JPH0515996Y2 - - Google Patents

Info

Publication number
JPH0515996Y2
JPH0515996Y2 JP1989042632U JP4263289U JPH0515996Y2 JP H0515996 Y2 JPH0515996 Y2 JP H0515996Y2 JP 1989042632 U JP1989042632 U JP 1989042632U JP 4263289 U JP4263289 U JP 4263289U JP H0515996 Y2 JPH0515996 Y2 JP H0515996Y2
Authority
JP
Japan
Prior art keywords
water
ionization
electrolytic
adsorption tank
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989042632U
Other languages
Japanese (ja)
Other versions
JPH02133495U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1989042632U priority Critical patent/JPH0515996Y2/ja
Publication of JPH02133495U publication Critical patent/JPH02133495U/ja
Application granted granted Critical
Publication of JPH0515996Y2 publication Critical patent/JPH0515996Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【考案の詳細な説明】 『産業上の利用分野』 本考案は水のイオン化装置に関するもので、さ
らに詳しくは、水中に設けられた一対の電極板に
直流電圧を印加して、水を酸性イオン水とアルカ
リ性イオン水とに分離する水のイオン化装置の改
良に関するものである。
[Detailed description of the invention] "Field of industrial application" This invention relates to a water ionization device. The present invention relates to an improvement in a water ionization device that separates water and alkaline ionized water.

『従来の技術』 飲料水は通常中性であるが、負イオンの多い弱
アルカリ性イオン水を飲料とすると、中性水に比
べて胃等の粘膜への親和性がよく、また正イオン
の多い弱酸性イオン水は洗浄能力が強く肌を引き
締める作用があるとされている。
``Conventional technology'' Drinking water is usually neutral, but if weakly alkaline ionized water containing many negative ions is used as a beverage, it has a better affinity for mucous membranes such as the stomach than neutral water, and also contains many positive ions. Weakly acidic ionized water has strong cleaning ability and is said to have a skin tightening effect.

従来、上記のごときイオン水を得る装置として
は、通常第3図に示すごとく、処理槽1の前段に
活性炭等の吸着剤24を充填した吸着槽20を設
け、該吸着槽20を通過した原料水を処理槽1に
導入するようになしている。
Conventionally, as shown in FIG. 3, an apparatus for obtaining the above-mentioned ionized water is usually provided with an adsorption tank 20 filled with an adsorbent 24 such as activated carbon at the front stage of a treatment tank 1, and the raw material passing through the adsorption tank 20 is Water is introduced into the treatment tank 1.

すなわち、この種水のイオン化装置の原料水に
水道水を使用すると、現在水道水として家庭に供
給される水には塩素が殺菌剤として含まれてお
り、この塩素は水中の有機物と化合して有毒なト
リハロメタンを生成することが日本のみならず米
国においても公式機関より発表されており、塩素
と塩素化合物(以下、単に塩素等という)を飲用
前に除去することが望ましいとされている。
In other words, when tap water is used as the raw material for this type of water ionization device, the water currently supplied to households as tap water contains chlorine as a disinfectant, and this chlorine combines with organic matter in the water. It has been announced by official organizations not only in Japan but also in the United States that toxic trihalomethanes are produced, and it is desirable to remove chlorine and chlorine compounds (hereinafter simply referred to as chlorine, etc.) before drinking.

また、上記水中に混入した塩素は、イオン化電
極5,6の腐蝕の原因ともなるため、原料水をイ
オン化する前段で活性炭等の吸着剤を使用してこ
れら塩素等を吸着除去するのが通常である。
In addition, since chlorine mixed into the water can cause corrosion of the ionization electrodes 5 and 6, it is usual to adsorb and remove these chlorine using an adsorbent such as activated carbon before ionizing the raw water. be.

