方法を適宜選択
して用いることができる。ただし、本発明の電極を表示
素子として用いる場合、使用する導電性基体は白金や金
属酸化物を蒸着したガラスやフィルムの様に強く着色し
ていないものが好ましい。また、本発明を構成する導電
性基体の形状は、上記素材から構成される板状、シート
状、膜状、および円筒状等任意で使用することができ
る。
The conductive substrate used in the electrode of the present invention is
There is no particular limitation as long as it has conductivity, but usually a metal plate, a metal foil, a metal fiber sheet, a paper or film, a glass plate, a sintered glass, or the like on which a metal or a metal oxide is deposited is used. Can be mentioned. As a metal,
A simple substance such as gold, platinum, silver, copper, nickel, tin or aluminum, or an alloy such as stainless steel or gold-tin is used.
Indium oxide, tin oxide or the like can be used as the metal oxide. As the vapor deposition method, any method can be appropriately selected and used from known methods such as a vacuum vapor deposition method, a sputtering method, an ion plating method, and a CVD method. However, when the electrode of the present invention is used as a display element, it is preferable that the conductive substrate used is not strongly colored like glass or film deposited with platinum or metal oxide. Further, the conductive substrate constituting the present invention may have any shape such as a plate shape, a sheet shape, a film shape and a cylindrical shape made of the above materials.

【0007】本発明に用いる共役系導電性高分子化合物
は、下記に述べる共役系化合物を電解重合または酸化重
合することにより得られる。 (1)ベンゼン及びその誘導体 ベンゼン及びその置換体で置換基の数が4個以内の化合
物ならばよい。具体例としてはアニリン、フェノール、
チオフェノール、トルエン、アニソール、アミノチオフ
ェノール、o−及びm−アミノスルホン酸及びそれらの
置換体などが挙げられる。この置換体の置換基として
は、メチル、エチル、プロピル、ブチル、ペンチル、ヘ
キシル、ヘプチル、オクチル、ノニル、デシル、ウンデ
シル、ドデシル、ヘキサデシル等の直鎖状アルキル;シ
クロヘキシル、シクロペンチル等の環状アルキル;イソ
プロピル、t−ブチル等の分岐状アルキル;メトキシ、
エトキシ、プロポキシ等のアルコキシ;アルケニル、ア
ミノ、アリール、アリル、カルボキシル、ニトロ、ハロ
ゲン、シアノ、スルホン酸などの基が挙げられる。アル
キル基の水素の一部がアルコキシ、アルケニル、アミ
ノ、アリール、アリル、カルボキシル、ニトロ、ハロゲ
ン、シアノ、スルホン酸などの基で置換されていてもよ
い。
The conjugated conductive polymer compound used in the present invention can be obtained by electrolytically or oxidatively polymerizing the conjugated compound described below. (1) Benzene and Derivatives Thereof It is sufficient that the compound is benzene or a substitution product thereof and has four or less substituents. Specific examples include aniline, phenol,
Examples thereof include thiophenol, toluene, anisole, aminothiophenol, o- and m-aminosulfonic acids and their substituted products. As the substituent of this substituent, linear alkyl such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and hexadecyl; cycloalkyl such as cyclohexyl and cyclopentyl; isopropyl , Branched alkyl such as t-butyl; methoxy,
Alkoxy such as ethoxy and propoxy; and groups such as alkenyl, amino, aryl, allyl, carboxyl, nitro, halogen, cyano and sulfonic acid. A part of hydrogen of the alkyl group may be substituted with a group such as alkoxy, alkenyl, amino, aryl, allyl, carboxyl, nitro, halogen, cyano and sulfonic acid.

【0008】(2)縮合多環式化合物及びその誘導体 具体例としてはナフタレン、フルオレン、アントラセ
ン、フェナントレン、ピレン、コロネン及びそれらの置
換体などが挙げられる。具体的にはα−及びβ−アミノ
ナフタレン、アミノアントラセン、アミノコロネン、ア
ルキルフルオレンなど及びそれらの置換体で、これらの
置換体は前記(1)の置換基を有していてもよい。
(2) Condensed polycyclic compounds and derivatives thereof Specific examples thereof include naphthalene, fluorene, anthracene, phenanthrene, pyrene, coronene and substitution products thereof. Specifically, α- and β-aminonaphthalene, aminoanthracene, aminocoronene, alkylfluorene, and the like, and their substitution products, and these substitution products may have the substituent of the above (1).

【0009】(3)複素芳香族系化合物及びその誘導体 具体例としてはピロール、フラン、チオフェン、セレノ
フェン、カルバゾール、ピリジン、オキサゾール、チア
ゾール及びそれらの置換体などが挙げられる。具体的に
は3−アルキルピロール、N−アルキルピロール、3,
4−ジアルキルピロール、3−アリキルフラン、3,4
−ジアルキルフラン、3−アルキルチオフェン、3,4
−ジアルキルチオフェン、3−アルキルセレノフェン、
3,4−ジアルキルセレノフェンなど及びこれらの置換
体で、これらの置換体は前記(1)の置換基を有してい
てもよい。
(3) Heteroaromatic compounds and derivatives thereof Specific examples thereof include pyrrole, furan, thiophene, selenophene, carbazole, pyridine, oxazole, thiazole, and substitution products thereof. Specifically, 3-alkylpyrrole, N-alkylpyrrole, 3,
4-dialkylpyrrole, 3-alkylylfuran, 3,4
-Dialkylfuran, 3-alkylthiophene, 3,4
-Dialkylthiophene, 3-alkylselenophene,
With respect to 3,4-dialkylselenophene and the like and their substituted products, these substituted products may have the substituent of the above (1).

【0010】これらの化合物の重合物の中でも、下記一
般式(I)で示されるポリアニリン系化合物、ポリチオ
フェン系化合物、ポリピロール系化合物またはポリフェ
ニレン系化合物が好適に使用できる。
Among the polymers of these compounds, polyaniline compounds, polythiophene compounds, polypyrrole compounds or polyphenylene compounds represented by the following general formula (I) can be preferably used.

【化2】 (式中、R1、R2、R3、R4、R5、R6、R7、R8は同
一でも異なってもよく、水素原子、ハロゲン原子、アル
キル基、エステル基、アルコキシ基、ニトロ基、シアノ
基、水酸基、アルコキシカルボニル基、カルボキシル
基、またはスルホン酸基を示す。R9は水素原子、アル
キル基、アリール基、アシル基、アルキルスルホニル
基、アリールスルホニル基或いは、アルキル基、アリー
ル基、アシル基、アルキルスルホニル基またはアリール
スルホニル基の水素の一つ以上がハロゲン原子、ニトロ
基、シアノ基、水酸基、アミノ基、カルボキシル基また
はスルホン酸基で置換されたそれぞれの基を示す。k≧
0、l≧0、m≧0、n≧0、k+l≧10〜5000
00、m+n≧0〜500000)
[Chemical 2] (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different, and a hydrogen atom, a halogen atom, an alkyl group, an ester group, an alkoxy group, R 9 represents a nitro group, a cyano group, a hydroxyl group, an alkoxycarbonyl group, a carboxyl group, or a sulfonic acid group, and R 9 represents a hydrogen atom, an alkyl group, an aryl group, an acyl group, an alkylsulfonyl group, an arylsulfonyl group, an alkyl group, or an aryl group. A group, an acyl group, an alkylsulfonyl group, or an arylsulfonyl group, and one or more hydrogens thereof are substituted with a halogen atom, a nitro group, a cyano group, a hydroxyl group, an amino group, a carboxyl group, or a sulfonic acid group. ≧
0, l ≧ 0, m ≧ 0, n ≧ 0, k + l ≧ 10 to 5000
00, m + n ≧ 0-500000)

