JPH0516143B2 - - Google Patents

Info

Publication number
JPH0516143B2
JPH0516143B2 JP60190174A JP19017485A JPH0516143B2 JP H0516143 B2 JPH0516143 B2 JP H0516143B2 JP 60190174 A JP60190174 A JP 60190174A JP 19017485 A JP19017485 A JP 19017485A JP H0516143 B2 JPH0516143 B2 JP H0516143B2
Authority
JP
Japan
Prior art keywords
granular zinc
zinc alloy
granular
bismuth
thallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60190174A
Other languages
Japanese (ja)
Other versions
JPS6251160A (en
Inventor
Kenichi Shinoda
Hirohiko Oota
Juzo Tanaka
Kyohide Tsutsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP60190174A priority Critical patent/JPS6251160A/en
Publication of JPS6251160A publication Critical patent/JPS6251160A/en
Publication of JPH0516143B2 publication Critical patent/JPH0516143B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 この発明はアルカリ電池に関し、詳しくは、使
用する負極活物質の材料を改良することで放電性
能等を低下させることなく安全性を高めたアルカ
リ電池に関するものである。 〈従来の技術〉 現在、各種ボタン型アルカリ電池、筒型アルカ
リ電池等の負極活物質として広く用いられている
粒状亜鉛は、純度99.99%以上の高純度の亜鉛を
噴霧法等の方法により粒状に形成したもので、こ
のような粒状亜鉛をカルボキシメチルセルロース
等のゲル化剤とアルカリ電解液とによりゲル状に
分散させて負極となし、この負極をセパレータを
介して二酸化マンガンや酸化銀等を活物質として
なる正極合剤に対向させた構成を採つている。 ところで、このような粒状亜鉛を、無汞化ある
いは3重量%以下の低汞化で用いた場合は、アル
カリ電池の負極における粒状亜鉛の自己消費によ
る腐蝕並びにその際の水素ガス発生量が実用上の
限界を超え、電池の放電性能、耐漏液性能の著し
い低下の原因になる。そのため、粒状亜鉛の表面
を粒状亜鉛重量に対して5〜10重量%程度の水銀
で汞化処理することで水素過電圧を高め、粒状亜
鉛の腐蝕防止及び水素ガス発生抑制を図る方法が
一般的に用いられている。 〈発明が解決しようとする問題点〉 ところで、上記のように汞化率の高い粒状亜鉛
を使用する場合、製造工程における作業衛生上の
問題、あるいは使用済廃棄電池の安全性の問題等
があり、アルカリ電池における水銀の低減化が近
年クローズアツプされてきている。 このため、水銀に代わる亜鉛防蝕用インヒビタ
ーとして、粒状亜鉛に添加しあるいは付着させた
場合に、その水素過電圧を高める働きのあるタリ
ウム、鉄、カドミウム、鉛、ビスマス、マグネシ
ウム、ガリウム、インジウム等の金属を1種また
は2種以上選び出し、これら金属と亜鉛とを合金
化した粒状亜鉛合金を用いることにより大幅な低
汞化ないしは無汞化を図ることが提案されてい
る。しかし、これらの金属添加のみでは放電並び
に耐漏液性能の点で実用上満足しうる効果が得ら
れず、これらの金属と水銀との併用は避けられ
ず、アルカリ電池の大幅な低汞化や無汞化は困難
であるのが現状である。 〈問題点を解決するための手段〉 本発明者は、アルカリ電池における低汞化、無
汞化について研究並びに考察を重ねた結果、以下
の手段を用いた場合には大幅な低汞化や無汞化を
した時でも電池の貯蔵及び放電性能を実用上満足
させるものとすることができることを知得して本
発明を完成した。 即ち、この発明のアルカリ電池は、亜鉛を主成
分とし、タリウム、鉄、カドミウム、鉛、ビスマ
ス、マグネシウム、ガリウム、インジウムの群か
ら任意に選択された1種または2種以上の元素を
含む粒状亜鉛合金を100〜420℃で焼鈍処理して得
た焼鈍粒状亜鉛合金の表面に、タリウム、鉄、カ
ドミウム、鉛、ビスマス、マグネシウム、ガリウ
ム、インジウムの群から任意に選択された1種ま
たは2種以上の元素の被覆層を形成せしめてなる
粒状亜鉛合金を負極活物質として用いたことを要
旨とするものである。 焼鈍温度を上記範囲としたのは、これが100℃
より低い場合には以下に説明する粒状亜鉛合金の
再結晶化が不十分となり、また420℃を超えると
粒状亜鉛合金が溶融凝集してしまうからである。
尚、焼鈍時間は焼鈍温度に応じて上記再結晶化が
十分なされる程度とすればよく、5分〜3時間の
範囲内で適宜に設定すればよい。好ましい条件は
焼鈍温度は300〜400℃で、焼鈍時間は30分〜1時
間である。 また、焼鈍粒状亜鉛合金の表面に上記のような
被覆層を形成する方法としては、上記元素を溶解
させた溶液中に焼鈍粒状亜鉛合金を投入し、両者
を接触・混合し、置換法により合金表面に極薄な
被覆層を形成する等の方法を用いる。更に具体的
に説明すれば、例えばタリウムを用いた場合、ま
ずタリウムを硝酸と反応させて硝酸タリウム
TlNO3の結晶体を作り(再結晶法)、この硝酸タ
リウム結晶を水溶液中に溶解させ、次にこの溶液
中に焼鈍粒状亜鉛合金を投入し、合金表面にタリ
ウム被覆層を形成させる方法を用いる。また、例
えばビスマスを用いた場合、まずビスマスと希硝
酸との反応により硝酸ビスマスBi(NO33結晶を
作り、これに多量の水(熱湯)を加えて加水分解
させて次硝酸ビスマスBi(OH)2NO3・Bi(OH)
(NO32・BiO(OH)を作る。この次硝酸ビスマ
スのコロイド溶液中に焼鈍粒状亜鉛合金を投入
し、合金表面にビスマス被覆層を形成させた後、
水洗いして所望の粒状亜鉛合金を得る方法等を用
いる。 〈作用〉 上記のような粒状亜鉛合金(前記粒状亜鉛と同
様の製法で作られる)では、その製造過程で発生
する結晶の歪(不規則なサブグレイン)などがア
ルカリ電解液中での腐蝕に悪影響を及ぼすことは
知られているが、上記のような焼鈍処理を行なう
ことによつて粒状亜鉛合金を構成する粒子が再結
晶化して安定な結晶となる。そして、上記の如き
元素を含有させることにより水素過電圧を上昇せ
しめる効果と、焼鈍処理することにより結晶歪が
再結晶化により安定な結晶となる効果、及び水素
過電圧を高める働きをする上記元素の被覆層を形
成することによる効果等の相乗効果によつて負極
内における水素ガス発生を大幅に抑制することが
できる。 〈実施例〉 亜鉛を主成分とし、これにタリウム、鉄、カド
ミウム、鉛、ビスマス、マグネシウム、ガリウ
ム、インジウムからなる群から第1表のように選
択した2種の元素を微量含有させ、公知の方法に
より粒状亜鉛合金を作製した。この粒状亜鉛合金
を第1表に示す温度で焼鈍処理した後、稀薄な塩
酸溶液へ投入し攪拌することで焼鈍処理によつて
粒子表面に形成された酸化皮膜を除去し、その後
水洗いにより表面を清浄化し乾燥して各種の焼鈍
粒状亜鉛合金を得た。 次に、タリウム、鉄、カドミウム、鉛、ビスマ
ス、マグネシウム、ガリウム、インジウムからな
る群から第1表のように選択した1種または2種
の元素を用い、これらの元素を溶解させた溶液中
に、上記のようにして得た焼鈍粒状亜鉛合金を投
入して焼鈍粒状亜鉛合金表面に極薄な被覆層を形
成することにより、本発明に係る粒状亜鉛合金を
作製した。 尚、本発明品A〜Dは被覆層を形成した後に水
銀にて汞化していない無汞化粒状亜鉛合金であ
り、又、本発明品E,Fは被覆層を形成した後に
水銀にて汞化度1.5重量%で汞化処理を施した低
汞化粒状亜鉛合金である。 これらの低汞化及び無汞化粒状亜鉛合金を、温
度(50±2)℃で、酸化亜鉛ZnOを飽和させた水
酸化カリウムKOH濃度40重量%のアルカリ電解
液中に浸漬させた条件下における、低汞化及び無
汞化粒状亜鉛合金の単位重量当りの1日の水素ガ
ス発生量(ml/g・day)を測定した結果を第1
表に示す。
