JPH051646B2 - - Google Patents

Info

Publication number
JPH051646B2
JPH051646B2 JP59142362A JP14236284A JPH051646B2 JP H051646 B2 JPH051646 B2 JP H051646B2 JP 59142362 A JP59142362 A JP 59142362A JP 14236284 A JP14236284 A JP 14236284A JP H051646 B2 JPH051646 B2 JP H051646B2
Authority
JP
Japan
Prior art keywords
mos
load
differential amplifier
offset adjustment
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59142362A
Other languages
Japanese (ja)
Other versions
JPS6123403A (en
Inventor
Takashi Sase
Masahiro Ueno
Hideo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59142362A priority Critical patent/JPS6123403A/en
Publication of JPS6123403A publication Critical patent/JPS6123403A/en
Publication of JPH051646B2 publication Critical patent/JPH051646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45624Indexing scheme relating to differential amplifiers the LC comprising balancing means, e.g. trimming means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45632Indexing scheme relating to differential amplifiers the LC comprising one or more capacitors coupled to the LC by feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45664Indexing scheme relating to differential amplifiers the LC comprising one or more cascaded inverter stages as output stage at one output of the dif amp circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45681Indexing scheme relating to differential amplifiers the LC comprising offset compensating means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45722Indexing scheme relating to differential amplifiers the LC comprising one or more source followers, as post buffer or driver stages, in cascade in the LC

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は差動増幅回路に係り、特にオフセツト
調整を良好に行うのに好適な差動増幅回路に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a differential amplifier circuit, and particularly to a differential amplifier circuit suitable for performing offset adjustment well.

〔発明の背景〕[Background of the invention]

従来のオフセツト調整付モノリシツク差動増幅
回路としては、CMOS増幅回路を例にとれば第
1図に示す回路構成のものがある。第1図におい
て、1は反転入力端子、2は非反転入力端子、3
は出力端子、4a,4bはオフセツト調整端子、
5は高電位電源電圧端子、6は低電位電源電圧端
子で、定電流源10、駆動MOS11,12、負
荷MOS13,14および抵抗15,16で第1
の増幅段を構成し、定電流源20と駆動MOS2
1とで第2の増幅段を構成し、また、定電流源3
0と駆動MOS31とでソースフオロワ形の出力
段を構成し、さらに周波数補償用コンデンサ32
を設けてある。
As a conventional monolithic differential amplifier circuit with offset adjustment, there is a CMOS amplifier circuit having a circuit configuration shown in FIG. 1, for example. In Figure 1, 1 is an inverting input terminal, 2 is a non-inverting input terminal, and 3 is an inverting input terminal.
is the output terminal, 4a and 4b are the offset adjustment terminals,
5 is a high potential power supply voltage terminal, 6 is a low potential power supply voltage terminal, and the first
constitutes an amplification stage, and includes a constant current source 20 and a drive MOS 2.
1 constitutes a second amplification stage, and constant current source 3
0 and a drive MOS 31 constitute a source follower type output stage, and a frequency compensation capacitor 32
is provided.

オフセツト調整は、第1図に示すように、負荷
MOS13,14にそれぞれ直列に抵抗15,1
6を接続した回路のそれぞれの接続点の電位が等
しくなるようにオフセツト調整端子4a,4bの
外部に可変抵抗を接続してパランスをとつて行う
ようにしてある。
Offset adjustment is performed by adjusting the load as shown in Figure 1.
Resistors 15 and 1 are connected in series with MOS13 and 14, respectively.
Variable resistors are connected externally to the offset adjustment terminals 4a and 4b so that the potentials at the respective connection points of the circuit connected to the offset adjustment terminals 4a and 4b are balanced.

しかし、オフセツト調整のために負荷MOS1
3,14にそれぞれ抵抗15,16を直列に接続
したことにより負荷MOS13,14が分担する
電圧が増加し、駆動MOS11および12の動作
範囲がせばめられ、その結果、扱える入力電圧の
範囲がせまくなるという欠点を有している。すな
わち、第1図の構成では、単一電源で動作させる
場合に零入力電圧が扱えないという問題がある。
However, due to offset adjustment, load MOS1
By connecting resistors 15 and 16 in series to MOS transistors 3 and 14, respectively, the voltage shared by load MOS transistors 13 and 14 increases, the operating range of drive MOS transistors 11 and 12 becomes narrower, and as a result, the range of input voltage that can be handled becomes narrower. It has the following drawbacks. That is, the configuration shown in FIG. 1 has a problem in that it cannot handle quiescent voltage when operated with a single power supply.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みてなされたもので、その目
的とするところは、入力電圧範囲が広く、しか
も、オフセツト調整を良好に行うことができる差
動増幅回路を提供することにある。
The present invention has been made in view of the above, and an object of the present invention is to provide a differential amplifier circuit that has a wide input voltage range and can perform offset adjustment well.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、駆動素子と負荷素子を直列接
続したものを一対もつ差動増幅対を備えた差動増
幅回路において、前記差動増幅対の少なくともど
ちらか一方の負荷素子に副負荷素子を並列に接続
し、前記副負荷素子の制御電圧を可変として前記
差動増幅回路のオフセツト調整を行なうように構
成した点にある。
A feature of the present invention is that, in a differential amplifier circuit equipped with a differential amplifier pair having a pair of drive elements and load elements connected in series, an auxiliary load element is provided for at least one of the load elements of the differential amplifier pair. The differential amplifier circuit is connected in parallel, and the control voltage of the sub load element is made variable to adjust the offset of the differential amplifier circuit.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第2図〜第4図、第6図、第7図
に示した実施例および第5図を用いて詳細に説明
する。
The present invention will be described in detail below with reference to the embodiments shown in FIGS. 2 to 4, FIG. 6, and FIG. 7, and FIG.

第2図は本発明の差動増幅回路の一実施例を示
す回路図で、第1図と同一部分は同じ符号で示
し、ここでは説明する。第2図においては、第1
図の負荷MOS13,14をそれぞれ負荷MOS1
3aと副負荷MOS13b、負荷MOS14aと副
負荷MOS14bとを並列接続したものに代えて
あり、これらを図のように接続して抵抗15,1
6をなくした構成としてある。なお、駆動MOS
11,12はP−チヤネル形、その他のものはN
−チヤネル形で、また、駆動MOS31のように
サブストレー電極が図示してないものは、P−チ
ヤネル形のものは低電位電源電圧端子5、N−チ
ヤネル形のものは低電位電源電圧端子6に接続し
てある。そして、負荷MOS13a,14aおよ
び副負荷MOS13b,14bの寸法の設定に当
つては、第1図の負荷MOS13,14の寸法と
なるようにそれぞれ分割したものを用いるように
してもよく、負荷MOS13,14と同一寸法の
負荷MOS13a,14aに副負荷MOS13b,
14bを追加するようにしてもよい。ただし、こ
の場合、ゲート幅の寸法のみを可変にし、ゲート
長は同寸法で固定とすることが必要である。
FIG. 2 is a circuit diagram showing an embodiment of the differential amplifier circuit of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals and will be explained here. In Figure 2, the first
Load MOS13 and 14 in the figure are respectively load MOS1.
3a and the auxiliary load MOS 13b, and the load MOS 14a and the auxiliary load MOS 14b are connected in parallel, and these are connected as shown in the figure and the resistors 15 and 1 are connected in parallel.
It has a configuration that eliminates the number 6. In addition, the drive MOS
11 and 12 are P-channel type, others are N
- channel type, and those with no substray electrodes such as the drive MOS 31 are connected to the low potential power supply voltage terminal 5 for the P-channel type and the low potential power supply voltage terminal 6 for the N-channel type. It's connected. When setting the dimensions of the load MOSs 13a and 14a and the auxiliary load MOSs 13b and 14b, they may be divided so that they have the dimensions of the load MOSs 13 and 14 shown in FIG. Load MOS 13a and 14a with the same dimensions as 14 and auxiliary load MOS 13b,
14b may be added. However, in this case, it is necessary to make only the dimension of the gate width variable and to fix the gate length to the same dimension.

次に、オフセツト調整方法について説明する。
反転入力端子1と出力端子3とを接続し、非反転
入力端子2を接地電位にしてからオフセツト調整
端子4bに印加する電圧を変え、出力端子3の電
圧が零になるように調整する。
Next, the offset adjustment method will be explained.
After connecting the inverting input terminal 1 and the output terminal 3 and setting the non-inverting input terminal 2 to the ground potential, the voltage applied to the offset adjustment terminal 4b is changed so that the voltage at the output terminal 3 becomes zero.

このようなオフセツト調整動作により、負荷
MOS14aに並列に副負荷MOS14bの制御電
圧VGが変化するため、副負荷MOS14bに流れ
る電流ISUBは、MOSの飽和領域動作で考えると、
次式の関係により変わることになり、オフセツト
調整端子4bがある側の第1の増幅段の増幅回路
(駆動MOS12、負荷MOS14a、副負荷MOS
14bからなる部分)に流れる電流の増減とな
る。
This offset adjustment operation reduces the load
Since the control voltage V G of the auxiliary load MOS 14b in parallel with the MOS 14a changes, the current I SUB flowing through the auxiliary load MOS 14b is calculated as follows when considering the operation in the saturation region of the MOS.
It changes according to the relationship of the following equation, and the amplifier circuit (drive MOS 12, load MOS 14a, auxiliary load MOS 14a, auxiliary load MOS
14b)).

ISUB=1/2βW/L(VG−VT2 ……(1) ここに、 β;副負荷MOS14bのプロセス定数 W/L;副負荷MOS14bの寸法比 VT;副負荷MOS14bのしきい電圧 すなわち、VGを大きくすると、オフセツト調
整端子4b側の増幅回路の電流ISUBが増し、VG
小さくすると、電流ISUBが減少する。一方、オフ
セツト調整端子4bのある側と反対側の増幅回路
に流れる電流は、上記の場合と反対方向に変化す
る。この結果、第1の増幅段の両側の対となる増
幅回路がバランスするようにすることができ、オ
フセツトの調整が可能となる。
I SUB = 1/2βW/L (V G −V T ) 2 ...(1) Here, β: Process constant W/L of the sub-load MOS14b; Dimensional ratio of the sub-load MOS14b V T ; When the threshold voltage, that is, V G, is increased, the current I SUB of the amplifier circuit on the offset adjustment terminal 4b side increases, and when V G is decreased, the current I SUB is decreased. On the other hand, the current flowing through the amplifier circuit on the side opposite to the side where the offset adjustment terminal 4b is located changes in the opposite direction to that in the above case. As a result, the pair of amplifier circuits on both sides of the first amplifier stage can be balanced, and the offset can be adjusted.

また、反転入力端子1または非反転入力端子2
に印加できる低電位側の入力電圧は駆動MOS1
1および12のしきい電圧をそれぞれVTD、負荷
MOS13aと副負荷MOS13bおよび負荷
MOS14aと副負荷MOS14bのしきい電圧を
それぞれVTLとすると、MOSが飽和領域動作を行
う範囲では、ほぼ|VTD|−VTLの値まで扱うこ
とができる。したがつて、入力電圧は使用する
MOSのしきい電圧のみに依存するため、オフセ
ツト調整しているにもかかわらず、最小限の電圧
振幅損失にとどまり、広範囲な動作領域が得られ
る。そして、|VTD|、VTLをほぼ等しいしきい電
圧値に選んでおけば、駆動MOS11および12
には基板バイアス効果が加わるため、さらに|
VTD|が大きくなるので、|VTD|−VTL>0の条
件を十分に満足し、単一電源動作において零入力
電圧まで扱えることになり、広い入力電圧範囲を
得ることができる。
Also, inverting input terminal 1 or non-inverting input terminal 2
The input voltage on the low potential side that can be applied to the drive MOS1
1 and 12 threshold voltages, V TD and load, respectively.
MOS13a and auxiliary load MOS13b and load
Assuming that the threshold voltages of the MOS 14a and the sub-load MOS 14b are VTL , it is possible to handle values up to approximately |V TD |−V TL in the range where the MOS operates in the saturation region. Therefore, the input voltage used is
Because it depends only on the threshold voltage of the MOS, voltage amplitude loss is kept to a minimum despite offset adjustment, and a wide operating range can be obtained. If |V TD | and V TL are selected to have approximately equal threshold voltage values, the drive MOSs 11 and 12
Since the substrate bias effect is added to |
Since V TD | becomes large, the condition of |V TD |−V TL >0 is fully satisfied, and even a zero input voltage can be handled in single power supply operation, making it possible to obtain a wide input voltage range.