【0011】本発明に用いられる一般式(I)で表され
る化合物は、アニリンからなるモノマーおよびその誘導
体モノマーの少なくとも一種類を酸化重合することによ
って得ることができる。或いは、還元型のポリアニリン
を合成した後、適当な高分子反応、例えば、還元型ポリ
アニリンにアルキルハライド、アシルハライド、スルホ
ニルハライド、オキシラン化合物、アジリジン化合物、
酸無水物等を反応させて、種々の置換基をN位に導入す
ることによって得ることも可能である。アニリン系化合
物の酸化重合の方法としては、適当な酸化剤、例えば過
マンガン酸塩、過硫酸塩、過酸化水素、重クロム酸塩、
塩化鉄等を直接前記モノマーに作用させる方法や、該モ
ノマーを酸性溶液中で電気化学的に酸化重合させる電解
重合法などが適用可能である。
The compound represented by the general formula (I) used in the present invention can be obtained by oxidative polymerization of at least one kind of a monomer consisting of aniline and a derivative monomer thereof. Alternatively, after synthesizing a reduced polyaniline, a suitable polymer reaction, for example, an alkyl halide, an acyl halide, a sulfonyl halide, an oxirane compound, an aziridine compound is added to the reduced polyaniline.
It can also be obtained by reacting an acid anhydride or the like and introducing various substituents into the N-position. As a method of oxidative polymerization of the aniline-based compound, a suitable oxidizing agent such as permanganate, persulfate, hydrogen peroxide, dichromate,
A method in which iron chloride or the like directly acts on the monomer, an electrolytic polymerization method in which the monomer is electrochemically oxidatively polymerized in an acidic solution, and the like are applicable.

【0012】本発明において一般式(I)で示される化
合物のR1、R2、R3、R4、R5、R6、R7、R8の具体
例を示すと、アルキル基については、メチル基、エチル
基、n−プロピル基、i−プロピル基、n−ブチル基、
i−ブチル基、sec−ブチル基、t−ブチル基、n−
ペンチル基、n−ヘキシル基、n−オクチル基等が、ア
ルコキシカルボニル基についてはメトキシカルボニル
基、エトキシカルボニル基等が、エステル基については
アセトキシ基、プロピオニロキシ基、ブチリロキシ基等
のアシロキシ基が、アルコキシ基についてはメトキシ
基、エトキシ基、プロポキシ基等が本発明に適用でき
る。
Specific examples of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 of the compound represented by the general formula (I) in the present invention are as follows: , Methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group,
i-butyl group, sec-butyl group, t-butyl group, n-
Pentyl group, n-hexyl group, n-octyl group and the like, alkoxycarbonyl group is methoxycarbonyl group, ethoxycarbonyl group and the like, ester group is acetoxy group, propionyloxy group, butyloxy group and other acyloxy groups, As the alkoxy group, a methoxy group, an ethoxy group, a propoxy group and the like can be applied to the present invention.

【0013】また、R9の具体例を示すと、アリール基
としてはフェニル基、ナフチル基等が、アシル基として
はアセチル基、プロピオニル基、ブチリル基、ヘキサノ
イル基、オクタノイル基等が、アルキルスルホニル基と
してはヘキシルスルホニル基、ドデシルスルホニル基等
が、アリールスルホニル基としてはベンゼンスルホニル
基、トルエンスルホニル基等が本発明に適用できる。
Specific examples of R 9 include aryl groups such as phenyl group and naphthyl group, and acyl groups such as acetyl group, propionyl group, butyryl group, hexanoyl group, octanoyl group, and alkylsulfonyl group. A hexylsulfonyl group, a dodecylsulfonyl group, etc. can be applied to the present invention, and a benzenesulfonyl group, a toluenesulfonyl group, etc. can be applied to the present invention as an arylsulfonyl group.

【0014】本発明に用いられるイオン導電性高分子化
合物としては、ポリエーテル系高分子化合物、ポリホス
ファゼン、ポリビニルピロリドン、ポリエーテル−ポリ
ビニルピロリドン共重合体、ポリエーテル共重合体また
は、それらの架橋体等が挙げられる。これらの中で特に
−(CH2O)n−、−(CH2CH2O)n−、−[CH2
CH(CH3)O]n−、−(CH2CH2CH2CH2O)
n−で示されるアルキレンオキシド鎖を有してなるポリ
エーテル系高分子化合物が好ましく、それらの任意の割
合の混合物で、分子量が100〜5000000の範囲
のものが好適に使用できる。また、これらの高分子化合
物の末端基は、アルキル基やアルコール性水酸基、カル
ボキシル基、アミノ基、エステル基などが可能である
が、いずれかの構造に限定する必要はない。該ポリエー
テル系高分子化合物の具体例としては、ポリエチレング
リコール、ポリプロピレングリコール、ポリブチレング
リコール等が本発明に適用される。
Examples of the ion-conductive polymer compound used in the present invention include polyether polymer compounds, polyphosphazenes, polyvinylpyrrolidone, polyether-polyvinylpyrrolidone copolymers, polyether copolymers and cross-linked products thereof. Etc. These particularly in - (CH 2 O) n - , - (CH 2 CH 2 O) n -, - [CH 2
CH (CH 3) O] n -, - (CH 2 CH 2 CH 2 CH 2 O)
A polyether polymer compound having an alkylene oxide chain represented by n- is preferable, and a mixture of them at an arbitrary ratio and having a molecular weight of 100 to 5,000,000 can be suitably used. The terminal group of these polymer compounds can be an alkyl group, an alcoholic hydroxyl group, a carboxyl group, an amino group, an ester group, or the like, but it is not necessary to limit to any structure. Specific examples of the polyether polymer compound include polyethylene glycol, polypropylene glycol, polybutylene glycol and the like.

【0015】本発明の電極を構成する電極活物質層の共
役系導電性高分子化合物とイオン導電性高分子化合物の
割合は、重量比で10:90〜95:5の間にあること
が好ましい。この時の共役系導電性高分子化合物の重量
はドーパントを含まない脱ドープされた状態での重量で
ある。該共役系導電性高分子化合物のイオン導電性高分
子化合物に対する比率が10:90より小さいと電極活
物質として充分に作用できない。また、逆にイオン導電
性高分子化合物に対する割合が95:5より大きいと、
電極活物質と電解質相との界面においてイオンの移動に
対する抵抗が大きくなり過ぎ、電極として充分に働かな
いので好ましくない。
The ratio of the conjugated conductive polymer compound to the ion conductive polymer compound in the electrode active material layer constituting the electrode of the present invention is preferably 10:90 to 95: 5 by weight. .. The weight of the conjugated conductive polymer compound at this time is the weight in a dedoped state containing no dopant. If the ratio of the conjugated conductive polymer compound to the ion conductive polymer compound is less than 10:90, it cannot sufficiently act as an electrode active material. On the contrary, if the ratio to the ion conductive polymer compound is larger than 95: 5,
At the interface between the electrode active material and the electrolyte phase, the resistance against movement of ions becomes too large, and it does not work sufficiently as an electrode, which is not preferable.