<Industrial Application Field> The present invention relates to an alkaline battery, and more particularly, to an alkaline battery that has improved safety without reducing discharge performance etc. by improving the material of the negative electrode active material used. <Prior art> Particulate zinc, which is currently widely used as a negative electrode active material in various button-type alkaline batteries, cylindrical alkaline batteries, etc., is made by turning high-purity zinc with a purity of 99.99% or higher into granules by a method such as a spraying method. The granular zinc is dispersed in a gel form using a gelling agent such as carboxymethylcellulose and an alkaline electrolyte to form a negative electrode, and this negative electrode is used as an active material such as manganese dioxide or silver oxide through a separator. The structure is such that the positive electrode mixture faces the positive electrode mixture. By the way, when such granular zinc is used in a non-grading state or with a low flux of 3% by weight or less, corrosion due to self-consumption of the granular zinc in the negative electrode of an alkaline battery and the amount of hydrogen gas generated at that time are practically impractical. exceeds the limit, causing a significant decline in the battery's discharge performance and leakage resistance. Therefore, a common method is to increase the hydrogen overvoltage by treating the surface of granular zinc with mercury in an amount of 5 to 10% by weight based on the weight of granular zinc, thereby preventing corrosion of granular zinc and suppressing hydrogen gas generation. It is used. <Problems to be solved by the invention> By the way, when using granular zinc with a high oxidation rate as described above, there are problems with work hygiene in the manufacturing process and safety problems with used and discarded batteries. In recent years, the reduction of mercury in alkaline batteries has become a focus of attention. For this reason, metals such as thallium, iron, cadmium, lead, bismuth, magnesium, gallium, and indium, which have the effect of increasing the hydrogen overvoltage when added to or attached to granular zinc, are used as zinc corrosion inhibitors in place of mercury. It has been proposed to select one or more types of metals and use a granular zinc alloy made by alloying these metals with zinc to significantly reduce or eliminate the stress. However, adding these metals alone does not provide practically satisfactory effects in terms of discharge and leakage resistance, and the combination of these metals and mercury is unavoidable, resulting in significant reductions in alkaline batteries' The current situation is that it is difficult to develop a framework. <Means for Solving the Problems> As a result of repeated research and consideration on the reduction and no reduction in the rate of change in alkaline batteries, the inventor of the present invention has found that when the following means are used, a significant reduction or no change in the rate of change can be achieved. The present invention was completed based on the knowledge that the storage and discharge performance of the battery can be practically satisfied even when the battery is degraded. That is, the alkaline battery of the present invention has granular zinc containing zinc as a main component and one or more elements arbitrarily selected from the group of thallium, iron, cadmium, lead, bismuth, magnesium, gallium, and indium. One or more randomly selected from the group of thallium, iron, cadmium, lead, bismuth, magnesium, gallium, and indium is added to the surface of the annealed granular zinc alloy obtained by annealing the alloy at 100 to 420°C. The gist is that a granular zinc alloy formed by forming a coating layer of the following elements is used as a negative electrode active material. The reason why the annealing temperature is set to the above range is 100℃.
If the temperature is lower than this, the recrystallization of the granular zinc alloy described below will be insufficient, and if it exceeds 420°C, the granular zinc alloy will melt and agglomerate.