上記した本発明の実施例によれば、差動増幅回
路の第1の増幅段の対となる増幅回路の負荷
MOS13a,14aにそれぞれ副負荷MOS13
b,14bを並列に設け、その副負荷MOS14
bを制御することにより上記各増幅回路の電流を
互いに反対方向に可変できるので、オフセツト調
整が可能である。
According to the embodiment of the present invention described above, the load of the amplifier circuit that is a pair of the first amplifier stage of the differential amplifier circuit is
MOS13a and 14a each have auxiliary load MOS13
b, 14b are provided in parallel, and its auxiliary load MOS14
By controlling b, the currents of the respective amplifier circuits can be varied in opposite directions, so offset adjustment is possible.

また、オフセツト調整のために付加した副負荷
MOS13b,14bは上記各増幅回路の負荷
MOS13a,14aにそれぞれ並列に設けてあ
るので、電圧損失がなく、しかも、入力電圧範囲
を広くとることができる。
In addition, the auxiliary load added for offset adjustment
MOS13b and 14b are the loads of each of the above amplifier circuits.
Since they are provided in parallel with the MOSs 13a and 14a, there is no voltage loss and the input voltage range can be widened.

なお、第2図に示す実施例では、副負荷MOS
14bの制御によりオフセツト調整をしている
が、第3図に示すように、他方の副負荷MOS1
3bにもオフセツト調整端子4aを設けて、両者
でオフセツト調整を行うようにしてもよく、同様
の効果を得ることができる。
Note that in the embodiment shown in Fig. 2, the auxiliary load MOS
Offset adjustment is performed by controlling MOS 14b, but as shown in Fig. 3, the other auxiliary load MOS 1
3b may also be provided with an offset adjustment terminal 4a so that both can perform offset adjustment, and the same effect can be obtained.

また、第4図は本発明の他の実施例を示す第2
図に相当する回路図で、第2図と同一部は同じ符
号で示してある。第2図と異なる点は、副負荷
MOS14bはMOS14cとカレントミラーを構
成し、オフセツト調整端子4bに電流を注入して
制御するようにしたことにある。これによる効果
は、カレントミラーにより第1の増幅段の電流を
微小にできることであり、第2図と第4図の回路
を比較したとき、オフセツト調整端子4bから見
た電圧Vpff(第4図ではVpffは電流の換算値)と出
力端子3に得られる電圧Vpとの関係は第5図に
示すようになる。第5図において、a曲線は第2
図の回路の場合、b曲線は第4図の回路の場合で
あり、オフセツト調整としては傾斜Vp/Vpffが小
さい方が好ましく、b曲線の場合の方がよい。こ
のことは、Vpffの範囲が広くとれるため、Vpff
大きく変えても、Vpの変化を小さくできること
を示している。したがつて、第2図の回路に比
べ、オフセツト調整時の微調整が容易になり、さ
らに安定にオフセツト調整をすることができる。
しかも、この場合も第2図の回路の場合と同様、
第1の増幅段にオフセツト調整による電圧振幅損
失が生じないので、広範囲の入力電圧を扱うこと
ができる。
In addition, FIG. 4 shows a second embodiment of the present invention.
This is a circuit diagram corresponding to the figure, and the same parts as in FIG. 2 are designated by the same reference numerals. The difference from Figure 2 is that the auxiliary load
The MOS 14b forms a current mirror with the MOS 14c, and is controlled by injecting a current into the offset adjustment terminal 4b. The effect of this is that the current in the first amplification stage can be made very small by the current mirror, and when comparing the circuits in FIGS. 2 and 4, the voltage V pff seen from the offset adjustment terminal 4b ( The relationship between V pff (current conversion value) and the voltage V p obtained at the output terminal 3 is as shown in FIG. In Figure 5, the a curve is the second
In the case of the circuit shown in the figure, the b curve corresponds to the circuit shown in FIG. 4, and for offset adjustment, it is preferable that the slope V p /V pff is smaller, and the b curve is better. This shows that since the range of V pff can be wide, even if V pff is changed significantly, the change in V p can be made small. Therefore, compared to the circuit shown in FIG. 2, fine adjustment during offset adjustment is easier, and offset adjustment can be performed more stably.
Moreover, in this case as well, as in the case of the circuit in Figure 2,
Since no voltage amplitude loss occurs in the first amplification stage due to offset adjustment, a wide range of input voltages can be handled.

また、第6図は本発明のさらに他の実施例を示
す第2図に相当する回路図で、第2図、第4図と
同一部分は同じ符号で示してある。第6図の第4
図と異なるところは、MOS14cとオフセツト
調整端子4bとの間に抵抗41を接続した点にあ
る。第6図によれば、第4図のオフセツト調整は
電流であつたのに対して電圧で行うようになるだ
けで、効果は同一である。
Further, FIG. 6 is a circuit diagram corresponding to FIG. 2 showing still another embodiment of the present invention, and the same parts as in FIGS. 2 and 4 are indicated by the same reference numerals. 4 in Figure 6
The difference from the figure is that a resistor 41 is connected between the MOS 14c and the offset adjustment terminal 4b. According to FIG. 6, the offset adjustment in FIG. 4 is performed by voltage instead of current, and the effect is the same.

また、以上述べた実施例においては、すべてP
−チヤネル形MOSを第1の増幅段の駆動MOS1
1,12として用いているが、これをN−チヤネ
ル形MOSとしてもよく、そのときの実施例を第
7図に示す。第7図において、100,200,
30は定電流源、101,102は第1の増幅段
の駆動MOS、103,104は負荷MOS、10
5,106はそれぞれ負荷MOS103,104
に並列に設けた副負荷MOS、201は第2の増
幅段の駆動MOS、31は出力段の駆動MOS、3
2はコンデンサである。オフセツト調整端子4a
はセルフバイアス側の負荷MOS103に並列に
接続した副負荷MOS105から取り出してある。
この場合、これまでの実施例の場合と同様、副負
荷MOS106を制御するようにしてもよく、い
ずれも同様の効果が得られる。なお、この場合、
単一電源動作においては、定電流源100が低電
位電源電圧端子6側に付いているので、零入力電
圧は扱えないが、高電位電圧側の範囲が拡大する
ので、入力電圧範囲を広くとれるという効果が得
られる。また、第7図の回路は、第4図、第6図
の場合と同様の効果もある。
In addition, in the embodiments described above, all P
-Channel type MOS is the drive MOS1 of the first amplification stage.
1 and 12, but this may also be an N-channel type MOS, and an embodiment thereof is shown in FIG. In FIG. 7, 100, 200,
30 is a constant current source, 101 and 102 are drive MOSs for the first amplification stage, 103 and 104 are load MOSs, and 10
5 and 106 are load MOS103 and 104 respectively
201 is a drive MOS for the second amplification stage, 31 is a drive MOS for the output stage, 3
2 is a capacitor. Offset adjustment terminal 4a
is taken out from the auxiliary load MOS 105 connected in parallel to the load MOS 103 on the self-bias side.
In this case, the auxiliary load MOS 106 may be controlled as in the previous embodiments, and the same effect can be obtained in either case. In this case,
In single power supply operation, the constant current source 100 is attached to the low potential power supply voltage terminal 6 side, so it cannot handle quiescent voltage, but since the range on the high potential voltage side is expanded, the input voltage range can be widened. This effect can be obtained. Further, the circuit shown in FIG. 7 has the same effects as those shown in FIGS. 4 and 6.