【0016】本発明の電極を製造する方法としては、共
役系導電性高分子化合物とイオン導電性高分子化合物を
10:90〜95:5の重量比で溶剤に溶解し、導電性
基体にキャスト或は塗工する方法、或いはイオン導電性
高分子化合物で被覆した導電性基体を電極として例えば
アニリン系モノマーを電解重合して生成した共役系導電
性高分子化合物とイオン導電性高分子化合物とが混在状
態にある電極活物質層を形成する方法、或いはイオン導
電性高分子化合物で被覆した導電性基体に共役系モノマ
ーを含浸させた後、適当な酸化剤と接触させてイオン導
電性高分子層中に共役系導電性高分子化合物を生成させ
る方法などが挙げられる。
As a method for producing the electrode of the present invention, a conjugated conductive polymer compound and an ion conductive polymer compound are dissolved in a solvent in a weight ratio of 10:90 to 95: 5 and cast on a conductive substrate. Alternatively, a method of coating, or using a conductive substrate coated with an ion conductive polymer compound as an electrode, for example, a conjugated conductive polymer compound and an ion conductive polymer compound produced by electrolytically polymerizing an aniline monomer Method for forming mixed electrode active material layer, or ion-conductive polymer layer obtained by impregnating a conductive base material coated with an ion-conductive polymer compound with a conjugated monomer and then contacting with an appropriate oxidizing agent Examples thereof include a method of forming a conjugated conductive polymer compound.

【0017】[0017]

【実施例】以下、本発明を実施例によって説明する。 実施例1 アニリン4.1g、濃塩酸21.9gを水に溶かして1
00mlとし、0℃に冷却した。次に濃塩酸21.9
g、過硫酸アンモニウム6.28gを水に溶かし100
mlとし、前記アニリン溶液にゆっくりと滴下し、0℃
で1時間攪拌を続けた。生成した固形物を濾別し、水で
充分に洗浄した後、さらにアンモニア水で脱ドープ処理
を行った。こうして数平均分子量5000(GPC、N
−メチル−2−ピロリドン溶媒中で測定、ポリスチレン
換算の数平均分子量)のポリアニリンを得た(式(I)
においてk≒14、m+n≒28、l=0、m/n≒
0.5)。このポリアニリン0.1gと平均分子量20
00のポリエチレングリコール2000(和光純薬工業
社製)0.05gを5mlのN−メチル−2−ピロリド
ンに溶解し白金板上にキャスト製膜して、電極活物質層
を形成し本発明の電極を作製した。この電極と対向電極
としての金属リチウムと過塩素酸リチウム0.1モル/
lの炭酸プロピレン溶液からなる電解質とを組み合わせ
て二次電池を構成した。この二次電池の放電電気量と充
放電サイクル数の関係を図1に示した。
EXAMPLES The present invention will be described below with reference to examples. Example 1 4.1 g of aniline and 21.9 g of concentrated hydrochloric acid were dissolved in water to prepare 1
It was made up to 00 ml and cooled to 0 ° C. Next, concentrated hydrochloric acid 21.9
g, 6.28 g of ammonium persulfate is dissolved in water and 100
ml, and slowly add dropwise to the aniline solution at 0 ° C.
The stirring was continued for 1 hour. The produced solid substance was separated by filtration, washed sufficiently with water, and then dedoped with ammonia water. Thus, the number average molecular weight of 5000 (GPC, N
-Methyl-2-pyrrolidone was measured in a solvent to obtain polyaniline having a polystyrene equivalent number average molecular weight (formula (I)).
At k≈14, m + n≈28, l = 0, m / n≈
0.5). 0.1 g of this polyaniline and an average molecular weight of 20
Polyethylene glycol 2000 (produced by Wako Pure Chemical Industries, Ltd.) of 0.05 g was dissolved in 5 ml of N-methyl-2-pyrrolidone and cast on a platinum plate to form an electrode active material layer to form an electrode of the present invention. Was produced. Metal lithium and lithium perchlorate as the counter electrode and the counter electrode 0.1 mol / mol
A secondary battery was constructed by combining it with an electrolyte consisting of 1 propylene carbonate solution. The relationship between the amount of electricity discharged and the number of charge / discharge cycles of this secondary battery is shown in FIG.

【0018】実施例2 実施例1のポリアニリン0.05gと平均分子量600
0のポリエチレングリコール6000(和光純薬工業社
製)0.05gを5mlのN−メチル−2−ピロリドン
に溶解しITOガラス(酸化インジウム一酸化錫を蒸着
した透明電極)上にキャスト製膜して電極活物質層を形
成し、本発明の電極とした。次にこの膜の上に過塩素酸
リチウムを10重量%含むポリエチレングリコールを2
00μmの厚みで製膜し、更にこれをITOガラスで挟
みエレクトロクロミック素子を形成した。本発明の電極
とITOガラス間に2.0Vの電圧をかけ、酸化すると
速やかに青色に変化した。次に、−2.0Vの電圧で還
元するとほとんど無色になった。この酸化・還元を繰り
返したときの発色時、消色時の620nmにおける吸光
度の変化を図2および図3に示した。
Example 2 0.05 g of polyaniline of Example 1 and 600 of average molecular weight
0.05 g of polyethylene glycol 6000 (manufactured by Wako Pure Chemical Industries, Ltd.) of 0 was dissolved in 5 ml of N-methyl-2-pyrrolidone, and cast film was formed on ITO glass (transparent electrode deposited with indium tin oxide monoxide). An electrode active material layer was formed and used as the electrode of the present invention. Next, 2 parts of polyethylene glycol containing 10% by weight of lithium perchlorate was formed on the membrane.
A film having a thickness of 00 μm was formed and sandwiched between ITO glasses to form an electrochromic device. A voltage of 2.0 V was applied between the electrode of the present invention and the ITO glass, and when it was oxidized, it rapidly turned blue. Next, it was reduced at a voltage of -2.0 V and became almost colorless. 2 and 3 show changes in absorbance at 620 nm during color development and color erasure when this oxidation / reduction was repeated.

【0019】実施例3 N−n−ブチルアニリン0.1モル/1の塩酸酸性(p
H≦1)水溶液中で、白金板を電極として飽和カロメル
電極に対して0.6Vの定電位で電解重合を行い電極上
にN−n−ブチルアニリンの重合物を形成させた。得ら
れた重合物を電極から剥離した後、水で充分に洗浄し、
さらにアンモニア水で脱ドープ処理を行い本発明の電極
活物質層に使用するポリ(N−n−ブチルアニリン)を
得た。該ポリアニリン系化合物の数平均分子量は450
0(GPC、N−メチル−2−ピロリドン溶媒中で測
定、ポリスチレン換算の数平均分子量)であり、一般式
(I)におけるk、m+nは0、lは45であった。こ
れを用いて実施例1と同様に操作して二次電池を構成し
た。この二次電池の放電電気量と充放電サイクル数を図
1に示した。
Example 3 N-n-butylaniline 0.1 mol / 1 hydrochloric acid acidity (p
H ≦ 1) In a water solution, a platinum plate was used as an electrode and electrolytic polymerization was carried out at a constant potential of 0.6 V with respect to a saturated calomel electrode to form a polymer of Nn-butylaniline on the electrode. After peeling the obtained polymer from the electrode, washed thoroughly with water,
Further, dedoping treatment was performed with aqueous ammonia to obtain poly (N-n-butylaniline) used in the electrode active material layer of the present invention. The number average molecular weight of the polyaniline compound is 450.
0 (measured in GPC, N-methyl-2-pyrrolidone solvent, polystyrene-equivalent number average molecular weight), k and m + n in the general formula (I) were 0, and l was 45. Using this, a secondary battery was constructed in the same manner as in Example 1. The amount of discharged electricity and the number of charge / discharge cycles of this secondary battery are shown in FIG.