『考案が解決しようとする問題点』 しかし、上記従来装置においては、塩素等の吸
着除去の目的は充分に認められるも、吸着槽20
内においてはその前半部位で殺菌剤である塩素の
大半が吸着剤24により吸着され、該吸着槽20
内の後半部においては水中の雑菌の繁殖が発生し
やすくなるという欠点を有しており、これを防止
する適当な方法が無いとされている。
``Problems to be solved by the invention'' However, although the purpose of adsorption and removal of chlorine, etc. is fully recognized in the above-mentioned conventional device, the adsorption tank 2
Most of the chlorine, which is a disinfectant, is adsorbed by the adsorbent 24 in the front half of the adsorption tank 20.
The disadvantage is that bacteria in the water are likely to breed in the latter half of the water, and there is no suitable method to prevent this.

『目的』 そこで本考案は上記に鑑みなされたもので、水
中に混入する塩素等を吸着剤によつて吸着除去し
ても、効果的に雑菌の繁殖を防ぐことができる水
のイオン化装置を提供することを目的としたもの
である。
``Purpose'' The present invention was developed in view of the above, and provides a water ionization device that can effectively prevent the growth of bacteria even when chlorine, etc. mixed in water is adsorbed and removed using an adsorbent. It is intended to.

『問題点を解決するための手段』 上記の目的に沿い、先述実用新案登録請求の範
囲を要旨とする本考案の構成は前述問題点を解決
するために、処理槽1の水中に設けられた一対の
イオン化電極板5,6に直流電圧を印加して、原
料水を酸性イオン水とアルカリ性イオン水とに分
離する水のイオン化装置において、 上記処理槽1より上流部には活性炭等の吸着剤
24を充填した吸着槽20を設けると共に、固体
電解質膜の33の両面に一対の電解電極31,3
2を重ね正極側電解電極31を水に接触させ、両
電解電極31,32に直流電圧を印加することで
水を電気分解して酸素と少量のオゾンを発生せし
める電気分解室Eを設け、 上記イオン化電極板5,6と電解電極31,3
2とは、直流電源7の開閉及び増減を行なう電源
制御部25の出力端に並列に連結したことを特徴
とする技術的手段を講じたものである。
``Means for Solving the Problems'' In line with the above-mentioned purpose, the structure of the present invention, whose gist is the scope of the above-mentioned utility model registration claims, is that in order to solve the above-mentioned problems, In a water ionization device that separates raw water into acidic ionized water and alkaline ionized water by applying a DC voltage to a pair of ionization electrode plates 5 and 6, an adsorbent such as activated carbon is provided in the upstream part of the treatment tank 1. A pair of electrolytic electrodes 31, 3 are provided on both sides of the solid electrolyte membrane 33.
An electrolysis chamber E is provided in which the positive electrolytic electrode 31 is placed in contact with water and a DC voltage is applied to both electrolytic electrodes 31 and 32 to electrolyze water and generate oxygen and a small amount of ozone. Ionization electrode plates 5, 6 and electrolytic electrodes 31, 3
No. 2 is a technical means characterized in that it is connected in parallel to the output end of a power supply control section 25 that controls opening/closing and increasing/decreasing of the DC power supply 7.

『作用』 それ故、本考案水のイオン化装置は、電気分解
室Eを吸着槽20に対して上流側または下流側、
さらには吸着槽20の途中に配設した場合で次の
ように作用する。
"Function" Therefore, the water ionization device of the present invention has the electrolytic chamber E located upstream or downstream with respect to the adsorption tank 20.
Furthermore, when it is disposed in the middle of the adsorption tank 20, it works as follows.

先ず、図示実施例のごとく電気分解室Eを吸着
槽20の上流側に配設した場合であるが、この場
合は、電気分解室E内で酸素及びオゾンは気泡と
なつて原料水中に発生し、この気泡が混入した原
料水が吸着槽20内に流入する、そして、原料水
中の塩素等は吸着剤24に吸着される。この際、
同時にオゾンの一部は吸着剤24に接触して分解
し酸素となるが、吸着剤24が湿潤していると気
相のオゾンは直接吸着剤24と接触する機会が少
なく、多くは分解されることなく吸着槽20の後
半部位まで通過する。そして、オゾンは強力な酸
化力を有するため、塩素が吸着された吸着剤24
の後半部位では該塩素にかわつて殺菌剤として作
用する。
First, as in the illustrated embodiment, the electrolysis chamber E is arranged upstream of the adsorption tank 20. In this case, oxygen and ozone are generated as bubbles in the raw material water in the electrolysis chamber E. The raw water mixed with air bubbles flows into the adsorption tank 20, and chlorine, etc. in the raw water is adsorbed by the adsorbent 24. On this occasion,
At the same time, some of the ozone comes into contact with the adsorbent 24 and decomposes into oxygen, but if the adsorbent 24 is wet, the ozone in the gas phase has less opportunity to directly contact the adsorbent 24, and most of it is decomposed. It passes through to the latter half of the adsorption tank 20 without any trouble. Since ozone has strong oxidizing power, the adsorbent 24 on which chlorine is adsorbed is
In the second half, it acts as a disinfectant instead of the chlorine.