Incidentally, the annealing time may be set to such a degree that the recrystallization is sufficiently performed according to the annealing temperature, and may be appropriately set within the range of 5 minutes to 3 hours. Preferred conditions are that the annealing temperature is 300 to 400°C and the annealing time is 30 minutes to 1 hour. In addition, as a method for forming the above coating layer on the surface of an annealed granular zinc alloy, the annealed granular zinc alloy is poured into a solution in which the above elements are dissolved, the two are brought into contact and mixed, and the alloy is formed by a substitution method. A method such as forming an extremely thin coating layer on the surface is used. More specifically, when using thallium, for example, thallium is first reacted with nitric acid to form thallium nitrate.
A method is used in which a crystal of TlNO 3 is created (recrystallization method), this thallium nitrate crystal is dissolved in an aqueous solution, and then an annealed granular zinc alloy is introduced into this solution to form a thallium coating layer on the alloy surface. . For example, when using bismuth, first create bismuth nitrate Bi(NO 3 ) 3 crystals by reacting bismuth with dilute nitric acid, then add a large amount of water (hot water) to hydrolyze the crystals to create bismuth bismuth subnitrate Bi(NO 3 ) 3 crystals. OH) 2 NO 3・Bi(OH)
(NO 3 ) 2・BiO(OH) is made. After putting the annealed granular zinc alloy into this colloidal solution of bismuth subnitrate and forming a bismuth coating layer on the alloy surface,
A method such as washing with water to obtain the desired granular zinc alloy is used. <Function> In the above granular zinc alloy (manufactured using the same manufacturing method as the granular zinc), crystal distortion (irregular subgrains) that occurs during the manufacturing process can lead to corrosion in an alkaline electrolyte. Although it is known to have an adverse effect, by performing the annealing treatment as described above, the particles constituting the granular zinc alloy recrystallize and become stable crystals. Then, the inclusion of the above elements increases hydrogen overvoltage, the annealing treatment causes crystal distortion to become stable crystals through recrystallization, and the coating of the above elements functions to increase hydrogen overvoltage. Hydrogen gas generation within the negative electrode can be significantly suppressed by the synergistic effect of the layer formation. <Example> Zinc is the main component, and trace amounts of two elements selected from the group consisting of thallium, iron, cadmium, lead, bismuth, magnesium, gallium, and indium are added as shown in Table 1, and known A granular zinc alloy was prepared by this method. After annealing this granular zinc alloy at the temperature shown in Table 1, it is poured into a dilute hydrochloric acid solution and stirred to remove the oxide film formed on the particle surface due to the annealing treatment, and then the surface is washed with water. After cleaning and drying, various annealed granular zinc alloys were obtained. Next, one or two elements selected from the group consisting of thallium, iron, cadmium, lead, bismuth, magnesium, gallium, and indium as shown in Table 1 are used, and these elements are dissolved in a solution. A granular zinc alloy according to the present invention was produced by introducing the annealed granular zinc alloy obtained as described above and forming an extremely thin coating layer on the surface of the annealed granular zinc alloy. Incidentally, products A to D of the present invention are non-grained granular zinc alloys that are not oxidized with mercury after forming a coating layer, and products E and F of the invention are granular zinc alloys that are not oxidized with mercury after forming a coating layer. This is a low-fragility granular zinc alloy that has been subjected to a grading treatment with a degree of oxidation of 1.5% by weight. These low-grading and non-grading granular zinc alloys were immersed in an alkaline electrolyte with a potassium hydroxide KOH concentration of 40% by weight and saturated with zinc oxide ZnO at a temperature of (50±2)°C. , the results of measuring the amount of hydrogen gas generated per day (ml/g・day) per unit weight of low-grading and non-grading granular zinc alloys are shown in the first table.
Shown in the table.