【0020】実施例4 実施例3のポリ(N−n−ブチルアニリン)を用い、ま
たポリエチレングリコールの代わりにポリプロピレング
リコール(ジオールタイプ、平均分子量3000、和光
純薬工業社製)を用いて、実施例2と同様に操作して、
ITOガラス上に電極活物質層を形成させて本発明の電
極を作成し、それを用いてエレクトロクロミック素子を
構成した。本発明の電極とITOガラス間に2.0Vの
電圧をかけ、酸化すると速やかに青色に変化した。次
に、−2.0Vの電圧で還元するとほとんど無色になっ
た。この酸化・還元を繰り返したときの発色時、消色時
の620nmにおける吸光度の変化を図2および図3に
示した。
Example 4 Poly (N-n-butylaniline) of Example 3 was used, and polypropylene glycol (diol type, average molecular weight 3000, manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of polyethylene glycol. Do the same as in Example 2,
An electrode active material layer was formed on ITO glass to prepare an electrode of the present invention, and the electrode was used to construct an electrochromic device. A voltage of 2.0 V was applied between the electrode of the present invention and the ITO glass, and when it was oxidized, it rapidly turned blue. Next, it was reduced at a voltage of -2.0 V and became almost colorless. 2 and 3 show changes in absorbance at 620 nm during color development and color erasure when this oxidation / reduction was repeated.

【0021】実施例5 o−トルイジン4.72gを用いて、実施例1と同様に
操作して数平均分子量4000(GPC、N−メチル−
2−ピロリドン溶媒中で測定、ポリスチレン換算の数平
均分子量)のポリ(o−トルイジン)を得た(式(I)
においてk≒10、m+n≒20、l=0、m/n≒
0.5)。このポリ(o−トルイジン)とポリエチレン
グリコール2000との混合溶液を白金板上にキャスト
製膜して電極活物質層を形成させて、本発明の電極を作
成し、それを用いて二次電池を構成した。該二次電池の
放電電気量と充放電サイクル数を図1に示した。
Example 5 Using 4.72 g of o-toluidine, the procedure of Example 1 was repeated to obtain a number average molecular weight of 4000 (GPC, N-methyl-
Poly (o-toluidine) having a number average molecular weight in terms of polystyrene measured in a 2-pyrrolidone solvent was obtained (formula (I)).
Where k≈10, m + n≈20, l = 0, m / n≈
0.5). A mixed solution of this poly (o-toluidine) and polyethylene glycol 2000 is cast on a platinum plate to form an electrode active material layer to form an electrode of the present invention, and a secondary battery is formed using the electrode. Configured. The amount of discharged electricity and the number of charge / discharge cycles of the secondary battery are shown in FIG.

【0022】実施例6 実施例5のポリ(o−トルイジン)を用い、実施例2に
従ってITOガラス上に電極活物質層を形成させて本発
明の電極を作成し、それを用いてエレクトロクロミック
素子を構成した。本発明の電極とITOガラス間に2.
0Vの電圧をかけ、酸化すると速やかに青色に変化し
た。次に、−2.0Vの電圧で還元するとほとんど無色
になった。この酸化・還元を繰り返したときの発色時、
消色時の620nmにおける吸光度の変化を図2および
図3に示した。
Example 6 Poly (o-toluidine) of Example 5 was used to form an electrode active material layer on an ITO glass according to Example 2 to prepare an electrode of the present invention, which was used to prepare an electrochromic device. Configured. 1. Between the electrode of the present invention and the ITO glass.
When it was oxidized by applying a voltage of 0 V, it immediately turned blue. Next, it was reduced at a voltage of -2.0 V and became almost colorless. At the time of color development when this oxidation / reduction is repeated,
The change in absorbance at 620 nm during decoloring is shown in FIGS. 2 and 3.

【0023】実施例7 実施例1で合成したポリアニリン1gを100mlの水
に分散し、1gの抱水ヒドラジンを加えて室温で12時
間還元し、灰白色の還元型ポリアニリンを得た。得られ
た還元型ポリアニリンを窒素雰囲気下でN−メチル−2
−ピロリドン30mlに溶解し、1−ブロモドデカン1
gを加え、4時間攪拌を続けた。反応終了後、反応混合
溶液を塩酸水溶液に投入し沈澱物を濾別して洗浄し、更
にアンモニア水で脱ドープ処理をして1.37gのポリ
(N−n−ドデシルアニリン−co−アニリン)を得た
(式(I)においてk≒11、m+n≒22、m/n≒
0.5、l=11、IR:2850〜2950cm-1
ドデシル基のCH伸縮振動)。このポリ(N−n−ドデ
シルアニリン−co−アニリン)とポリエチレングリコ
ール2000とからなる電極活物質層を白金板上に形成
させて本発明の電極を作成し、これを用いて二次電池を
構成した。この二次電池の放電電気量と充放電サイクル
数を図1に示した。
Example 7 1 g of the polyaniline synthesized in Example 1 was dispersed in 100 ml of water, 1 g of hydrazine hydrate was added, and the mixture was reduced at room temperature for 12 hours to obtain an off-white reduced polyaniline. The obtained reduced polyaniline was treated with N-methyl-2 under a nitrogen atmosphere.
-Dissolved in 30 ml of pyrrolidone, 1-bromododecane 1
g was added and stirring was continued for 4 hours. After completion of the reaction, the reaction mixture solution was poured into an aqueous hydrochloric acid solution, the precipitate was filtered and washed, and further dedoped with aqueous ammonia to obtain 1.37 g of poly (N-n-dodecylaniline-co-aniline). (In formula (I), k≈11, m + n≈22, m / n≈
0.5, l = 11, IR: CH stretching vibration of dodecyl group at 2850 to 2950 cm −1 ). An electrode active material layer composed of this poly (Nn-dodecylaniline-co-aniline) and polyethylene glycol 2000 was formed on a platinum plate to prepare an electrode of the present invention, and a secondary battery was constructed using this. did. The amount of discharged electricity and the number of charge / discharge cycles of this secondary battery are shown in FIG.

【0024】実施例8 実施例7のポリ(N−n−ドデシルアニリン−co−ア
ニリン)を用い、実施例2と同様に操作して、ITOガ
ラス上に電極活物質層を形成して本発明の電極を作成
し、それを用いてエレクトロクロミック素子を構成し
た。本発明の電極とITOガラス間に2.0Vの電圧を
かけ、酸化すると速やかに青色に変化した。次に、−
2.0Vの電圧で還元するとほとんど無色になった。こ
の酸化・還元を繰り返したときの発色時、消色時の62
0nmにおける吸光度の変化を図2および図3に示し
た。
Example 8 Using the poly (N-n-dodecylaniline-co-aniline) of Example 7, the same operation as in Example 2 was carried out to form an electrode active material layer on an ITO glass to form the present invention. An electrode was prepared and used to construct an electrochromic device. A voltage of 2.0 V was applied between the electrode of the present invention and the ITO glass, and when it was oxidized, it rapidly turned blue. Then −
When reduced at a voltage of 2.0 V, it became almost colorless. 62 when the color is developed or erased when this oxidation / reduction is repeated
The change in absorbance at 0 nm is shown in FIGS. 2 and 3.

【0025】比較例1 実施例1のポリアニリン0.1gを5mlのN−メチル
−2−ピロリドンに溶解し白金板上にキャスト製膜し
て、電極活物質層を形成して、比較用の電極を作製し
た。この電極と対向電極としての金属リチウムと過塩素
酸リチウム0.1モル/lの炭酸プロピレン溶液からな
る電解質とを組み合わせて二次電池を構成した。この二
次電池の放電電気量と充放電サイクル数の関係を図1に
示した。
Comparative Example 1 The polyaniline of Example 1 (0.1 g) was dissolved in 5 ml of N-methyl-2-pyrrolidone and cast on a platinum plate to form an electrode active material layer. Was produced. A secondary battery was constructed by combining this electrode and metallic lithium as a counter electrode and an electrolyte composed of a propylene carbonate solution of 0.1 mol / l lithium perchlorate. The relationship between the amount of electricity discharged and the number of charge / discharge cycles of this secondary battery is shown in FIG.

