JPH05164892A - 原子炉の可燃性ガス制御装置 - Google Patents

原子炉の可燃性ガス制御装置

Info

Publication number
JPH05164892A
JPH05164892A JP3327628A JP32762891A JPH05164892A JP H05164892 A JPH05164892 A JP H05164892A JP 3327628 A JP3327628 A JP 3327628A JP 32762891 A JP32762891 A JP 32762891A JP H05164892 A JPH05164892 A JP H05164892A
Authority
JP
Japan
Prior art keywords
hydrogen
container
alloy
containment vessel
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3327628A
Other languages
English (en)
Inventor
Tasuku Kodama
資 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3327628A priority Critical patent/JPH05164892A/ja
Publication of JPH05164892A publication Critical patent/JPH05164892A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】 【目的】外部のヒーター,ブロワおよびそれらの電源装
置等を不要とし、かつ単純化されている。 【構成】周囲の温度上昇に伴って一部に開口が形成され
るようにキャップ23を有する容器21と、この容器21内に
水素吸蔵合金26と不活性ガス27が充填されている。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は原子炉を収納する原子炉
格納容器内に放出される多量の水素ガスや酸素等の可燃
性ガス制御を処理するための原子炉の可燃性ガス制御装
置に関する。
【0002】
【従来の技術】原子炉を収納する原子炉格納容器内へ原
子炉のたとえば事故時に放出される多量の水素ガスを処
理するための装置としては、沸騰水型原子力発電所で用
いられている可燃性ガス濃度制御装置と、米国の加圧水
型原子力発電所等で用いられているイグナイター等が一
般に知られている。
【0003】可燃性ガス濃度制御装置は、文献『沸騰水
型原子力発電所 可燃性ガス濃度制御系について TL
R−002−A』等で紹介されている。その基本構成は
図5に示すように、ブロワ1、加熱器2、再結合器3、
冷却器4および気水分離器5を直列接続し、複数の弁
7,8,9とその相互を連結する配管10とから構成され
ている。
【0004】この装置の運転には外部から供給される冷
却水と電力を必要とする。なお、図中符号11はバイパス
配管である。また、原子炉格納容器12内は、原子炉の運
転中は不活性ガスで充填され、酸素濃度は希釈な状態
( 3.5〜 4.0%以下)に維持されている。
【0005】そして、万一にも原子炉事故が発生し、原
子炉格納容器12内に燃料被覆管の酸化反応により水素が
放出され、かつ水の放射線分解による水素と酸素が放出
されると、新たに放出された水素と酸素は、原子炉格納
容器12内に予め存在している酸素および窒素の混合気体
と共に、ブロワ1により吸引され装置内へ導入される。
【0006】装置内へ導入された気体は、加熱器2で所
定の温度まで昇温された後、再結合器3へ送られ、再結
合器3内で水素と酸素の再結合反応により水に戻され
る。その後、冷却器4へ送られ、気体は冷却され、水蒸
気は水に戻されて、気水分離器5を経た後、原子炉格納
容器12へ戻される。
【0007】このようにして、水素と酸素は処理され
て、原子炉格納容器12内の水素と酸素の濃度は、可燃限
界である水素濃度4%および酸素濃度5%を同時に超え
ることがないように維持される。その結果、水素と酸素
の急激で広範囲に及ぶ燃焼による爆発の発生を防ぐこと
ができ、原子炉格納容器の健全性が保たれる。
【0008】イグナイターは、文献『NUREG/CR-2486 Fi
nal Results of the Hydrogen Igniter Experimental P
rogram』等で紹介されているように、原子炉格納容器12
内に多数のディーセルエンジン用のイグニションブラグ
等(イグナイター)を分散配置して、原子炉事故時に外
部から給電して、イグナイターを高温状態とすることに
より、原子炉格納容器12内に発生する水素ガスの着火源
として使用し、原子炉格納容器12内で水素ガスを直接燃
焼させて処理する方式のものである。
【0009】この方式の場合には、一般に原子炉格納容
器12内は空気雰囲気とされており、事故前から存在して
いる酸素と事故に伴い大量に放出される水素とが広範囲
かつ急激に反応して大爆発が発生し、それにより原子炉
格納容器12が損壊してしまうことがないように水素を徐
々に燃焼して処理することにより、水素の濃度が広範囲
に高まることを防止するためのものである。
【0010】
【発明が解決しようとする課題】従来の方式において
は、いずれも加熱のための比較的大要領の電力を必要と
し、かつ、可燃性ガス濃度制御装置についてはブロワと
いう回転機器に加えて冷却水まで必要としている。その
ため、必要時に所定の機能を発揮するためには、電力等
のユーティリティを必要とし、かつ、たとえば事故時に
備えてほぼ3ヶ月毎に定期的な作動試験を行う必要があ
る。
【0011】一方、次世代を担う原子力開発において
は、安全系に静的機器を導入することが世界の趨勢とな
りつつあり、外部のユーティリティを必要としない静的
機器から構成される原子炉の可燃性ガス制御装置の提供
が望まれている。
【0012】本発明は上記課題を解決するためになされ
たもので、外部のヒーター,ブロワおよび電源装置等の
ユーティリティを必要としない静的機器から構成される
原子炉の可燃性ガス制御装置を提供することを目的とす
る。
【0013】
【課題を解決するための手段】本発明は原子炉格納容器
内に設置された周囲温度,圧力,相対湿度および放射線
レベルのいずれか又はそれらを組み合わせたものの上昇
を動作力として一部に開口が形成される容器と、この容
器内に収納されかつ所定量の水素が吸収された水素吸蔵
合金と、前記容器内に充填された不活性ガスとからなる
ことを特徴とする。
【0014】この原子炉の可燃性ガス制御装置は各々の
容器の大きさと重量は人が容易に持ち運べるように考慮
されている。そして、原子炉格納容器内に予め複数の原
子炉の可燃性ガス制御装置を内を所定の位置に分散配置
される。
【0015】
【作用】原子炉事故時には原子炉格納容器内の温度,圧
力,相対湿度および放射線レベルはいずれも著しく上昇
し、本発明に係る原子炉の可燃性ガス制御装置の周囲温
度,圧力,相対湿度および放射線レベルも著しく上昇す
るため、それらの一つまたは二つ以上を組み合わせた著
しい変化が動作力となり、水素吸蔵合金を収納している
容器の下部の一部に開口が形成される。
【0016】その結果、開口が開放された容器下部から
内部に収納されている水素吸蔵合金が露出し徐々に外部
へ放出される。放出された水素吸蔵合金は、その表面
で、予め合金内部に吸収貯蔵していた所定量の水素と原
子炉格納容器内の酸素とが燃焼反応し、合金の温度が上
昇する。
【0017】その上昇に伴い合金の水素貯蔵能力が低下
し、水素を放出し続けることにより、合金表面での燃焼
反応は持続し、合金の温度は著しく上昇する。この間、
合金の粒子は水素放出時の体積変化や加熱による体積変
化等によってより微粒な粒子へと崩壊しながら水素の放
出と燃焼を継続し、原子炉格納容器内の酸素を消費す
る。
【0018】一方、このようにして合金表面での水素と
酸素との燃焼反応により高温となった合金の各々の粒子
は、事故時に原子炉格納容器内へ原子炉の炉心等から放
出された水素の着火源として作用し、水素と酸素との燃
焼を促し処理する。このようにして、水素と酸素との広
範囲に及ぶ急激な爆発現象の発生を防ぎ、原子炉格納容
器内の急激な圧力の上昇に伴う破壊を防止することがで
きる。
【0019】
【実施例】図1から図3を参照し本発明に係る原子炉の
可燃性ガス制御装置の一実施例を説明する。図1は原子
炉格納容器12内に可燃性ガス制御装置13を設置した例で
ある。図1中符号14は炉心、15はインターナルポンプ、
16は圧力抑制室、17はプール水、18は主蒸気管、19は給
水管、20はペデスタルをそれぞれ示している。ここで、
原子炉11は原子炉格納容器12内に収納されており、原子
炉格納容器12内には複数の可燃性ガス制御装置13が所定
の位置に分散配置されている。図2は図1における可燃
性ガス制御装置13の基本構成図である。
【0020】原子炉の可燃性ガス制御装置13は、ケーシ
ング21とホッパー22とキャップ23と脚24とから構成され
る容器25と、その容器25内に充填されている水素吸蔵合
金26と不活性ガス27とから構成され、水素吸蔵合金26に
は予め所定量の水素が吸収貯蔵されている。また、原子
炉の可燃性ガス制御装置13の下方には、図3に例示の受
容器31がその必要に応じて配置されている。この受容器
31は、側板32と底面に張設されたネット33とから構成さ