【表】 一方、本発明品の性能対比のため、第2表に示
した要領で比較品G〜Iを作製し、上記と同じ条
件下でそれぞれの水素ガス発生量(ml/g・
day)を測定した結果を同表に示す。 尚、比較品Gは焼鈍処理を施していない粒状亜
鉛、比較品Hは焼鈍処理を施さないインジウム、
鉛添加の粒状亜鉛合金、比較品Iは350℃で焼鈍
処理を施したインジウム、鉛添加の粒状亜鉛合金
を、それぞれ汞化度1.5重量%で汞化処理したも
のである。
[Table] On the other hand, in order to compare the performance of the products of the present invention, comparative products G to I were prepared according to the procedure shown in Table 2, and the hydrogen gas generation amount (ml/g・
The results of the measurement (day) are shown in the same table. Comparative product G is granular zinc that has not been annealed, and comparative product H is indium that has not been annealed.
The lead-added granular zinc alloy, Comparative Product I, is an indium-added granular zinc alloy annealed at 350°C and a lead-added granular zinc alloy, each of which has been annealed at a degree of viscosity of 1.5% by weight.

【表】 第1表及び第2表より、本発明品A〜Fは低汞
化及び無汞化であるにも拘らず水素ガス発生量を
大幅に低減できることがわかる。 〈発明の効果〉 この発明のアルカリ電池は以上のような低汞化
及び無汞化粒状亜鉛合金を負極活物質として用い
てなるものであり、上記のような元素を合金とし
て含有させることにより水素過電圧を上昇せしめ
る効果、焼鈍処理することによる再結晶化によつ
て安定な結晶となる効果、及び上記のごとき水素
過電圧を高める働きをする元素の被覆層を表面に
形成することによる効果等の相乗効果によつてこ
の低汞化及び無汞化粒状亜鉛合金のアルカリ電解
液中での腐蝕並びに水素ガス発生を大幅に抑制す
ることができ、実用上十分な放電性能及び耐漏液
性能を持たせることができる。このため、放電性
能等を低下させることなく電池の低汞化及び無汞
化並びに無公害化等を図れ、その利用価値は高
い。
[Table] From Tables 1 and 2, it can be seen that the products A to F of the present invention can significantly reduce the amount of hydrogen gas generated, despite having low and zero concentrations. <Effects of the Invention> The alkaline battery of the present invention uses the above-described low-rate and non-rate-changed granular zinc alloy as a negative electrode active material, and by containing the above-mentioned elements as an alloy, hydrogen The effect of increasing the overvoltage, the effect of becoming stable crystals through recrystallization through annealing treatment, and the effect of forming a coating layer of the above-mentioned elements on the surface that works to increase the hydrogen overvoltage. As a result, corrosion and hydrogen gas generation in an alkaline electrolyte can be greatly suppressed in this low-rate and non-rate-changed granular zinc alloy, and it has practically sufficient discharge performance and leakage resistance. I can do it. For this reason, it is possible to make the battery low in temperature, zero in temperature, and non-polluting without deteriorating its discharge performance, etc., and its utility value is high.