次に、吸着槽20の途中に電気分解室Eを配設
した場合、すなわち、吸着槽20を電気分解室E
の下流側と上流側とに一対配設する場合である
が、この場合は、上流側の吸着槽20では塩素等
は完全には除去されず、残存した塩素等が下流側
の吸着槽20で吸着されるようになしておくこと
で、該下流側の吸着槽20では塩素濃度は極端に
低いがオゾンが殺菌剤となり雑菌の繁殖を防ぐよ
うに作用する。
Next, when the electrolysis chamber E is arranged in the middle of the adsorption tank 20, that is, the adsorption tank 20 is placed in the electrolysis chamber E.
In this case, chlorine, etc. is not completely removed in the upstream adsorption tank 20, and the remaining chlorine, etc. is disposed in the downstream adsorption tank 20. By allowing ozone to be adsorbed, although the chlorine concentration is extremely low in the adsorption tank 20 on the downstream side, ozone acts as a disinfectant and prevents the growth of bacteria.

また、吸着槽20の下流側に電気分解室Eを配
設した場合は、吸着槽20内での雑菌の繁殖は防
止し得ないが、この吸着槽20を出て処理槽1に
流入するまでの間に雑菌はオゾンによつて殺菌さ
れるという作用を呈するものである。
Furthermore, if the electrolysis chamber E is arranged downstream of the adsorption tank 20, the proliferation of various bacteria within the adsorption tank 20 cannot be prevented, but until it leaves the adsorption tank 20 and flows into the treatment tank 1. During this time, ozone exhibits the effect of sterilizing bacteria.

なお、原料水に溶解したオゾンは、イオン化電
極5,6の放電界の影響を受けると酸素に分解さ
れる作用を呈することが認められた。
It has been found that ozone dissolved in the raw water exhibits the effect of being decomposed into oxygen when affected by the discharge field of the ionizing electrodes 5 and 6.

また、本考案の電源制御部25は、直流電源の
増減を行なうようになしてあり、直流電源を増
す、言いかえるとイオン化電極5,6への印加電
圧を高くするのは、原料水の供送量を増した場合
にも所定のイオン化を行なうためであることは無
論であるが、この際に同時に電解電極31,32
への印加電圧をも高め発生オゾン量を増すこと
で、単位流量宛のオゾン混入量を略均一化するよ
う作用するものである。
Further, the power supply control unit 25 of the present invention is configured to increase or decrease the DC power supply, and increasing the DC power supply, in other words, increasing the voltage applied to the ionization electrodes 5 and 6 is performed when the raw water is supplied. Needless to say, this is to perform the prescribed ionization even when the feeding rate is increased, but at the same time, the electrolytic electrodes 31 and 32 are
By increasing the voltage applied to the pump and increasing the amount of ozone generated, the amount of ozone mixed in per unit flow rate is made approximately uniform.

『実施例』 次に、本考案の実施例を添附図面に従つて説明
すれば以下の通りである。
``Example'' Next, an example of the present invention will be described below with reference to the accompanying drawings.

図中、1は容器状に形成された処理槽で、この
処理槽1内には一対のイオン化電極板5,6を収
納してある。このイオン化電極板5,6は、従来
は第3図に示すごとく、処理槽1内を合成樹脂不
織布等からなる半通水性膜10で、正極室A′と
負極室B′に仕切り、この半通水性膜10の両側
に所定の距離をおいて対設され、該半通水性膜1
0がイオン化した水を分けるようになしており、
本考案もこの方式を採用してもよいが、図示実施
例では半通水性膜10を省略し正極側イオン化電
極板5と負極極側イオン化電極板6とを直接対設
して、処理槽1内を正極板背面室Aと負極板背面
室Bと電極間隙室Cとに仕切つてある。
In the figure, reference numeral 1 denotes a processing tank formed in the shape of a container, and a pair of ionization electrode plates 5 and 6 are housed within this processing tank 1. Conventionally, the ionizing electrode plates 5 and 6 are constructed by partitioning the inside of the treatment tank 1 into a positive electrode chamber A' and a negative electrode chamber B' with a semi-water-permeable membrane 10 made of synthetic resin non-woven fabric, etc., as shown in FIG. The semi-water-permeable membrane 1 is provided oppositely at a predetermined distance on both sides of the water-permeable membrane 10.
0 separates ionized water,
The present invention may also adopt this method, but in the illustrated embodiment, the semi-water permeable membrane 10 is omitted, and the positive ionizing electrode plate 5 and the negative ionizing electrode plate 6 are directly opposed to each other, and the processing tank 1 is The inside is partitioned into a positive electrode plate rear chamber A, a negative electrode plate rear chamber B, and an electrode gap chamber C.

上記正極側イオン化電極板5と負極側イオン化
電極板6とは導電性板材であればその材質は何を
使用してもよいが、イオン化水は飲料水として使
用するため耐錆性を有したもの、また放電損耗が
少ないものが望ましく、通常チタン等が使用され
る。なお、この正極側イオン化電極板5と負極側
イオン化電極板6とは通常所定の間隙を有して平
行に配設されるが、上流側と下流側等でその間隙
に多少の変化を持たせても差し支えはない。
The positive ionized electrode plate 5 and the negative ionized electrode plate 6 may be made of any conductive material, but since the ionized water is used as drinking water, it must be rust resistant. Also, it is desirable that the material has little discharge wear and tear, and titanium or the like is usually used. Note that the positive ionizing electrode plate 5 and the negative ionizing electrode plate 6 are normally arranged in parallel with a predetermined gap, but the gap may vary slightly between the upstream and downstream sides. There is no problem.

そして、上記正極側イオン化電極板5と負極側
イオン化電極板6とには多数の通孔8,8,8…
…を夫々開穿してある。この通孔8,8,8……
は図示例では円形孔となしたが、この通孔8を設
けた目的は、上記した半通水性膜10を省略しか
わりに、正極側イオン化電極板5と負極側イオン
化電極板6とにこの半通水性膜10の機能をはた
させるもので、電極間隙室Cと正極板背面室A及
び電極間隙室Cと負極板背面室Bとを連通し、か
つ、正極側イオン化電極板5と負極側イオン化電
極板6とに多くの放電界が集中する角部を設ける
ことであるから、その形状は特に限定する必要性
はなく、各種形状の小孔やスリツト等に変えても
よい。
The positive ionizing electrode plate 5 and the negative ionizing electrode plate 6 have a large number of through holes 8, 8, 8...
Each hole has been opened. This through hole 8, 8, 8...
is a circular hole in the illustrated example, but the purpose of providing this hole 8 is to omit the above-mentioned semi-water permeable membrane 10, and instead to provide this hole in the positive ionizing electrode plate 5 and the negative ionizing electrode plate 6. It serves the function of the semi-water permeable membrane 10, and communicates between the electrode gap chamber C and the positive electrode plate rear chamber A, and between the electrode gap chamber C and the negative electrode plate rear chamber B, and also connects the positive electrode side ionizing electrode plate 5 with the negative electrode plate. Since a corner portion is provided on the side ionization electrode plate 6 where a large amount of the discharge field is concentrated, there is no need to limit its shape in particular, and it may be changed to small holes, slits, etc. of various shapes.

そして、上記処理槽1の一端側には電極間隙室
Cに注水する注水口2を、他端側には正極板背面
室Aに連通する第一排水口3と負極板背面室Bに
連通する第二排水口4とを設けてなる。すなわ
ち、原料水Pは処理槽1の一端から電極間隙室C
内に注水され、一部は正極側イオン化電極板5の
通孔8を通つて正極板背面室A内に他の一部は負
極側イオン化電極板6の通孔8を通つて負極板背
面室B内に流入するようになしてあり、さらに、
正極板背面室A及び負極板背面室B内に流入した
水は処理槽1の他端に設けた第一排水口3と第二
排水口4とから流出するようになしてあり、か
つ、原料水Pが上記通孔8を通る際には必ず集中
放電界9を横切つて強力にイオン化されるように
なしてある。
One end of the treatment tank 1 has a water inlet 2 for injecting water into the electrode gap chamber C, and the other end has a first drain port 3 communicating with the positive electrode plate rear chamber A and the negative electrode plate rear chamber B. A second drain port 4 is provided. That is, the raw water P flows from one end of the treatment tank 1 to the electrode gap chamber C.
Some of the water is injected into the back chamber A of the positive electrode plate through the through hole 8 of the ionizing electrode plate 5 on the positive electrode side, and the other part is injected into the rear chamber A of the negative electrode plate through the through hole 8 of the ionizing electrode plate 6 on the negative electrode side. It is arranged so that it flows into B, and furthermore,
The water that has flowed into the positive electrode plate back chamber A and the negative electrode plate back chamber B is configured to flow out from a first drain port 3 and a second drain port 4 provided at the other end of the treatment tank 1. When the water P passes through the through hole 8, it always crosses the concentrated discharge field 9 and is strongly ionized.

また、上記処理槽1より上流部には活性炭等の
吸着剤24を充填した吸着槽20を設けると共
に、固体電解質膜の33の両面に一対の電解電極
31,32を重ね正極側電解電極31を水に接触
させ、両電解電極31,32に直流電圧を印加す
ることで水を電気分解して酸素と少量のオゾンを
発生せしめる電気分解室Eを設けてある。
Further, an adsorption tank 20 filled with an adsorbent 24 such as activated carbon is provided upstream of the processing tank 1, and a pair of electrolytic electrodes 31 and 32 are stacked on both sides of the solid electrolyte membrane 33 to form a positive electrolytic electrode 31. An electrolysis chamber E is provided in which water is brought into contact with water and a DC voltage is applied to both electrolytic electrodes 31 and 32 to electrolyze water and generate oxygen and a small amount of ozone.

この電気分解室Eは図示例では吸着槽20の途
中を網23で区切つて吸着槽20の上流部内に形
成してある。すなわち、吸着槽20の一端には原
料水Pの流入口21が他端には流出口22が設け
られ、流入口21より吸着槽20内に流入した原
料水Pはこの吸着槽20内に充満した後、流出口
22から流失し流路26を通つて前述処理槽1の
注水口2へ流れるようになしてあり、この吸着槽
20を網23で仕切つて該網23の一面側に吸着
剤24を充填し、多面側は空部(原料水が充填さ
れる)状の電気分解室Eを形成している。しか
し、この電気分解室Eは無論、独立して設けるよ
うになしてもよく、さらには、処理槽1より上流
部であれば吸着槽20の上流側でも下流側でも、
さらには吸着槽20の途中に介在するようになし
てもよい。また、電気分解室Eに配設する電解電
極31,32は、正極側の電解電極31に二酸化
鉛触媒または白金等の貴金属を使用し、固体電解
質膜33を介して外気側に同じく二酸化鉛触媒ま
たは白金等の貴金属を使用た負極側の電解電極3
2を重ね合わせてある。
In the illustrated example, this electrolysis chamber E is formed in the upstream portion of the adsorption tank 20 by dividing the middle of the adsorption tank 20 with a mesh 23. That is, an inlet 21 for raw water P is provided at one end of the adsorption tank 20, and an outlet 22 is provided at the other end, and the raw water P that flows into the adsorption tank 20 from the inlet 21 fills the adsorption tank 20. After that, the water flows from the outlet 22 through the channel 26 to the water inlet 2 of the treatment tank 1.The adsorption tank 20 is partitioned with a net 23, and the adsorbent is placed on one side of the net 23. 24, and the multi-sided side forms an electrolysis chamber E in the form of a void (filled with raw water). However, this electrolysis chamber E may of course be provided independently, and furthermore, as long as it is upstream of the treatment tank 1, it can be placed on the upstream side or downstream side of the adsorption tank 20.
Furthermore, it may be interposed in the middle of the adsorption tank 20. In addition, the electrolytic electrodes 31 and 32 disposed in the electrolysis chamber E use a lead dioxide catalyst or a noble metal such as platinum for the electrolytic electrode 31 on the positive electrode side, and a lead dioxide catalyst is also used on the outside air side via the solid electrolyte membrane 33. Or the electrolytic electrode 3 on the negative electrode side using noble metals such as platinum
2 are superimposed.

そして、上記イオン化電極板5,6と電解電極
31,32とは、直流電源7の開閉及び増減を行
なう電源制御部25の出力端に並列に連結してな
る。この直流電源7は商用交流電源に連結され直
流電源を得る従来公知なものが使用され、電源制
御部25には開閉スイツチと可変変圧器を収納し
てなるが、この直流電源7と電源制御部25とは
説明の便宜上別個に図示したもので、電源の開閉
と直流電源の変圧が行なえるものであれば従来公
知なものが使用できることは無論である。
The ionizing electrode plates 5 and 6 and the electrolytic electrodes 31 and 32 are connected in parallel to the output end of a power supply control section 25 that controls opening/closing and increasing/decreasing of the DC power supply 7. This DC power supply 7 is a conventionally known one that is connected to a commercial AC power supply to obtain a DC power, and the power supply control section 25 houses an on-off switch and a variable transformer. 25 is shown separately for convenience of explanation, and it goes without saying that any conventionally known device can be used as long as it can open/close the power source and transform the DC power source.

上記第1図及び第2図の実施例において、正極
側イオン化電極板5と負極側イオン化電極板6と
は、面積30cm2・厚み1mで、直径3mmの通孔8を
7mmピツチ設けたチタン電極を使用し、該正極側
イオン化電極板5と負極側イオン化電極板6との
間隙は5mmとして、また、固体電解質膜は厚み70
ミクロンで直径2cmのカチオン交換膜を使用し正
極側電解電極31に通水性の二酸化鉛、負極側の
電解電極32に白金網を使用し、電源制御部25
よりの出力を7.5Vとなしたところ、イオン化電
極5,6に2アンペアの電流が流れ、電解電極3
1,33には0.5アンペアの電流が流れ、150mg/
時間のオゾンが発生した。そこで、この状態で10
分間通水(6/分)・通電した後、8時間運転
を休止して吸着剤24として使用した活性炭の最
下流側部位のものにおける大腸菌は陰性を示した
が、第3図例では大腸菌100ケ/ml、シユードモ
ナス菌700ケ/mlが発見され、この第3図例で通
水を再開して1分後にはこれら雑菌の一部は原料
水とともに流出して半減した。
In the embodiments shown in FIGS. 1 and 2 above, the positive ionization electrode plate 5 and the negative ionization electrode plate 6 are titanium electrodes with an area of 30 cm 2 and a thickness of 1 m, with through holes 8 of 3 mm in diameter provided at a pitch of 7 mm. The gap between the positive ionizing electrode plate 5 and the negative ionizing electrode plate 6 was 5 mm, and the solid electrolyte membrane had a thickness of 70 mm.
A cation exchange membrane with a micron diameter of 2 cm is used, water-permeable lead dioxide is used for the positive electrolytic electrode 31, platinum mesh is used for the negative electrolytic electrode 32, and the power supply control unit 25
When the output of
A current of 0.5 ampere flows through 1 and 33, and 150 mg/
Time ozone occurred. So, in this state, 10
After passing water (6/min) and electricity for 8 hours, the operation was stopped for 8 hours, and the most downstream part of the activated carbon used as the adsorbent 24 showed negative results for E. coli, but in the example shown in Fig. 3, E. coli 100 700 cases/ml and Pseudomonas bacteria were found, and one minute after water flow was resumed in the example shown in Fig. 3, some of these bacteria flowed out together with the raw water and were reduced by half.

『考案の効果』 本考案は上記のごときで、処理槽1の上流部に
吸着槽20と電気分解室Eを設けたため、処理槽
1内に流入する原料水Pは、塩素等が吸着除去さ
れ、安全でイオン化電極の電極5,6の腐蝕が防
止された水のイオン化装置が提供できるものであ
る。
``Effect of the invention'' The invention is as described above, and since the adsorption tank 20 and the electrolysis chamber E are provided in the upstream part of the treatment tank 1, the raw water P flowing into the treatment tank 1 is free from chlorine etc. by adsorption. Therefore, it is possible to provide a water ionization device that is safe and in which corrosion of the ionization electrodes 5 and 6 is prevented.

また、本考案は原料水P中にオゾンを混入する
ため、吸着槽20内に付着増殖する雑菌を、分解
すると無害な酸素となるオゾンで殺菌しているた
め、塩素を吸着除去しても雑菌による汚染のない
イオン化水を得ることができる水のイオン化装置
が提供できるものである。
In addition, since this invention mixes ozone into the raw water P, the bacteria that adhere and proliferate in the adsorption tank 20 are sterilized with ozone, which becomes harmless oxygen when decomposed, so even if chlorine is adsorbed and removed, the bacteria It is possible to provide a water ionization device that can obtain ionized water free from contamination.

さらにまた、本考案はイオン化に使用する直流
電源の一部を水の電気分解、すなわちオゾン発生
に使用しており、電源制御部25を兼用している
ため装置が小型で簡易ですみ、かつ、この兼用は
イオン化電極5,6への荷電電圧を高めて大流量
のイオン化水を得る場合は、電解電極への荷電電
圧も同時に高められるため原料水の流量に対応し
たオゾン量を発生でき、経済的で効率的な殺菌が
できる水のイオン化装置が提供できるものであ
る。
Furthermore, the present invention uses a part of the DC power supply used for ionization for water electrolysis, that is, ozone generation, and also serves as the power supply control section 25, so the device can be small and simple, and This dual purpose is that when the charging voltage to the ionization electrodes 5 and 6 is increased to obtain a large flow of ionized water, the charging voltage to the electrolytic electrode is also increased at the same time, making it possible to generate an amount of ozone corresponding to the flow rate of raw water, making it economical. This provides a water ionization device that can sterilize water in a targeted and efficient manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案水のイオン化装置の一実施例を
示す一部断面正面図、第2図は要部断面図、第3
図は従来例の一部断面正面図である。 1……処理槽、2……注水口、3……第一排水
口、4……第二排水口、5……正極側イオン化電
極、6……負極側側イオン化電極、7……電源装
置、8……通孔、20……吸着槽、24……吸着
剤、25……電源制御部、31,33……電解電
極、E……電気分解室。
Figure 1 is a partially sectional front view showing an embodiment of the water ionization device of the present invention, Figure 2 is a sectional view of the main part, and Figure 3 is a sectional view of the main part.
The figure is a partially sectional front view of a conventional example. 1... Treatment tank, 2... Water inlet, 3... First drain port, 4... Second drain port, 5... Positive electrode side ionization electrode, 6... Negative electrode side ionization electrode, 7... Power supply device , 8... Through hole, 20... Adsorption tank, 24... Adsorbent, 25... Power supply control section, 31, 33... Electrolytic electrode, E... Electrolysis chamber.

Claims (1)

【実用新案登録請求の範囲】 処理槽1の水中に設けられた一対のイオン化電
極板5,6に直流電圧を印加して、原料水を酸性
イオン水とアルカリ性イオン水とに分離する水の
イオン化装置において、 上記処理槽1より上流部には活性炭等の吸着剤
24を充填した吸着槽20を設けると共に、固体
電解質膜の33の両面に一対の電解電極31,3
2を重ね正極側電解電極31を水に接触させ、両
電解電極31,32に直流電圧を印加することで
水を電気分解して酸素と少量のオゾンを発生せし
める電気分解室Eを設け、 上記イオン化電極板5,6と電解電極31,3
2とは、直流電源7の開閉及び増減を行なう電源
制御部25の出力端に並列に連結したことを特徴
とする水のイオン化装置。
[Claims for Utility Model Registration] Water ionization in which raw water is separated into acidic ionized water and alkaline ionized water by applying a DC voltage to a pair of ionizing electrode plates 5 and 6 provided in water in a treatment tank 1. In the apparatus, an adsorption tank 20 filled with an adsorbent 24 such as activated carbon is provided upstream of the processing tank 1, and a pair of electrolytic electrodes 31, 3 are provided on both sides of the solid electrolyte membrane 33.
An electrolysis chamber E is provided in which the positive electrolytic electrode 31 is placed in contact with water and a DC voltage is applied to both electrolytic electrodes 31 and 32 to electrolyze water and generate oxygen and a small amount of ozone. Ionization electrode plates 5, 6 and electrolytic electrodes 31, 3
Reference numeral 2 denotes a water ionization device characterized in that it is connected in parallel to the output end of a power supply control section 25 that opens/closes and increases/decreases the DC power supply 7.
JP1989042632U 1989-04-12 1989-04-12 Expired - Lifetime JPH0515996Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989042632U JPH0515996Y2 (en) 1989-04-12 1989-04-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989042632U JPH0515996Y2 (en) 1989-04-12 1989-04-12

Publications (2)

Publication Number Publication Date
JPH02133495U JPH02133495U (en) 1990-11-06
JPH0515996Y2 true JPH0515996Y2 (en) 1993-04-27

Family

ID=31554344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989042632U Expired - Lifetime JPH0515996Y2 (en) 1989-04-12 1989-04-12

Country Status (1)

Country Link
JP (1) JPH0515996Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763698B2 (en) * 1992-01-28 1995-07-12 日本電池株式会社 Electrolytic tank for ion water generator
JP5295485B2 (en) * 2006-02-01 2013-09-18 株式会社栗田製作所 Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642388B2 (en) * 1974-07-31 1981-10-05
JPS63119895A (en) * 1985-08-12 1988-05-24 Makiuchi Yutaka Cleaning device for drinking water producing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642388U (en) * 1979-09-05 1981-04-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642388B2 (en) * 1974-07-31 1981-10-05
JPS63119895A (en) * 1985-08-12 1988-05-24 Makiuchi Yutaka Cleaning device for drinking water producing apparatus

Also Published As

Publication number Publication date
JPH02133495U (en) 1990-11-06

Similar Documents

Publication Publication Date Title
US7749370B2 (en) Manufacturing method of oxidative water to be employed for sterilization
JP3612569B2 (en) Low concentration hypochlorous acid-containing strongly acidic sterilizing water, low concentration hypochlorous acid-containing strongly acidic sterilizing water generating method, generating device, and low concentration hypochlorous acid-containing strongly acidic sterilizing water generating and discharging device
JP5295485B2 (en) Liquid plasma type treatment liquid purification method and liquid plasma type treatment liquid purification apparatus
EP0675081B1 (en) Apparatus and method for purification of water
JP6543630B2 (en) CDI water treatment system
JPH05184992A (en) Humidifier
KR100621937B1 (en) Water purifying apparatus having function of electrolytic disinfection and its disinfection method
CN205838732U (en) A kind of High efficiency water purification system
JPH0515996Y2 (en)
JP3458430B2 (en) Water conditioner
WO2008062507A1 (en) Electrolytic hydrogen water production system
KR100988465B1 (en) Water Purifier having Function of Electrolysis Disinfection
JP3477908B2 (en) Ion water generator
JP2002273442A (en) Pure water manufacturing apparatus and pure water manufacturing method
CN211226731U (en) Central water purifying device with antibacterial and fresh-keeping device
CN215479921U (en) Water treatment equipment
JPH04326985A (en) Water purifier
JPS6339689A (en) Device for preparing ph variable-type sterilized ion water
RU2083500C1 (en) Method and apparatus for sorption treatment of water
JPH10314748A (en) Sterilization apparatus
JPH0716570A (en) Ionic water preparation instrument
JP2972054B2 (en) Ion water generator
JPH031077B2 (en)
JPH06328079A (en) Electrolytic ionic water producing device
JP3641754B2 (en) Electrolyzed water generator