【0026】比較例2 実施例1のポリアニリン0.05gを5mlのN−メチ
ル−2−ピロリドンに溶解しITOガラス上にキャスト
製膜して電極活物質層を形成させて、比較用の電極を作
成した。次にこの膜の上に過塩素酸リチウムを10重量
%含むポリエチレングリコールを200μmの厚みで製
膜し、更にこれをITOガラスで挟みエレクトロクロミ
ック素子を形成した。比較用の電極とITOガラス間
に、実施例と同様に電圧をかけ、酸化・還元を繰り返し
たときの発色時、消色時の620nmにおける吸光度の
変化を図2および図3に示した。
Comparative Example 2 0.05 g of the polyaniline of Example 1 was dissolved in 5 ml of N-methyl-2-pyrrolidone and cast on ITO glass to form an electrode active material layer, and a comparative electrode was prepared. Created. Next, a polyethylene glycol containing 10% by weight of lithium perchlorate was formed on the film to a thickness of 200 μm, and the film was sandwiched with ITO glass to form an electrochromic device. A voltage is applied between the comparative electrode and the ITO glass in the same manner as in the example, and changes in absorbance at 620 nm during color development and color erasure are shown in FIGS. 2 and 3 when oxidation and reduction are repeated.

【0027】実施例9 3−n−オクチルチオフェン4.7gを、無水塩化鉄2
4gを溶解したクロロホルム300mlに加え、24時
間、窒素気流下、室温で攪拌した。次に反応混合溶液を
1lのメタノールに加えてよく攪拌し、生成した固形物
を濾別し、メタノール、希塩酸、水、アンモニア水の順
で充分に洗浄し、かつ脱ドープ処理を行って未反応物や
酸化剤を除去した。これを、減圧下80℃で24時間乾
燥した(収量4.5g)。このポリ(3−n−オクチル
チオフェン)0.45gと平均分子量6000のポリエ
チレングリコール6000(和光純薬工業社製)0.0
5gを5mlのクロロホルムに溶解し白金板上にキャス
ト製膜して、電極活物質層を形成して本発明の電極を作
成した。この電極と対向電極としての金属リチウムと過
塩酸リチウム0.1モル/lの炭酸プロピレン溶液から
なる電解質とを組み合わせて二次電池を構成した。この
二次電池の放電電気量と充放電サイクル数を図4に示し
た。
Example 9 4.7 g of 3-n-octylthiophene was added to anhydrous iron chloride 2
4 g of the solution was added to 300 ml of chloroform and the mixture was stirred at room temperature under a nitrogen stream for 24 hours. Next, the reaction mixture solution was added to 1 liter of methanol and stirred well, the solid matter formed was filtered off, thoroughly washed with methanol, dilute hydrochloric acid, water, and ammonia water in this order, and dedoped to carry out unreacted reaction. Removed substances and oxidants. This was dried under reduced pressure at 80 ° C. for 24 hours (yield 4.5 g). 0.45 g of this poly (3-n-octylthiophene) and polyethylene glycol 6000 having an average molecular weight of 6000 (manufactured by Wako Pure Chemical Industries, Ltd.) 0.0
5 g was dissolved in 5 ml chloroform, cast on a platinum plate to form a film, and an electrode active material layer was formed to prepare an electrode of the present invention. A secondary battery was constructed by combining this electrode and metallic lithium as a counter electrode and an electrolyte composed of a propylene carbonate solution of 0.1 mol / l lithium perhydrochloride. The amount of discharged electricity and the number of charge / discharge cycles of this secondary battery are shown in FIG.

【0028】実施例10 実施例9のポリ(3−n−オクチルチオフェン)を用
い、実施例2と同様に操作してITOガラス上に電極活
物質層を形成させて本発明の電極を作成し、これを用い
てエレクトロクロミック素子を構成した。本発明の電極
とITOガラス間に2.0Vの電圧をかけ、酸化すると
速やかに青色に変化した。次に、−2.0Vの電圧で還
元すると赤色になった。この酸化・還元を繰り返したと
きの発色時、消色時の450nmにおける吸光度の変化
を図7(A)、7(B)に示した。
Example 10 Using the poly (3-n-octylthiophene) of Example 9, the same operation as in Example 2 was carried out to form an electrode active material layer on an ITO glass to prepare an electrode of the present invention. An electrochromic device was constructed using this. A voltage of 2.0 V was applied between the electrode of the present invention and the ITO glass, and when it was oxidized, it rapidly turned blue. Then, reduction was performed at a voltage of -2.0 V, which turned red. FIGS. 7A and 7B show changes in absorbance at 450 nm at the time of color development and at the time of color erasing when this oxidation / reduction was repeated.

【0029】比較例3 実施例9で用いたポリ(3−n−オクチルチオフェン)
0.1gを、5mlのクロロホルムに溶解し白金板上に
キャスト製膜して電極活物質層を形成して比較用の電極
を作成した。この電極と対向電極としての金属リチウム
と過塩酸リチウム0.1モル/lの炭酸プロピレン溶液
からなる電解質とを組み合わせて二次電池を構成した。
この二次電池の放電電気量と充放電サイクル数を図4に
示した。
Comparative Example 3 Poly (3-n-octylthiophene) used in Example 9
0.1 g was dissolved in 5 ml chloroform and cast film was formed on a platinum plate to form an electrode active material layer to prepare a comparative electrode. A secondary battery was constructed by combining this electrode and metallic lithium as a counter electrode and an electrolyte composed of a propylene carbonate solution of 0.1 mol / l lithium perhydrochloride.
The amount of discharged electricity and the number of charge / discharge cycles of this secondary battery are shown in FIG.

【0030】比較例4 実施例9で用いたポリ(3−n−オクチルチオフェン)
0.1gを用い、5mlのクロロホルムに溶解し、IT
Oガラス上にキャスト製膜して電極活物質層を形成して
比較用の電極を作成した。次にこの膜の上に過塩素酸リ
チウムを10重量%含むポリエチレングリコールを20
0μmの厚みで製膜し、更にこれをITOガラスで挟み
エレクトロクロミック素子を形成した。比較用の電極と
ITOガラス間に、実施例と同様に電圧をかけ、酸化・
還元を繰り返したときの発色時、消色時の450nmに
おける吸光度の変化を図7(A)、7(B)に示した。
Comparative Example 4 Poly (3-n-octylthiophene) used in Example 9
Using 0.1 g, dissolve in 5 ml of chloroform and
A cast electrode was formed on O glass to form an electrode active material layer to prepare a comparative electrode. Next, polyethylene glycol containing 10% by weight of lithium perchlorate was added to the surface of the film.
A film having a thickness of 0 μm was formed and further sandwiched with ITO glass to form an electrochromic device. A voltage was applied between the comparative electrode and the ITO glass in the same manner as in the example to oxidize and
The change in absorbance at 450 nm during color development and decoloration when repeated reduction is shown in FIGS. 7 (A) and 7 (B).