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛を主成分とし、タリウム、鉄、カドミウ
ム、鉛、ビスマス、マグネシウム、ガリウム、イ
ンジウムの群から任意に選択された1種または2
種以上の元素を含む粒状亜鉛合金を100〜420℃で
焼鈍処理して得た焼鈍粒状亜鉛合金の表面に、タ
リウム、鉄、カドミウム、鉛、ビスマス、マグネ
シウム、ガリウム、インジウムの群から任意に選
択された1種または2種以上の元素の被覆層を形
成せしめてなる粒状亜鉛合金を負極活物質として
用いたことを特徴とするアルカリ電池。
1. One or two types containing zinc as the main component, arbitrarily selected from the group of thallium, iron, cadmium, lead, bismuth, magnesium, gallium, and indium.
The surface of an annealed granular zinc alloy obtained by annealing a granular zinc alloy containing more than one element at 100 to 420°C is randomly selected from the group of thallium, iron, cadmium, lead, bismuth, magnesium, gallium, and indium. 1. An alkaline battery characterized in that a granular zinc alloy formed with a coating layer of one or more of the above elements is used as a negative electrode active material.
JP60190174A 1985-08-29 1985-08-29 Alkaline battery Granted JPS6251160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60190174A JPS6251160A (en) 1985-08-29 1985-08-29 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60190174A JPS6251160A (en) 1985-08-29 1985-08-29 Alkaline battery

Publications (2)

Publication Number Publication Date
JPS6251160A JPS6251160A (en) 1987-03-05
JPH0516143B2 true JPH0516143B2 (en) 1993-03-03

Family

ID=16253669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60190174A Granted JPS6251160A (en) 1985-08-29 1985-08-29 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS6251160A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Also Published As

Publication number Publication date
JPS6251160A (en) 1987-03-05

Similar Documents

Publication Publication Date Title
JPH04284358A (en) Zinc alkaline battery
JPS5825083A (en) Zinc powder cathode not amalgamed for battery having alkaline electrolyte and method of producing same
JPH0516143B2 (en)
JP4639304B2 (en) Zinc alloy powder for alkaline battery with less gas generation and method for producing the same
JPS6164076A (en) Electrochemical battery
JPH0578905B2 (en)
JPS61131363A (en) Alkaline battery
JPH0473263B2 (en)
JPS61131367A (en) Method of processing granular zinc alloy for alkaline battery
JPS58225565A (en) Alkaline battery
JPH0430712B2 (en)
JPS61131365A (en) Alkaline battery
JPH09302401A (en) Treatment of hydrogen storage alloy powder
JPH0425670B2 (en)
JP2932285B2 (en) Method for producing zinc alloy powder for alkaline batteries with low gas generation
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPS61128464A (en) Alkaline battery
JPS60146455A (en) Zinc alkaline battery
JPS6177265A (en) Zinc alkaline battery
JPS61121263A (en) Zinc negative electrode for alkaline battery
JPS6164073A (en) Zinc alloy for negative electrode of an alkaline battery
JPS599856A (en) Manufacture of negative active material for alkaline battery
JPS6053426B2 (en) Primary battery using aluminum or its alloy for the negative electrode
JPH0554884A (en) Manufacture of non-cured zinc alloy powder for alkali dry battery
JPS6178061A (en) Zinc alkaline battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees