JPH05160384A - Optoelectronic ic and manufacture thereof - Google Patents

Optoelectronic ic and manufacture thereof

Info

Publication number
JPH05160384A
JPH05160384A JP31897491A JP31897491A JPH05160384A JP H05160384 A JPH05160384 A JP H05160384A JP 31897491 A JP31897491 A JP 31897491A JP 31897491 A JP31897491 A JP 31897491A JP H05160384 A JPH05160384 A JP H05160384A
Authority
JP
Japan
Prior art keywords
high resistance
refractive index
ion implantation
layer
resistance layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31897491A
Other languages
Japanese (ja)
Inventor
Toyoji Chino
豊治 知野
Kenichi Matsuda
賢一 松田
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31897491A priority Critical patent/JPH05160384A/en
Publication of JPH05160384A publication Critical patent/JPH05160384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To form a difference of refractive index in a layer formed by injecting two kinds of ion having different reach range with the use of a same mask, and to achieve optical separation and electric separation by achieving high resistance through disordering of crystals. CONSTITUTION:Oxygen ions, which are accelerated at 150KeV to 500KeV in the first time ion injection, are injected with a dosage of 10<12> to 10<16>cm<-2>. Successively, the second time ion injection is carried out. Oxygen ions, which are accelerated at 25KeV to 150KeV, are injected with a dosage of 10<12> to 10<16>cm<-2>, and two layers having greater refractive index 115 than that of a high resistance layer 113 are formed. In addition to increase of the number of atom holes which are generated by the first time ion injection, the number of atomic holes generated by the second time ion injection increases. Furthermore, the refractive index of the layer 115 which is formed by the second time ion injection becomes greater than that of the high resistance layer 113 by the growth of an electric dipole due to injection of hydrogen ions in addition to the first time ion injection. As a result, light emission can be shielded and insulated from elements adjacent to an photoelectronic IC.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光電子集積回路の構造
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an optoelectronic integrated circuit and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光電子集積回路は、集積された光素子及
び電子素子の間で光のクロストークによるリーク電流の
発生や誤動作を生じていた。光のクロストークを無くす
ことが集積化への大きな課題である。そのために、採ら
れていた従来の方法は、おのおのの素子を溝で分離し、
溝に誘電体及び金属を充填することで光のクロストーク
を防いでいた。或は、光導波路を形成して、素子間の距
離を離すことで防いでいた。
2. Description of the Related Art In an optoelectronic integrated circuit, a leak current or malfunction occurs due to optical crosstalk between integrated optical elements and electronic elements. Eliminating optical crosstalk is a major challenge for integration. Therefore, the conventional method adopted is that each element is separated by a groove,
The crosstalk of light was prevented by filling the groove with a dielectric and a metal. Alternatively, it is prevented by forming an optical waveguide and increasing the distance between the elements.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では以下に述べる課題を有していた。即ち、溝
の形成や距離を拡大する方向でのクロストーク防止は、
集積規模の増加を妨げるものであり、光電子集積回路の
機能拡大が出来なかった。故に、本発明は、光のクロス
トークを無くし、かつ素子の高密度集積化を行うもの
で、従来技術においては相反する課題であった。
However, the above conventional structure has the following problems. In other words, the prevention of crosstalk in the direction of forming the groove and increasing the distance is
This hinders an increase in the scale of integration, and the functions of the optoelectronic integrated circuit could not be expanded. Therefore, the present invention eliminates optical crosstalk and realizes high-density integration of elements, which is a contradictory issue in the prior art.

【0004】[0004]

【課題を解決するための手段】この課題を解決するため
に本発明は、飛程の異なる2種類のイオン注入を同一マ
スクを用いて注入することにより形成されたイオン注入
層に屈折率差を形成することと、結晶の無秩序化による
高抵抗化を行い、光学的分離と電気的分離を達成するも
のである。又、第1のイオン注入を行い半導体基板中に
原子空孔を形成させる工程と、第2のイオン注入におけ
る注入イオンにより電気分極を変化させて屈折率を変え
る工程により、半導体基板上に形成した複数個の発光素
子間の光の分離を実現する。
In order to solve this problem, the present invention provides an ion-implanted layer formed by implanting two types of ion implants having different ranges using the same mask. The formation and the high resistance due to the disorder of the crystal achieve the optical separation and the electric separation. Further, it is formed on the semiconductor substrate by the step of forming atomic vacancies in the semiconductor substrate by performing the first ion implantation and the step of changing the electric polarization by the implanted ions in the second ion implantation to change the refractive index. A separation of light between a plurality of light emitting elements is realized.

【0005】[0005]

【作用】運動エネルギーを持ったイオンが半導体結晶の
格子位置にある原子を弾き飛ばし、原子空孔を多数発生
させることに加え、一部アモルファス化するため、イオ
ン注入された部分は電子が散乱され易くなる。つまり、
注入された領域は高抵抗層となり、隣接する素子から電
気的に分離する。第1のイオン注入に加えて、第2のイ
オン注入された領域は、原子空孔の発生やアモルファス
化が更に進むことで電気双極子の分極が大きくなり、ま
た注入されたイオンによる分極も加わり、屈折率が大き
くなる。屈折率の大きな層へ入射する光は反射されやす
いので、隣接する素子へ入る光の量は弱められる。この
高抵抗層は、ほぼマスク寸法通りに形成されるため、ウ
ェット或はドライエッチングで形成した溝の幅より小さ
くできる。以上のように、イオン注入を2回行うことで
隣接する素子からの発光が遮蔽されると同時に絶縁され
た素子を形成する。
[Function] Ions with kinetic energy repel atoms at the lattice position of the semiconductor crystal, generate a large number of atomic vacancies, and partially make them amorphous, so that electrons are scattered in the ion-implanted portion. It will be easier. That is,
The implanted region becomes a high resistance layer and is electrically isolated from the adjacent element. In addition to the first ion implantation, in the second ion implanted region, the polarization of the electric dipole becomes large due to the generation of atomic vacancies and the further amorphization, and the polarization due to the implanted ions is also added. , The refractive index increases. Light incident on a layer having a large refractive index is easily reflected, so that the amount of light entering an adjacent element is weakened. Since this high resistance layer is formed almost according to the mask size, it can be made smaller than the width of the groove formed by wet or dry etching. As described above, by performing ion implantation twice, light emission from an adjacent element is blocked and an insulated element is formed at the same time.

【0006】[0006]

【実施例】以下本発明の実施例について図面を参照しな
がら説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0007】図1は、本発明における一実施例の光電子
集積回路の断面図である。半絶縁性InP基板101上
に半導体多層膜をエピタキシャル成長させている。n−
InP102、n−InP(n−クラッド)109、p
−InGaAsP(活性層)110、p−InP(p−
クラッド)111及びp−InGaAsP(キャップ
層)112は、発光ダイオード(LED)を構成し、n
−InP(コレクタ)103、pーInGaAsP(ベ
ース)104,n−InP(エミッタ)105及びn−
InGaAsP106は、ヘテロ接合バイポーラトラン
ジスタ(HBT)を構成している。単位セルの中でLE
DとHBTは、n−InP層102を介して電気的につ
ながっている。バイアス電圧は、LEDのアノードとH
BTのカソードにかけられる。ベースに送られてくる電
気信号によりキャリヤがn−InP層102を通してL
EDに注入されて発光する。隣接するセルのLEDとH
BTは高屈折率層115を含む高抵抗層113により電
気的に分離され、かつそのLEDからの発光は遮蔽され
る。これは、以下に述べる理由による。先ず、第1のイ
オン注入において150keVから500keVで加速
した酸素イオンを10 12〜1016cm-2のドーズ量で注
入する。この時の酸素イオンの持つ運動エネルギーによ
り、格子位置にある原子が弾き飛ばされ、格子欠陥が多
数発生することに加え、結晶性が悪化し、一部アモルフ
ァス状態になるため、電子は散乱され易くなる。その結
果、103〜104Ωcmの高抵抗層がイオン注入された
領域に生じ、単位セル間での電気的な分離が可能とな
る。
FIG. 1 shows a photoelectron according to one embodiment of the present invention.
It is sectional drawing of an integrated circuit. On semi-insulating InP substrate 101
The semiconductor multi-layer film is epitaxially grown. n-
InP 102, n-InP (n-clad) 109, p
-InGaAsP (active layer) 110, p-InP (p-
Clad 111 and p-InGaAsP (cap)
Layer 112 comprises a light emitting diode (LED),
-InP (collector) 103, p-InGaAsP (base
Source 104, n-InP (emitter) 105 and n-
InGaAsP106 is a heterojunction bipolar transistor
It constitutes a transistor (HBT). LE in the unit cell
D and HBT are electrically connected via the n-InP layer 102.
I am longing. The bias voltage is H
It is applied to the cathode of BT. Electricity sent to the base
Air signal causes carriers to pass through the n-InP layer 102 to L
It is injected into the ED and emits light. LED and H of adjacent cells
BT is electrically charged by the high resistance layer 113 including the high refractive index layer 115.
It is gas-isolated and the light emitted from its LED is blocked.
It This is for the following reason. First of all,
Accelerate from 150 keV to 500 keV during on-implant
10 oxygen ions 12-1016cm-2Note with dose amount
To enter. Due to the kinetic energy of oxygen ions at this time
Atoms at the lattice position are repelled, causing many lattice defects.
In addition to the occurrence of a few
The electrons are more likely to be scattered because they are in a gas state. That conclusion
The result, 103-10FourHigh resistance layer of Ωcm was ion-implanted
Occurs in the area and enables electrical isolation between unit cells.
It

【0008】次に、光の遮蔽について述べる。第1のイ
オン注入に引き続き第2のイオン注入を行う。25ke
Vから150keVで加速した水素イオンを1012〜1
16cm-2のドーズ量で注入し、高抵抗層113より屈
折率の大きな層115を2層形成する。第1のイオン注
入で生じた原子空孔に加え、第2のイオン注入におい
て、更に原子空孔の数が増加する上、第1のイオン注入
での酸素イオンに加え水素イオンが入ることによる電気
双極子の増大により、第2のイオン注入で形成された層
115の屈折率が層113の屈折率より大きくなる。高
抵抗層113自体も上述した理由と同じでLED部分よ
り屈折率が高く、高屈折率層115を2層内包している
ので、LEDからの光は、屈折率の異なる層の境界を6
回通過しなければ隣接するセルのHBTには到達しな
い。光は、屈折率差の生じる界面で一部反射される。特
に、屈折率の小さな領域に入射する際、反射が起こる。
6回界面を通過する時、3回は屈折率の小さな領域へに
入射であるから、光の大部分は反射される。このため、
漏れた光が隣接する素子のHBTのベースに入射してキ
ャリヤを発生させLEDを誤動作させることはない。H
BTは高抵抗層113により隣接するセルのLEDと電
気的に分離されているので、HBTからのリーク電流が
隣接するセルのLEDのアノードに流入して発光するこ
ともない。
Next, light shielding will be described. After the first ion implantation, the second ion implantation is performed. 25 ke
Hydrogen ion accelerated from V to 150 keV is 10 12 -1
Implantation is carried out at a dose of 0 16 cm −2 to form two layers 115 having a refractive index larger than that of the high resistance layer 113. In addition to the atomic vacancies generated in the first ion implantation, the number of atomic vacancies is further increased in the second ion implantation, and in addition to the oxygen ions in the first ion implantation, the electric power due to hydrogen ions entering Due to the increase in the dipole, the refractive index of the layer 115 formed by the second ion implantation becomes higher than that of the layer 113. The high-resistance layer 113 itself has a higher refractive index than the LED portion for the same reason as described above, and since the high-refractive index layer 115 includes two layers, the light from the LED has a boundary between layers having different refractive indexes.
The HBTs of the adjacent cells are not reached until the HBTs of the adjacent cells are passed. The light is partially reflected at the interface where a difference in refractive index occurs. In particular, reflection occurs when entering an area having a low refractive index.
When passing through the interface six times, most of the light is reflected because the light is incident on the region having a small refractive index three times. For this reason,
The leaked light does not enter the base of the HBT of the adjacent element to generate carriers and malfunction the LED. H
Since the BT is electrically separated from the LED of the adjacent cell by the high resistance layer 113, the leak current from the HBT does not flow into the anode of the LED of the adjacent cell to emit light.

【0009】次に、上で説明した光電子集積回路の製造
方法を図2(工程断面図)を用いて説明する。半導体基
板上にInP,InGaAsPからなる多層膜をエピタ
キシャル成長させる。上部2層をHBTのエミッタ層と
LEDのp−クラッド層、キャップ層にするためにレジ
ストをマスクとしてTe、Znをそれぞれイオン注入す
る(図2a、b)。その後、SiO2膜をキャップとし
て600〜800℃でアニールして、注入イオンを活性
化する。再びレジストをマスクとして、高抵抗層と高屈
折率層形成のためのイオン注入を行う。レジストを露
光、硬化後O2アッシャーを行ってレジストの一部をエ
ッチングする。その結果、レジストパターンに傾斜がつ
き、幅の小さなパターンは本来の厚さより薄くなる(図
3c)。傾斜のあるレジストの上から第1のイオン注入
を行い、酸素イオンを前述の条件で注入する。加速電圧
が大きいので、レジストの薄くなった部分を酸素イオン
は透過して行く(図3c)。引き続いて、第2のイオン
注入を行い、水素イオンをやはり上述の条件で注入す
る。今度は加速電圧を第1の注入より小さくして、レジ
ストのパターン通りにイオンを打ち込む(図3c)。こ
うして高屈折率層を内包する高抵抗層が形成される。セ
ル内での光の分離、LEDの発光が同一セル内のHBT
のベースに入射しないように図3cの説明で述べた方法
と同じでイオン注入を行う(図3d)。この時、第1の
イオン注入は、加速電圧を20%減らして行う。塩酸系
を用いたウェットエッチングでInP層を、硫酸系を用
いたウェットエッチングでInGaAsPをエッチング
し、HBTを形成し、電極を蒸着する(図3e)。
Next, a method for manufacturing the optoelectronic integrated circuit described above will be described with reference to FIG. 2 (process sectional view). A multilayer film made of InP and InGaAsP is epitaxially grown on a semiconductor substrate. Te and Zn are ion-implanted using a resist as a mask so that the upper two layers serve as an HBT emitter layer, an LED p-cladding layer, and a cap layer (FIGS. 2a and 2b). Then, the SiO 2 film is used as a cap and annealed at 600 to 800 ° C. to activate the implanted ions. Again using the resist as a mask, ion implantation for forming the high resistance layer and the high refractive index layer is performed. After exposing and curing the resist, an O 2 asher is performed to etch a part of the resist. As a result, the resist pattern is inclined, and the pattern with a small width becomes thinner than the original thickness (FIG. 3c). First ion implantation is performed from above the inclined resist, and oxygen ions are implanted under the above-described conditions. Since the accelerating voltage is high, oxygen ions permeate the thinned portion of the resist (FIG. 3c). Subsequently, the second ion implantation is performed, and hydrogen ions are also implanted under the above-mentioned conditions. This time, the accelerating voltage is made smaller than that of the first implantation, and ions are implanted according to the resist pattern (FIG. 3c). Thus, the high resistance layer including the high refractive index layer is formed. Light separation in the cell, LED emission is HBT in the same cell
Ion implantation is performed by the same method as described in the explanation of FIG. 3c so that it does not enter the base (FIG. 3d). At this time, the first ion implantation is performed with the acceleration voltage reduced by 20%. The InP layer is etched by wet etching using hydrochloric acid and InGaAsP is etched by wet etching using sulfuric acid to form HBT, and an electrode is deposited (FIG. 3e).

【0010】尚、第2のイオン注入は、第1のイオン注
入より加速電圧を小さくしてその飛程を短くするため、
深さにおいて高抵抗層113を越えることはない。
In the second ion implantation, the acceleration voltage is made smaller and the range thereof is made shorter than that of the first ion implantation.
The depth does not exceed the high resistance layer 113.

【0011】さらに、第1、第2のイオン注入で酸素及
び水素を使用したが、ヘリウム、ホウ素、鉄イオンを使
用してもよい。
Further, although oxygen and hydrogen are used in the first and second ion implantations, helium, boron and iron ions may be used.

【0012】[0012]

【発明の効果】以上のように本発明は、飛程の異なるこ
とを特徴とするイオン注入を2回以上行うことにより、
屈折率の異なる層を含んだ高抵抗層を形成でき、かつ隣
接する素子からの発光を遮蔽すると同時に隣接する素子
と絶縁できる。その結果、高密度集積化が容易となる。
As described above, according to the present invention, ion implantation characterized by different range is performed twice or more.
A high resistance layer including layers having different refractive indexes can be formed, and light emission from an adjacent element can be blocked and at the same time can be insulated from an adjacent element. As a result, high density integration becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】イオン注入を用いてLEDとHBTを集積化し
た光電子集積回路の断面図
FIG. 1 is a sectional view of an optoelectronic integrated circuit in which an LED and an HBT are integrated by using ion implantation.

【図2】イオン注入を用いてLEDとHBTを集積化し
た光電子集積回路の作製プロセスの工程断面図
FIG. 2 is a cross-sectional view of steps of a manufacturing process of an optoelectronic integrated circuit in which an LED and an HBT are integrated using ion implantation.

【図3】イオン注入を用いてLEDとHBTを集積化し
た光電子集積回路の作製プロセスの工程断面図
FIG. 3 is a process cross-sectional view of a manufacturing process of an optoelectronic integrated circuit in which an LED and an HBT are integrated by using ion implantation.

【符号の説明】[Explanation of symbols]

101 半絶縁性InP基板 102 n−InP 103 コレクタ 104 ベース 105 エミッタ 106 n−InGaAsP 107 AuSu電極 108 AuZn電極 109 n−クラッド 110 活性層 111 p−クラッド 112 キャップ層 113 高抵抗層1 114 高抵抗層2 115 高屈折率層 201 半絶縁性InP基板 202 n−InP 203 n−InP 204 p−InGaAsP 205 InP 206 InGaAsP 207 レジスト 208 n−InP 209 n−InGaAsP 210 p−InGaAsP 211 p−InP 212 高抵抗層1 213 高屈折率層 214 高抵抗層2 215 AuZn電極 216 AuSn電極 101 semi-insulating InP substrate 102 n-InP 103 collector 104 base 105 emitter 106 n-InGaAsP 107 AuSu electrode 108 AuZn electrode 109 n-clad 110 active layer 111 p-clad 112 cap layer 113 high resistance layer 1 114 high resistance layer 2 115 high refractive index layer 201 semi-insulating InP substrate 202 n-InP 203 n-InP 204 p-InGaAsP 205 InP 206 InGaAsP 207 resist 208 n-InP 209 n-InGaAsP 210 p-InGaAsP 211 p-InP 212 high resistance layer 1 213 high refractive index layer 214 high resistance layer 2 215 AuZn electrode 216 AuSn electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、前記半導体基板上に形成さ
れた複数個の発光素子及び電子素子と、第1と第2のイ
オン注入により形成される屈折率の異なる層を内包する
高抵抗層とを備え、前記発光素子及び電子素子が前記高
抵抗層により光学的及び電気的に分離されることを特徴
とする光電子集積回路。
1. A high resistance layer including a semiconductor substrate, a plurality of light emitting elements and electronic elements formed on the semiconductor substrate, and layers having different refractive indexes formed by first and second ion implantation. And a light-emitting element and an electronic element are optically and electrically separated by the high resistance layer.
【請求項2】第1のイオン注入で形成される高抵抗層中
に第2のイオン注入により3層以上の前記高抵抗層とは
異なる屈折率を有する層を備えた請求項1記載の光電子
集積回路。
2. The photoelectron according to claim 1, wherein the high resistance layer formed by the first ion implantation has three or more layers having a refractive index different from that of the high resistance layer by the second ion implantation. Integrated circuit.
【請求項3】第1のイオン注入を行い半導体基板中に原
子空孔を形成させる工程と、第2のイオン注入における
注入イオンにより電気分極を変化させて屈折率を変える
工程を有し、半導体基板上に形成した複数個の発光素子
間の光の分離と電子素子間の絶縁を行うことを特徴とす
る光電子集積回路の製造方法。
3. A semiconductor comprising: a step of forming atomic vacancies in a semiconductor substrate by performing a first ion implantation; and a step of changing a refractive index by changing electric polarization by the implanted ions in the second ion implantation. A method for manufacturing an optoelectronic integrated circuit, comprising separating light between a plurality of light emitting elements formed on a substrate and insulating between electronic elements.
JP31897491A 1991-12-03 1991-12-03 Optoelectronic ic and manufacture thereof Pending JPH05160384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31897491A JPH05160384A (en) 1991-12-03 1991-12-03 Optoelectronic ic and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31897491A JPH05160384A (en) 1991-12-03 1991-12-03 Optoelectronic ic and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05160384A true JPH05160384A (en) 1993-06-25

Family

ID=18105077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31897491A Pending JPH05160384A (en) 1991-12-03 1991-12-03 Optoelectronic ic and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05160384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030645A3 (en) * 2008-09-10 2010-06-03 Varian Semiconductor Equipment Associates, Inc. Techniques for manufacturing solar cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030645A3 (en) * 2008-09-10 2010-06-03 Varian Semiconductor Equipment Associates, Inc. Techniques for manufacturing solar cells

Similar Documents

Publication Publication Date Title
KR100487224B1 (en) Vertical cavity surface emitting laser and method for fabricating the same
US5160492A (en) Buried isolation using ion implantation and subsequent epitaxial growth
KR100255689B1 (en) Semiconductor laser device and its manufacturing method
JPH021327B2 (en)
CN111146689A (en) FP (Fabry-Perot) cavity GaN-based laser and manufacturing method thereof
US20020185700A1 (en) High-gain photodetector of semiconductor material and manufacturing process thereof
EP0177246B1 (en) Heterojunction bipolar transistor and method of manufacturing the same
JPH04234130A (en) Manufacture of self-aligned heterojunction bipolar transistor
JP2710171B2 (en) Surface input / output photoelectric fusion device
US6654396B1 (en) Semiconductor laser device and method for fabricating thereof
JPH05160384A (en) Optoelectronic ic and manufacture thereof
US6800531B2 (en) Method of fabricating a bipolar transistor
US5105234A (en) Electroluminescent diode having a low capacitance
KR920008124B1 (en) Manufacturing method of semiconductor device containing inp
JPH06188404A (en) Load resistor integration type semiconductor light function element
US6063644A (en) Light-emitting element and array with etched surface, and fabrication method thereof
EP0433991B1 (en) Fabrication process of laser structures with lateral confinement at very low threshold current
JPH04237135A (en) Semiconductor laminated layer structure
CN104600565B (en) A kind of gallium arsenide laser with low electronics leakage and preparation method thereof
KR100672553B1 (en) Nitride light emitting device and method for fabricating the same
JP2000022203A (en) Light emitting diode
JPH04504187A (en) semiconductor light emitting device
JP2022181359A (en) Vertical resonance type surface emission laser
CN115425518A (en) Semiconductor laser and optical device
JPS6279686A (en) Semiconductor laser and manufacture of the same