また、これまで述べてきた差動増幅回路は、
CMOSを用いてあるが、単チヤネルMOS、バイ
ポーラトランジスタ等を用いて構成してもよく、
同様の効果を得ることができる。
In addition, the differential amplifier circuit described so far is
Although CMOS is used, it may also be constructed using single channel MOS, bipolar transistors, etc.
A similar effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上本発明によれば、差動増幅対に使用する素
子のバラツキによるオフセツト電圧の発生を防止
できること、オフセツト調整として負荷素子に副
負荷素子を並列に設けたことにより負荷素子の分
担電圧の増加が無くなることから零入力電圧まで
扱え、広い入力電圧範囲の増幅動作が実現できる
という効果を奏する。
As described above, according to the present invention, it is possible to prevent the generation of offset voltage due to variations in the elements used in the differential amplifier pair, and by providing the sub-load element in parallel with the load element for offset adjustment, the shared voltage of the load element can be increased. Since the input voltage is zero, it is possible to handle up to 0 input voltage, and it is possible to realize amplification operation over a wide input voltage range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のオフセツト調整付モノリシツク
差動増幅回路の回路図、第2図は本発明の差動増
幅回路の一実施例を示す回路図、第3図、第4
図、第6図、第7図はそれぞれ本発明の他の実施
例を示す第2図に相当する回路図、第5図は第2
図と第4図の場合のオフセツト調整端子から見た
電圧Vpffと出力端子に得られる電圧Vpとの関係の
比較を示す線図である。 1……反転入力端子、2……非反転入力端子、
3……出力端子、4a,4b……オフセツト調整
端子、5……高電位電源電圧端子、6……低電位
電源電圧端子、10,20,30,100,20
0……定電流源、11,12,21,31,10
1,102,201……駆動MOS、13a,1
4a,103,104……負荷MOS、13b,
14b,105,106……副負荷MOS、14
c……MOS、32……コンデンサ。
FIG. 1 is a circuit diagram of a conventional monolithic differential amplifier circuit with offset adjustment, FIG. 2 is a circuit diagram showing an embodiment of the differential amplifier circuit of the present invention, and FIGS.
6, 7 are circuit diagrams corresponding to FIG. 2 showing other embodiments of the present invention, and FIG. 5 is a circuit diagram corresponding to FIG.
5 is a diagram showing a comparison of the relationship between the voltage V pff seen from the offset adjustment terminal and the voltage V p obtained at the output terminal in the cases of FIG. 4 and FIG. 1...Inverting input terminal, 2...Non-inverting input terminal,
3... Output terminal, 4a, 4b... Offset adjustment terminal, 5... High potential power supply voltage terminal, 6... Low potential power supply voltage terminal, 10, 20, 30, 100, 20
0... Constant current source, 11, 12, 21, 31, 10
1, 102, 201...Drive MOS, 13a, 1
4a, 103, 104...Load MOS, 13b,
14b, 105, 106...auxiliary load MOS, 14
c...MOS, 32...capacitor.

Claims (1)

【特許請求の範囲】 1 駆動素子と負荷素子を直列接続したものを一
対もつ差動増幅対を備えた差動増幅回路におい
て、 前記差動増幅対の少なくともどちらか一方の負
荷素子に副負荷素子を並列に接続し、 前記副負荷素子の制御電圧を可変として前記差
動増幅回路のオフセツト調整を行なうように構成
してある ことを特徴とする差動増幅回路。 2 特許請求範囲第1項において、前記オフセツ
ト調整を行なう前記副負荷素子の制御電圧は、前
記差動増幅回路の入力及び出力端子の電位に基づ
いて可変させるように構成したことを特徴とする
差動増幅回路。
[Scope of Claims] 1. In a differential amplifier circuit including a differential amplifier pair having a pair of drive elements and load elements connected in series, at least one of the load elements of the differential amplifier pair is provided with an auxiliary load element. are connected in parallel, and the control voltage of the auxiliary load element is made variable to adjust the offset of the differential amplifier circuit. 2. The differential amplifier according to claim 1, wherein the control voltage of the auxiliary load element that performs the offset adjustment is configured to be varied based on the potentials of the input and output terminals of the differential amplifier circuit. dynamic amplification circuit.
JP59142362A 1984-07-11 1984-07-11 Differential amplifier circuit Granted JPS6123403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59142362A JPS6123403A (en) 1984-07-11 1984-07-11 Differential amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59142362A JPS6123403A (en) 1984-07-11 1984-07-11 Differential amplifier circuit

Publications (2)

Publication Number Publication Date
JPS6123403A JPS6123403A (en) 1986-01-31
JPH051646B2 true JPH051646B2 (en) 1993-01-08

Family

ID=15313614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59142362A Granted JPS6123403A (en) 1984-07-11 1984-07-11 Differential amplifier circuit

Country Status (1)

Country Link
JP (1) JPS6123403A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338314A (en) * 1986-08-01 1988-02-18 Nec Corp Differential input circuit
JP2559032B2 (en) * 1986-09-13 1996-11-27 富士通株式会社 Differential amplifier circuit
JP4702921B2 (en) * 2004-01-29 2011-06-15 パナソニック株式会社 Amplifier circuit for optical disk device
JP2005223627A (en) * 2004-02-05 2005-08-18 Asahi Kasei Microsystems Kk Operational amplifier circuit
JP6520062B2 (en) 2014-11-14 2019-05-29 富士電機株式会社 Amplifier and offset voltage correction method
KR102560967B1 (en) * 2023-03-27 2023-07-27 사공근 Steam boiler system with an improved catch steam separate structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097705A (en) * 1974-01-09 1975-08-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5097705A (en) * 1974-01-09 1975-08-04

Also Published As

Publication number Publication date
JPS6123403A (en) 1986-01-31

Similar Documents

Publication Publication Date Title
US4427903A (en) Voltage current converter circuit
JPH0629761A (en) Differential amplifier provided with reinforced in-phase mode stability
EP0037406B1 (en) Cmos operational amplifier with reduced power dissipation
US4484148A (en) Current source frequency compensation for a CMOS amplifier
JPH0786850A (en) Perfect differential operational amplifier and same phase reconstruction in differential operational amplifier
US4045747A (en) Complementary field effect transistor amplifier
EP0939484B1 (en) Operational amplifier
US4963834A (en) Operational amplifier
US4999521A (en) CMOS analog multiplying circuit
EP0240114B1 (en) A comparator for comparing differential input signals and method therefor
EP0969594B1 (en) A common-mode feedback circuit and method
JPH04233306A (en) Linear cmos output stage
US4933643A (en) Operational amplifier having improved digitally adjusted null offset
JPH0583003B2 (en)
JPH051646B2 (en)
JP3081210B2 (en) Linear gain amplifier
JPH04243308A (en) Operational amplifier
US6124705A (en) Cascode current mirror with amplifier
JP2765319B2 (en) Constant voltage circuit
US5869957A (en) Voltage divider circuit, differential amplifier circuit and semiconductor integrated circuit device
US4972158A (en) Transistor amplifier with variable bias circuits
JPH09219629A (en) Operational amplifier
JP2540767B2 (en) Differential amplifier circuit
JP2002057534A (en) Amplifier circuit
JPH0225286B2 (en)