【0031】実施例11 平均分子量6000のポリエチレングリコール6000
(和光純薬工業社製)をクロロホルムに溶解し白金板上
にキャスト製膜した。この時の電極上のポリエチレング
リコールは0.02gであった。これを作用極として、
ピロール2ミリモル、テトラフルオロホウ酸アンモニウ
ム1ミリモルを含むエーテル溶液中で白金板を対極とし
て、1.5Vの定電圧で1クーロンの電気量になるよう
にアルゴン雰囲気下で電解重合を行った。得られた重合
体に−0.5Vの逆電位をかけて脱ドープし黄色のポリ
ピロールとポリエチレングリコールとを電極活物質層と
してなる本発明の電極を製造した。電極の乾燥後の重量
よりポリピロールは0.03gであった。この電極と対
向電極としての金属リチウムと過塩素酸リチウム0.1
モル/lの炭酸プロピレン溶液からなる電解質とを組み
合わせて二次電池を構成した。この二次電池の放電電気
量と充放電サイクル数を図5に示した。
Example 11 Polyethylene glycol 6000 having an average molecular weight of 6000
(Wako Pure Chemical Industries, Ltd.) was dissolved in chloroform to form a cast film on a platinum plate. At this time, the amount of polyethylene glycol on the electrode was 0.02 g. With this as the working pole,
Using a platinum plate as a counter electrode in an ether solution containing 2 mmol of pyrrole and 1 mmol of ammonium tetrafluoroborate, electrolytic polymerization was carried out in an argon atmosphere at a constant voltage of 1.5 V so that the quantity of electricity was 1 coulomb. The obtained polymer was dedoped by applying a reverse potential of -0.5 V to produce an electrode of the present invention in which yellow polypyrrole and polyethylene glycol were used as an electrode active material layer. The weight of the electrode after drying was 0.03 g of polypyrrole. Metallic lithium and lithium perchlorate as the counter electrode and this electrode 0.1
A secondary battery was constructed by combining with an electrolyte composed of a mol / l propylene carbonate solution. The amount of discharged electricity and the number of charge / discharge cycles of this secondary battery are shown in FIG.

【0032】実施例12 実施例11における白金板に代えて、ITOガラス上に
黄色のポリピロールとポリエチレングリコールを電極活
物質としてなる本発明の電極を製造した。これを用い
て、実施例2と同様に操作してエレクトロクロミック素
子を構成した。本発明の電極とITOガラス間に2.0
Vの電圧をかけ、酸化すると速やかに黒青色に変化し
た。次に、−2.0Vの電圧で還元すると黄色になっ
た。この酸化・還元を繰り返したときの発色時、消色時
の400nmにおける吸光度の変化を図8(A)、8
(B)に示した。
Example 12 In place of the platinum plate in Example 11, an electrode of the present invention was prepared by using yellow polypyrrole and polyethylene glycol as electrode active materials on ITO glass. Using this, an electrochromic device was constructed in the same manner as in Example 2. 2.0 between the electrode of the present invention and the ITO glass
When a voltage of V was applied and oxidation was performed, the color rapidly changed to black blue. Next, reduction was performed at a voltage of -2.0 V, which turned yellow. FIG. 8 (A) and FIG. 8 show changes in absorbance at 400 nm during color development and color erasure when this oxidation / reduction is repeated.
It is shown in (B).

【0033】比較例5 ピロール2ミリモル、テトラフルオロホウ酸アンモニウ
ム1ミリモルを含むエーテル溶液中で、白金板を対極と
して1.5Vの定電圧で1クーロンの電気量になるよう
に、アルゴン雰囲気下で電解重合を行って、白金板上に
ポリピロールを電極活物質層とする比較用の電極を作成
した。この電極と対向電極としての金属リチウムと過塩
素酸リチウム0.1モル/lの炭酸プロピレン溶液から
なる電解質とを組み合わせて二次電池を構成した。この
二次電池の放電電気量と充放電のサイクル数を図5に示
した。
Comparative Example 5 In an ether solution containing 2 mmol of pyrrole and 1 mmol of ammonium tetrafluoroborate, an amount of electricity of 1 coulomb was obtained at a constant voltage of 1.5 V with a platinum plate as a counter electrode under an argon atmosphere. Electrolytic polymerization was performed to prepare a comparative electrode having a polypyrrole as an electrode active material layer on a platinum plate. A secondary battery was constructed by combining this electrode and metallic lithium as a counter electrode and an electrolyte composed of a propylene carbonate solution of 0.1 mol / l lithium perchlorate. The amount of discharged electricity and the number of charging / discharging cycles of this secondary battery are shown in FIG.

【0034】比較例6 比較例5と同様の方法で白金板に代えて、ITOガラス
上にピロールを電解重合して、比較用の電極を作成し
た。この膜の上に過塩素酸リチウムを10重量%含むポ
リエチレングリコールを200μmの厚みで製膜し、更
にこれをITOガラスで挟みエレクトロクロミック素子
を形成した。比較用の電極とITOガラス間に、実施例
12と同様に電圧をかけ、酸化・還元を繰り返したとき
の発色時、消色時の400nmにおける吸光度の変化を
図8(A)、8(B)に示した。
Comparative Example 6 In the same manner as in Comparative Example 5, instead of the platinum plate, pyrrole was electrolytically polymerized on ITO glass to prepare a comparative electrode. Polyethylene glycol containing 10% by weight of lithium perchlorate was formed on the film to a thickness of 200 μm, and the film was sandwiched with ITO glass to form an electrochromic device. A voltage was applied between the electrode for comparison and the ITO glass in the same manner as in Example 12, and changes in absorbance at 400 nm at the time of coloring and erasing when repeated oxidation / reduction are shown in FIGS. )Pointing out toungue.

【0035】実施例13 ジブトキシ置換ポリフェニレン0.45gと平均分子量
6000のポリエチレングリコール6000(和光純薬
工業社製)0.05gを5mlのクロロホルムに溶解し
白金板上にキャスト製膜して、電極活物質層を形成して
本発明の電極を作成した。この電極と対向電極としての
金属リチウムと過塩素酸リチウム0.1モル/lの炭酸
プロピレン溶液からなる電解質とを組み合わせて二次電
池を構成した。この二次電池の放電電気量と充放電サイ
クル数を図6に示した。
Example 13 0.45 g of dibutoxy-substituted polyphenylene and 0.05 g of polyethylene glycol 6000 (manufactured by Wako Pure Chemical Industries, Ltd.) having an average molecular weight of 6000 were dissolved in 5 ml of chloroform and cast on a platinum plate to form a film, and the electrode was activated. A material layer was formed to make an electrode of the present invention. A secondary battery was constructed by combining this electrode and metallic lithium as a counter electrode and an electrolyte composed of a propylene carbonate solution of 0.1 mol / l lithium perchlorate. The amount of discharged electricity and the number of charge / discharge cycles of this secondary battery are shown in FIG.

【0036】実施例14 実施例13のジブトキシ置換ポリフェニレンを用い、実
施例2と同様に操作してITOガラス上に電極活物質層
を形成して本発明の電極を作成し、これを用いてエレク
トロクロミック素子を構成した。本発明の電極とITO
ガラス間に2.0Vの電圧をかけ、酸化すると速やかに
青色に変化した。次に、−2.0Vの電圧で還元すると
赤色になった。この酸化・還元を繰り返したときの発色
時、消色時の450nmにおける吸光度の変化を図9
(A)、9(B)に示した。
Example 14 Using the dibutoxy-substituted polyphenylene of Example 13, the same operation as in Example 2 was carried out to form an electrode active material layer on an ITO glass to prepare an electrode of the present invention. A chromic device was constructed. The electrode of the present invention and ITO
When a voltage of 2.0 V was applied between the glasses and the glass was oxidized, it immediately turned blue. Then, reduction was performed at a voltage of -2.0 V, which turned red. FIG. 9 shows changes in absorbance at 450 nm during color development and decolorization when this oxidation / reduction is repeated.
The results are shown in (A) and 9 (B).

【0037】比較例7 実施例13のジブトキシ置換ポリフェニリン0.1gを
5mlのクロロホルムに溶解し白金板上にキャスト製膜
して電極活物質層形成して比較用の電極を作成した。こ
の電極と対向電極としての金属リチウムと過塩素酸リチ
ウム0.1モル/lの炭酸プロピレン溶液からなる電解
質とを組み合わせて二次電池を構成した。この二次電池
の放電電気量と充放電のサイクル数を図6に示した。
Comparative Example 7 0.1 g of the dibutoxy-substituted polyphenylene of Example 13 was dissolved in 5 ml of chloroform, and a cast film was formed on a platinum plate to form an electrode active material layer to prepare a comparative electrode. A secondary battery was constructed by combining this electrode and metallic lithium as a counter electrode and an electrolyte composed of a propylene carbonate solution of 0.1 mol / l lithium perchlorate. The amount of electricity discharged and the number of charging / discharging cycles of this secondary battery are shown in FIG.

【0038】比較例8 実施例13のジブトキシ置換ポリフェニリン0.1gを
5mlのクロロホルムに溶解しITOガラス上にキャス
ト製膜して、比較用の電極を作成した。この膜の上に過
塩素酸リチウムを10重量%含むポリエチレングリコー
ルを200μmの厚みで製膜し、更にこれをITOガラ
スで挟みエレクトロクロミック素子を形成した。比較用
の電極とITOガラス間に、実施例14と同様に電圧を
加え、酸化・還元を繰り返したときの発色時および消色
時の450nmにおける吸光度の変化を図9(A)、9
(B)に示した。
Comparative Example 8 0.1 g of the dibutoxy-substituted polyphenylene of Example 13 was dissolved in 5 ml of chloroform and cast on an ITO glass to form a film as a comparative electrode. Polyethylene glycol containing 10% by weight of lithium perchlorate was formed on the film to a thickness of 200 μm, and the film was sandwiched with ITO glass to form an electrochromic device. A voltage change was applied between the electrode for comparison and the ITO glass in the same manner as in Example 14, and changes in absorbance at 450 nm at the time of coloring and erasing when repeated oxidation / reduction are shown in FIGS.
It is shown in (B).

【0039】以上述べたとおり本発明の電極を用いて構
成した二次電池(実施例1、3、5、7、9、11、1
3)の放電電気量は充放電の繰り返しに対して比較例に
比べて安定していることが確認された(図1および図4
〜6)。また該電極を用いて構成した表示素子(実施例
2、4、6、8、10、12、14)も、酸化・還元の
繰り返しに対し、比較例に比べて発色・消色時の吸光度
の変化が小さく、すなわち、発色時の吸光度の低下が小
さく、消色時の吸光度の増加も小さいという優れた特性
を示し[図2、3、7(A〜B)、8(A〜B)および
9(A〜B)]、該電極が、二次電池および表示素子用
の電極として優れていることが確認された。
As described above, the secondary battery constructed by using the electrode of the present invention (Examples 1, 3, 5, 7, 9, 11, 1 and 1)
It was confirmed that the discharge electricity quantity of 3) was more stable with respect to repeated charging and discharging as compared with the comparative example (FIGS. 1 and 4).
~ 6). In addition, the display element (Examples 2, 4, 6, 8, 10, 12, and 14) configured by using the electrode also shows a higher absorbance at the time of coloring / decoloring as compared with Comparative Example, with respect to repeated oxidation / reduction. It exhibits excellent characteristics that the change is small, that is, the decrease in absorbance during color development is small and the increase in absorbance during color erasing is also small [Figs. 2, 3, 7 (AB), 8 (AB) and 9 (AB)], it was confirmed that the electrode was excellent as an electrode for secondary batteries and display elements.

【0040】[0040]

【発明の効果】本発明の電極は、導電性基体の表面に共
役系導電性高分子化合物とイオン導電性高分子化合物を
含有した電極活物質層を設けることが特徴であって、電
極の内部抵抗が小さく、充放電サイクルに対して寿命の
長い安定した放電電気量を示し、また酸化・還元反応の
繰り返しに対して発色・消色時に安定した吸光度を示す
ので、一次電池は勿論、二次電池および表示素子用の電
極として非常に有用である。
The electrode of the present invention is characterized in that an electrode active material layer containing a conjugated conductive polymer compound and an ion conductive polymer compound is provided on the surface of a conductive substrate. It has a low resistance, a stable discharge electricity quantity with a long life for charge and discharge cycles, and a stable absorbance at the time of coloring and decoloring due to repeated oxidation and reduction reactions. It is very useful as an electrode for batteries and display devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極を用いた二次電池(実施例1、
3、5、7)と比較例1における充放電サイクル数と放
電電気量を示す図。
FIG. 1 is a secondary battery using an electrode of the present invention (Example 1,
3, 5, 7) and a diagram showing the number of charge / discharge cycles and the amount of discharged electricity in Comparative Example 1.

【図2】本発明の電極を用いた表示素子(実施例2、
4、6、8)と比較例2における酸化・還元サイクルの
発色時の吸光度を示す図。
FIG. 2 is a display element using an electrode of the present invention (Example 2,
4, 6, 8) and a graph showing the absorbance at the time of color development in the oxidation / reduction cycle in Comparative Example 2.

【図3】本発明の電極を用いた表示素子(実施例2、
4、6、8)と比較例2における酸化・還元サイクルの
消色時の吸光度を示す図。
FIG. 3 is a display element using the electrode of the present invention (Example 2,
4, 6, 8) and the graph showing the absorbance at the time of decoloring of the oxidation / reduction cycle in Comparative Example 2.

【図4】本発明の電極を用いた二次電池(実施例9)と
比較例3における充放電サイクル数と放電電気量を示す
図。
FIG. 4 is a diagram showing the number of charge / discharge cycles and the amount of discharged electricity in a secondary battery (Example 9) using an electrode of the present invention and Comparative Example 3.

【図5】本発明の電極を用いた二次電池(実施例11)
と比較例5における充放電サイクル数と放電電気量を示
す図。
FIG. 5 is a secondary battery using the electrode of the present invention (Example 11).
6 is a diagram showing the number of charge / discharge cycles and the amount of discharged electricity in Comparative Example 5 and FIG.

【図6】本発明の電極を用いた二次電池(実施例13)
と比較例7における充放電サイクル数と放電電気量を示
す図。
FIG. 6 is a secondary battery using the electrode of the present invention (Example 13).
9 is a diagram showing the number of charge / discharge cycles and the amount of discharged electricity in Comparative Example 7. FIG.

【図7】実施例10と比較例4の表示素子における酸化
・還元サイクルの発色時・消色時の吸光度を示す図。
(A)−発色時、 (B)−消色時
FIG. 7 is a graph showing the absorbances of the display elements of Example 10 and Comparative Example 4 during color development / color erasing in the oxidation / reduction cycle.
(A) -When coloring, (B) -When erasing

【図8】実施例12と比較例6の表示素子における酸化
・還元サイクルの発色時・消色時の吸光度を示す図。
(A)−発色時、 (B)−消色時
FIG. 8 is a diagram showing the absorbances of the display elements of Example 12 and Comparative Example 6 at the time of color development and color disappearance in the oxidation / reduction cycle.
(A) -When coloring, (B) -When erasing

【図9】実施例14と比較例8の表示素子における酸化
・還元サイクルの発色時・消色時の吸光度を示す図。
(A)−発色時、 (B)−消色時
FIG. 9 is a diagram showing the absorbances of the display elements of Example 14 and Comparative Example 8 at the time of color development / erasing of the oxidation / reduction cycle.
(A) -When coloring, (B) -When erasing

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導電性基体の表面に共役系導電性高分子
化合物およびイオン導電性高分子化合物を含有する電極
活物質層を設けたことを特徴とする電極。
1. An electrode characterized in that an electrode active material layer containing a conjugated conductive polymer compound and an ion conductive polymer compound is provided on the surface of a conductive substrate.
【請求項2】 電極活物質層として用いられる共役系導
電性高分子化合物が、下記一般式(I)で示されるポリ
アニリン系化合物であることを特徴とする請求項1に記
載の電極。 【化1】 (式中、R1、R2、R3、R4、R5、R6、R7、R8は同
一でも異なってもよく、水素原子、ハロゲン原子、アル
キル基、エステル基、アルコキシ基、ニトロ基、シアノ
基、水酸基、アルコキシカルボニル基、カルボキシル
基、またはスルホン酸基を示す。R9は水素原子、アル
キル基、アリール基、アシル基、アルキルスルホニル
基、アリールスルホニル基或いは、アルキル基、アリー
ル基、アシル基、アルキルスルホニル基またはアリール
スルホニル基の水素の一つ以上がハロゲン原子、ニトロ
基、シアノ基、水酸基、アミノ基、カルボキシル基また
はスルホン酸基で置換されたそれぞれの基を示す。k≧
0、l≧0、m≧0、n≧0、k+l≧10〜5000
00、m+n≧0〜500000)
2. The electrode according to claim 1, wherein the conjugated conductive polymer compound used as the electrode active material layer is a polyaniline compound represented by the following general formula (I). [Chemical 1] (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different, and a hydrogen atom, a halogen atom, an alkyl group, an ester group, an alkoxy group, R 9 represents a nitro group, a cyano group, a hydroxyl group, an alkoxycarbonyl group, a carboxyl group, or a sulfonic acid group, and R 9 represents a hydrogen atom, an alkyl group, an aryl group, an acyl group, an alkylsulfonyl group, an arylsulfonyl group, an alkyl group, or an aryl group. A group, an acyl group, an alkylsulfonyl group, or an arylsulfonyl group, and one or more hydrogens thereof are substituted with a halogen atom, a nitro group, a cyano group, a hydroxyl group, an amino group, a carboxyl group, or a sulfonic acid group. ≧
0, l ≧ 0, m ≧ 0, n ≧ 0, k + l ≧ 10 to 5000
00, m + n ≧ 0-500000)
【請求項3】 電極活物質層として用いられる共役系導
電性高分子化合物が、ポリチオフェン系化合物、ポリピ
ロール系化合物またはポリフェニレン系化合物であるこ
とを特徴とする請求項1に記載の電極。
3. The electrode according to claim 1, wherein the conjugated conductive polymer compound used as the electrode active material layer is a polythiophene compound, a polypyrrole compound or a polyphenylene compound.
【請求項4】 電極活物質層に含まれるイオン導電性高
分子化合物が、−(CH2O)n−、−(CH2CH2O)
n−、−[CH2CH(CH3)O]n−、−(CH2CH2
CH2CH2O)n−で示されるアルキレンオキシド鎖を
有してなるポリエーテル系化合物またはそれらの任意の
割合の混合物であることを特徴とする請求項1に記載の
電極。
4. The ion-conductive polymer compound contained in the electrode active material layer, - (CH 2 O) n -, - (CH 2 CH 2 O)
n -, - [CH 2 CH (CH 3) O] n -, - (CH 2 CH 2
CH 2 CH 2 O) n - comprised a alkylene oxide chain represented by polyether compound or electrode of claim 1, characterized in that a mixture of any ratio thereof.
【請求項5】 電極活物質層を構成する共役系導電性高
分子化合物とイオン導電性高分子化合物の重量比が1
0:90〜95:5の割合であることを特徴とする請求
項1に記載の電極。
5. The weight ratio of the conjugated conductive polymer compound and the ion conductive polymer compound forming the electrode active material layer is 1
The electrode according to claim 1, wherein the ratio is 0:90 to 95: 5.
【請求項6】 二次電池の電極として用いる請求項1に
記載の電極。
6. The electrode according to claim 1, which is used as an electrode of a secondary battery.
【請求項7】 表示素子の電極として用いる請求項1に
記載の電極。
7. The electrode according to claim 1, which is used as an electrode of a display element.
JP3351302A 1991-12-13 1991-12-13 Electrode Expired - Fee Related JP2515656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3351302A JP2515656B2 (en) 1991-12-13 1991-12-13 Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351302A JP2515656B2 (en) 1991-12-13 1991-12-13 Electrode

Publications (2)

Publication Number Publication Date
JPH05166511A true JPH05166511A (en) 1993-07-02
JP2515656B2 JP2515656B2 (en) 1996-07-10

Family

ID=18416388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351302A Expired - Fee Related JP2515656B2 (en) 1991-12-13 1991-12-13 Electrode

Country Status (1)

Country Link
JP (1) JP2515656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066572A1 (en) * 1998-06-19 1999-12-23 Adven Polymers, Inc. Polymeric thin-film reversible electrochemical charge storage devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224151A (en) * 1987-03-12 1988-09-19 Canon Inc Battery
JPH03504872A (en) * 1988-08-01 1991-10-24 ロッキード コーポレーション Conductive polymers and their manufacturing methods at high operating temperatures
JPH0528823A (en) * 1991-07-22 1993-02-05 Matsushita Electric Ind Co Ltd High-molecular compound electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224151A (en) * 1987-03-12 1988-09-19 Canon Inc Battery
JPH03504872A (en) * 1988-08-01 1991-10-24 ロッキード コーポレーション Conductive polymers and their manufacturing methods at high operating temperatures
JPH0528823A (en) * 1991-07-22 1993-02-05 Matsushita Electric Ind Co Ltd High-molecular compound electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066572A1 (en) * 1998-06-19 1999-12-23 Adven Polymers, Inc. Polymeric thin-film reversible electrochemical charge storage devices
US6096453A (en) * 1998-06-19 2000-08-01 Adven Polymers, Inc. Polymeric thin-film reversible electrochemical charge storage devices

Also Published As

Publication number Publication date
JP2515656B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
Andriianova et al. Effect of structural factors on the physicochemical properties of functionalized polyanilines
EP0262147B1 (en) Self-doped polymers
Kim et al. Redox Cyclability of a Self‐Doped Polyaniline
JP2001508121A (en) Conjugated polymer in oxidized state
US4505841A (en) Fused 6,6,6-membered heterocyclic electroactive polymers
US5367041A (en) Self-doped zwitterionic polymers
WO2009113585A1 (en) Film for an electrochemical element, electrode for an electrochemical element, and a battery
US5188766A (en) Electrically conductive polymer compositions, processes and polymers useful for preparing the polymer compositions
US5569708A (en) Self-doped polymers
Maruyama et al. . pi.-Conjugated soluble poly (6-hexylpyridine-2, 5-diyl) and poly (6, 6'-dihexyl-2, 2'-bipyridine-5, 5'-diyl) with high molecular weights and n-type conducting properties. Synthesis, electrical and optical properties, and chemical reactivities of the polymers
US4505844A (en) P-Type polyphenoxazine electroactive polymers
US5891968A (en) Method of making self-doped zwitterionic heterocyclic polymers
US5310781A (en) Self-doped polymers from polyaniline with bronsted acid groups
US5863981A (en) Electrically conducting water-soluble self-doping polyaniline polymers and the aqueous solutions thereof
JPH05166511A (en) Electrode
JP2960859B2 (en) Self-doping type conductive polymer aqueous solution and method for producing the same
US5760169A (en) Self-doped polymers
JP2942710B2 (en) Water-soluble self-doping type conductive polymer composite and method for producing the same
WO2002010251A1 (en) Method for making polypyrrole
JPH0813873B2 (en) Water-soluble self-doped conductive polymer and method for producing the same
JP2576403B2 (en) Conductive polymer compound
JP2770259B2 (en) Electrode and electrochemical display device using the same
JP2640548B2 (en) Electrochromic material and display element
JPH07121983B2 (en) Process for producing polymer having isothianaphthene structure
US5510457A (en) Method for preparing processable polyisothianaphthene

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960220

LAPS Cancellation because of no payment of annual fees