れている。
【0021】次に、原子炉格納容器12内が空気雰囲気と
されている場合を例に説明する。また、水素吸蔵合金26
には水素の吸収に伴い発熱する性質の合金と吸熱する性
質の合金とがあるが、水素の吸収貯蔵に伴い発熱する性
質の合金を例に説明する。さらに本発明に係る原子炉の
可燃性ガス制御装置はその周囲温度の著しい上昇によっ
て動作を開始する場合を例に説明する。
【0022】原子炉格納容器12の内部は、原子炉の通常
運転時や原子炉の停止時には図示しない空調設備により
冷却されているため、原子炉格納容器12内に分散配置さ
れた可燃性ガス制御装置13も冷却保管されている。その
ため、可燃性ガス制御装置13を構成する容器25内部に収
納されている水素吸蔵合金26も冷温状態に維持され、そ
の内部に吸収されている水素は安定に貯蔵されている。
また、容器25の内部には不活性ガス27が充填されている
ため、容器25内部に収納されている水素吸蔵合金26は、
劣化することなく長期に安定して保管が可能となってい
る。
【0023】ところで、万一、原子炉事故が発生する
と、原子炉格納容器12の内部には大量の水蒸気や熱が放
出される結果、内部の温度,圧力,相対湿度および放射
線レベルは急激に著しく上昇する。しかも、何らかの不
測の事象により非常用炉心冷却系が作動しないような設
計基準を超える事態に事故の事象が進展すると、米国の
スリーマイル発電所で経験したように、図示しない炉心
を構成する燃料被覆管の著しい酸化反応により、大量の
水素が原子炉格納容器12の内部に放出される。
【0024】さらに、水の放射線分解により水素と酸素
が原子炉格納容器12の内部に放出される。このような事
故事象の時に、本発明に係る原子炉の可燃性ガス制御装
置13は、次の手順で作動して、原子炉格納容器12の内部
に放出された大量の水素を燃焼処理することができる。
【0025】原子炉格納容器12内の著しい温度の上昇に
伴い、本発明に係る原子炉の可燃性ガス制御装置13の周
囲温度も著しく上昇するため、水素吸蔵合金26と内部に
充填してある不活性ガス27が膨脹して容器25の下部に位
置しているキャップ23に応力が集中してキャップ23が破
損する。
【0026】キャップ23が破損すると、その破損箇所の
開口から容器25内部に収納されている水素吸蔵合金26が
露出し徐々に外部へ放出される。水素吸蔵合金26が露出
し放出されると、予め合金内部に吸収貯蔵させておいた
所定量の水素と原子炉格納容器12内に予め存在している
酸素や水の放射線分解に伴い放出される酸素との燃焼反
応が水素吸蔵合金26の表面で生じて、水素吸蔵合金26の
温度が上昇する。
【0027】その上昇に伴い水素吸蔵合金26の水素貯蔵
能力が低下し水素を放出し続けることにより、水素吸蔵
合金26の表面での燃焼反応は持続し、水素吸蔵合金26の
温度は著しく上昇する。この間、水素吸蔵合金26の粒子
は水素放出時の体積変化や加熱による体積変化等の状況
に応じて、より微粒な粒子へと崩壊しながら水素の放出
と燃焼を継続する。
【0028】このようにして水素吸蔵合金26の表面での
水素の燃焼反応により高温となった水素吸蔵合金26の各
々の粒子は、事故に伴い原子炉11の図示しない炉心等か
ら原子炉格納容器12内へ放出された水素の着火源として
作用し、雰囲気中の水素と酸素の燃焼反応を促し処理す
る。この結果、水素が蓄積し爆燃限界を超えることによ
り、水素の急激な爆発現象が発生し、それに伴い、原子
炉格納容器12内部の圧力が急激に上昇して、原子炉格納
容器12そのものを破壊してしまう事態の発生を防ぐこと
ができる。
【0029】なお、必要に応じて原子炉の可燃性ガス制
御装置13の下方に配置された受容器31は、落下してくる
水素吸蔵合金26をネット33上に一時的に保持する。これ
により、ネット33を通過して上昇してくる水素の着火源
として作用し、燃焼反応をさらに促進する。そして、ネ
ット33上で微粒子に分解した水素吸蔵合金26は、ネット
33の穴から下方へ落下する間に、周囲の水素と酸素の着
火源として作用し、燃焼反応を促進する。
【0030】上述したように構成し作用する本実施例に
係る原子炉の可燃性ガス制御装置13は、事故に伴い放出
される熱エネルギーを原子炉の可燃性ガス制御装置13の
作動開始エネルギーとして利用しているため、外部から
のユーティリティを必要とすることなく、原子炉事故時
には確実に作動を開始する。
【0031】その後は、熱を加えると内部に貯蔵してい
る水素を放出するという水素吸蔵合金26固有の性質と、
周囲に酸素が存在するとその表面で穏やかな燃焼が生じ
るという水素吸蔵合金26固有の作用により、水素吸蔵合
金26の粒子を高温状態にまで加熱して、原子炉格納容器
12内部の大気中に混在している水素と酸素の燃焼を開始
するための着火源として働く。
【0032】この結果、原子炉格納容器12内へ放出され
る大量の水素は酸素との穏やかな燃焼反応により処理さ
れるため、水素が広範囲に渡り蓄積して爆発限界に至る
ことにより、急激にかつ広範囲に爆発して原子炉格納容
器12を損壊させるという事態の発生を防止することがで
きる。
【0033】このようにして、可燃性ガス制御装置13の
働きにより、放射性物質を閉じこめるという原子炉格納
容器12の機能は維持される。しかも、本実施例の可燃性
ガス制御装置13は、全て静的機器で構成されるため、従
来要求されていたほぼ3ヶ月毎の定期的な作動試験が不
要となる。また、外部からのユーティリティも全く必要
とすることなく、事故時の作動も確実である。さらに、
簡単に持ち運びができるため、必要に応じて別に設けた
試験設備で、その作動性能等を容易に確認することがで
きる。
【0034】また、交換も容易であり、作業性も向上
し、予備品を備えて交換方式とすることにより、従来
は、原子炉の定期点検期間中に集中していた各種検査等
を時期をずらして実施することも可能となる。
【0035】次に図4により本発明に係る原子炉の可燃
性ガス制御装置の他の実施例を説明する。図4において
原子炉事故時の可燃性ガス制御装置41は、本体ケーシン
グ42とキャップ43とヒンジ44と受け皿45と内部に充填さ
れた水素吸蔵合金46と不活性ガス47ならびにその下方に
独立して配置される回収皿48とから構成される。そし
て、水素吸蔵合金46には予め所定量の水素が吸収貯蔵さ
れている。
【0036】このように構成される原子炉の可燃性ガス
制御装置41は、原子炉事故に伴い放出される熱エネルギ
ーにより周辺の温度が著しく上昇し、その時間が所定の
間持続すると、キャップ43の中心の開口を閉塞していた
金属等が溶融することにより、キャップ43の中心部に開
口が生じる。キャップ43の中心部に開口が生じると、水
素吸蔵合金46が受け皿45の上面に流出する。
【0037】その位置で前記実施例と同様の作用により
温度が著しく上昇し、受け皿45周辺の水素と酸素の燃焼
反応のための着火源として働く。その後、時間の経過に
伴い受け皿45上面の水素吸蔵合金46の粒子が崩壊しより
微粒子になると、受け皿45の開口から落下し、下方に位
置している回収皿48に回収され、その場所でも着火源と
して作用する。
【0038】また、この間の落下中の粒子はその周囲に
存在する水素と酸素の燃焼反応の着火源として有効に作
用する。一方、粒子の落下に伴い受け皿45上の水素吸蔵
合金46が減少すると、その減少量に相当する量の水素吸
蔵合金46が開口から新たに流出し補充され、着火源が継
続して効果的に提供される。
【0039】また、原子炉の可燃性ガス制御装置41の持
ち運び時には、ヒンジ44を中心として受け皿45を回転さ
せて本体ケーシング42に沿わせて収納することにより、
持ち運びを容易とすることができる。
【0040】次に、原子炉格納容器12内が不活性ガスで
充填されている場合の作用について説明する。原子炉事
故が生じると、原子炉格納容器12内に放出された放射線
物質から発せられる放射線により、水の放射線分解が促
進されて、原子炉格納容器12内に水素と酸素が放出され
る。また、事故の進展状況によっては前述のような燃料
被覆管の著しい酸化反応により、大量の水素が放出され
る。
【0041】このような事態において、本実施例に係る
原子炉の可燃性ガス制御装置13(41)が作動すると、水
素吸蔵合金の表面で生じる水素と酸素の燃焼反応によ
り、原子炉格納容器12内の酸素が消費される結果、原子
炉格納容器12内の酸素濃度は可燃限界である5%未満に
維持されて、原子炉格納容器12の健全性が保たれる。
【0042】また、その必要に応じて、水素吸蔵合金26
(46)の表面にパラジウムや白金等の適切な触媒を添加
すること等により、低酸素濃度での水素との燃焼反応を
促進することができる。
【0043】なお、上記の実施例はいずれも周囲温度の
著しい上昇を作動力として用いているが、上記のキャッ
プ23(43)の材質および形状を周囲圧力の著しい上昇に
より変形して開口を形成するものに置き換えることによ
り、上記の実施例と同様の作用と効果を得ることができ
る。
【0044】また、事故時には周囲の相対湿度や放射線
レベルも著しく上昇するため、これらの温度、圧力、相
対湿度および放射線レベルの変化の一つ或いは二つ以上
を組み合わせて、それらの変化を動作力として開口を形
成するように構成してもよい。さらに、さの作動をより
確実なものとするために、少量の火薬や小型の弁等を用
いて遠隔によりまたは事故信号により自動的に着火爆発
あるいは動作させて開口を設ける方式を採用することも
可能である。
【0045】この場合には、着火爆発装置や弁等の健全
性を定期的に確認する必要が生じるが、水素吸蔵合金の
性能試験と同時に行うようにすれば、作業量の増加を必
要最小限に抑えることができる。また、火薬の遠隔着火
用や小型弁の作動用等に電力を必要とすることになる
が、その容量は極めて僅かなものである。
【0046】また、原子炉格納容器12内が不活性ガスで
充填されている場合には、水素吸蔵合金に代えて、酸素
との接触により著しい酸化反応を生じて雰囲気中の酸素
を消費する材料を用いることにより、原子炉格納容器12
内の酸素を消費して可燃性限界未満に維持することによ
り、水素の爆発燃焼を阻止して、原子炉格納容器12の健
全性を維持することができる。具体例としては、適切な
触媒を添加した鉄の微粒子や化合物とかナトリウムやマ
グネシウム等の金属材料等を用いることができる。
【0047】なお、本発明の実施態様としては次のとお
りである。 (1) 原子炉事故の発生に伴い変化する周囲の温度、圧
力、相対湿度および放射線レベルのいずれかまたはそれ
らを組み合わせたものの著しい動作力として下方の一部
に開口が形成されるように構成された容器と、この容器
内に収納されかつ所定量の水素が吸蔵貯蔵されている水
素吸蔵合金と、前記容器内に充填された不活性ガスとか
ら構成されること。 (2) 原子炉事故の発生に伴い自動的に或いは遠隔の手動
操作により下方の一部に開口が形成されるように構成さ
れた容器と、この容器内に収納されかつ所定量の水素が
吸収貯蔵されている水素吸蔵合金と、前記容器内に充填
された不活性ガスとから構成されること。 (3) 前記(1) および(2) 項の原子炉事故時の可燃性ガス
制御装置において、所定量の水素が吸収貯蔵されている
水素吸蔵合金の代わりに、空気と接触して著しい酸化反
応が生じることにより酸素を消費する金属類を使用する
こと。
【0048】
【発明の効果】本発明によれば静的な機器で構成され、
かつ、その作動原理が単純なため、事故時には外部から
のユーティリティーの供給を必要とすることなく確実に
作動することができる。また、従来ではほぼ3ヶ月毎に
実施が要求されていた定期的な作動試験の実施も不要と
なる。さらに、経年劣化等の確認のための性能試験につ
いては、持ち運びが容易であるため、予め用意しておい
た予備品と交換することにより、適当な時期に適切な試
験設備を用いて性能の確認を行うことができ、原子炉の
定期検査時に集中していた作業を分散させることが可能
となる。このようにして本発明により原子炉事故時の原
子炉格納容器の健全性を維持できる。
【図面の簡単な説明】
【図1】本発明に係る原子炉の可燃性ガス制御装置の一
実施例を示す概略的断面図。
【図2】図1における原子炉の可燃性ガス制御装置の基
本構成を一部断面で示す側面図。
【図3】図2において使用する受容器を示す縦断面図。
【図4】本発明に係る原子炉の可燃性ガス制御措置の他
の実施例を一部側面で示す縦断面図。
【図5】従来の可燃性ガス濃度制御装置の基本構成を示
す系統図。
【符号の説明】
11…原子炉、12…原子炉格納容器、13…原子炉の可燃性
ガス制御装置、21…ケーシング、22…ホッパー、23…キ
ャップ、24…脚、25…容器、26…水素吸蔵合金、27…不
活性ガス、31…受容器、32…側板、33…ネット、41…原
子炉の可燃性ガス制御装置、42…本体ケーシング、43…
キャップ、44…ヒンジ、45…受け皿、46…水素吸蔵合
金、47…不活性ガス、48…回収皿。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 原子炉格納容器内に設置された周囲温
    度,圧力,相対湿度および放射線レベルのいずれか又は
    それらを組み合わせたものの上昇を動作力として一部に
    開口が形成される容器と、この容器内に収納されかつ所
    定量の水素が吸収された水素吸蔵合金と、前記容器内に
    充填された不活性ガスとからなることを特徴とする原子
    炉の可燃性ガス制御装置。
JP3327628A 1991-12-11 1991-12-11 原子炉の可燃性ガス制御装置 Pending JPH05164892A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3327628A JPH05164892A (ja) 1991-12-11 1991-12-11 原子炉の可燃性ガス制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3327628A JPH05164892A (ja) 1991-12-11 1991-12-11 原子炉の可燃性ガス制御装置

Publications (1)

Publication Number Publication Date
JPH05164892A true JPH05164892A (ja) 1993-06-29

Family

ID=18201172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327628A Pending JPH05164892A (ja) 1991-12-11 1991-12-11 原子炉の可燃性ガス制御装置

Country Status (1)

Country Link
JP (1) JPH05164892A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292491A (ja) * 1996-04-26 1997-11-11 Hitachi Ltd 可燃性ガス濃度低減装置及びその制御方法
KR100573746B1 (ko) * 2003-06-20 2006-04-25 한국원자력연구소 격납용기내 연료교환수 저장탱크의 수소농도 제어방법 및장치
JP2009069121A (ja) * 2007-09-18 2009-04-02 Hitachi-Ge Nuclear Energy Ltd 原子力プラント
CN113820359A (zh) * 2021-08-10 2021-12-21 中国辐射防护研究院 一种氢气和红油***源项研究试验装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292491A (ja) * 1996-04-26 1997-11-11 Hitachi Ltd 可燃性ガス濃度低減装置及びその制御方法
KR100573746B1 (ko) * 2003-06-20 2006-04-25 한국원자력연구소 격납용기내 연료교환수 저장탱크의 수소농도 제어방법 및장치
JP2009069121A (ja) * 2007-09-18 2009-04-02 Hitachi-Ge Nuclear Energy Ltd 原子力プラント
CN113820359A (zh) * 2021-08-10 2021-12-21 中国辐射防护研究院 一种氢气和红油***源项研究试验装置

Similar Documents

Publication Publication Date Title
Gupta Experimental investigations relevant for hydrogen and fission product issues raised by the Fukushima accident
Kusmastuti et al. Analysis of helium purification system capability during water ingress accident in RDE
Arnould et al. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)
JPH05164892A (ja) 原子炉の可燃性ガス制御装置
Huang et al. Effect of spray on performance of the hydrogen mitigation system during LB-LOCA for CPR1000 NPP
CN104620324A (zh) 用于冷却剂丧失事故后缓解的封闭式火炬***
JP6865773B2 (ja) 原子力発電所における水素爆発の安全性の確保方法
RU2090874C1 (ru) Способ определения параметров взрываемости водородсодержащих смесей
Pilch et al. The probability of containment failure by direct containment heating in Surry
Bertini Descriptions of selected accidents that have occurred at nuclear reactor facilities
Na et al. The hydrogen issue in the initial operation of a filtered containment venting system
Wichner et al. Potential damage to gas-cooled graphite reactors due to severe accidents
Snell et al. Chernobyl: A Canadian Perspective
Carbajo MELCOR sensitivity studies for a low-pressure, short-term station blackout at the Peach Bottom plant
RU2122750C1 (ru) Способ эксплуатации ядерного энергетического комплекса
Keilholtz Hydrogen considerations in light-water power reactons
Kessler et al. Severe accident containment loads and possible design concepts of future large pressurized water reactors
Henrie et al. Evaluation of special safety issues associated with handling the Three Mile Island Unit 2 core debris
Karwat Ignitors to mitigate the risk of hydrogen explosions—A critical review
Hawley et al. Analysis of Credible Accidents for Argonaut Reactors
JPH0434395A (ja) 原子炉格納容器の破壊防止装置
Marguet Reactor Accidents in the Early Days of Nuclear Power
Hawley et al. Analysis of credible accidents for Argonaut reactors. Report for October 1980-April 1981
USRE27598E (en) Disposal system for contaminated hydrogen from a nuclear reactor
Cowley Organic solvent topical report