JPH0515949B2 - - Google Patents

Info

Publication number
JPH0515949B2
JPH0515949B2 JP61299443A JP29944386A JPH0515949B2 JP H0515949 B2 JPH0515949 B2 JP H0515949B2 JP 61299443 A JP61299443 A JP 61299443A JP 29944386 A JP29944386 A JP 29944386A JP H0515949 B2 JPH0515949 B2 JP H0515949B2
Authority
JP
Japan
Prior art keywords
heat exchanger
auxiliary
heat
bypass circuit
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61299443A
Other languages
Japanese (ja)
Other versions
JPS63150567A (en
Inventor
Koji Murozono
Toshio Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29944386A priority Critical patent/JPS63150567A/en
Publication of JPS63150567A publication Critical patent/JPS63150567A/en
Publication of JPH0515949B2 publication Critical patent/JPH0515949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蓄熱を利用したヒートポンプ式空調
機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump air conditioner that utilizes heat storage.

従来の技術 従来、空気熱源ヒートポンプ式空調機の室外熱
交換器の除霜方法は、大半が四方弁を切換えて冷
房サイクルとし、室外熱交換器を凝縮器、室内熱
交換器を蒸発器とする逆サイクル除霜方式で、こ
の時コールドドラフト防止のために室内フアンを
停止していた。この方式では、基本的に冷凍サイ
クル中の冷媒循環量が少なく圧縮機入力の増加が
それほど期待できないので、除霜時間が長くなる
こと、並びに除霜中の数分間は室内フアンが停止
するので暖房感が欠如し快適性が損なわれるこ
と、さらには除霜運転終了後、四方弁を切換えて
暖房運転に復帰してからも室内熱交換器の温度が
上昇するまでに時間を要するなど使用者からすれ
ば満足できるものではなかつた。
Conventional technology Conventionally, most defrosting methods for outdoor heat exchangers in air source heat pump air conditioners have been to switch a four-way valve to create a cooling cycle, with the outdoor heat exchanger serving as a condenser and the indoor heat exchanger serving as an evaporator. It uses a reverse cycle defrosting method, and the indoor fan was stopped at this time to prevent cold drafts. With this method, the amount of refrigerant circulated during the refrigeration cycle is basically small and it is not possible to expect a significant increase in compressor input, so the defrosting time will be longer, and the indoor fan will stop for several minutes during defrosting, so heating Users complain that the temperature of the indoor heat exchanger takes a long time to rise even after the four-way valve is switched and heating operation is resumed after defrosting operation is completed. If I did that, I would not have been satisfied.

近年、このような欠点を有する逆サイクル除霜
方式にかわつて、バイパス回路等を設けること
で、除霜運転時にも四方弁を暖房サイクルのまま
とし、室内熱交換器および室外熱変換器の両方を
凝縮器として作用させ、若干の暖房能力を維持し
ながら除霜を行なう暖房継続除霜方法が提案され
ている(例えば実開昭60−59042号公報)。
In recent years, in place of the reverse cycle defrosting system, which has such drawbacks, by installing a bypass circuit, etc., the four-way valve remains in the heating cycle even during defrosting operation, and both the indoor heat exchanger and outdoor heat converter can be operated. A continuous heating defrosting method has been proposed in which defrosting is performed while maintaining a certain heating capacity by using the defrosting device as a condenser (for example, Japanese Utility Model Application No. 60-59042).

以下、図面を参照しながら上記従来のヒートポ
ンプ式空調機について説明する。
The conventional heat pump air conditioner will be described below with reference to the drawings.

第3図は、従来のヒートポンプ式空調機の第1
の例における冷凍サイクル図に示すものである。
同図において、1は容量制御可能な周波数可変圧
縮機(以下単に圧縮機と称す)、2は四方弁、3
は室内熱交換器、4はキヤピラリ、5は室外熱交
換器、6はホツトガスバイパス回路、7は二方
弁、8はバイパスキヤピラリである。また、9は
室外熱交換器温度センサ、10はこのセンサ9か
らの信号を受けて圧縮機1、二方弁7、室内外フ
アン(図示せず)等を制御して室外熱交換器5の
除霜制御コントローラである。ホツトガスバイパ
ス回路6は、圧縮機1の吐出管と室外熱交換器5
の暖房運転時に入口側となる配管とを連結し、途
中に二方弁7とバイパスキヤピラリ8を備えて構
成されている。
Figure 3 shows the first part of a conventional heat pump air conditioner.
This is shown in the refrigeration cycle diagram for this example.
In the figure, 1 is a capacity-controllable frequency variable compressor (hereinafter simply referred to as a compressor), 2 is a four-way valve, and 3
4 is an indoor heat exchanger, 4 is a capillary, 5 is an outdoor heat exchanger, 6 is a hot gas bypass circuit, 7 is a two-way valve, and 8 is a bypass capillary. Further, reference numeral 9 denotes an outdoor heat exchanger temperature sensor, and 10 receives a signal from this sensor 9 to control the compressor 1, two-way valve 7, indoor/outdoor fan (not shown), etc. to control the outdoor heat exchanger 5. It is a defrost control controller. The hot gas bypass circuit 6 connects the discharge pipe of the compressor 1 and the outdoor heat exchanger 5.
The pipe is connected to the pipe that is on the inlet side during heating operation, and is provided with a two-way valve 7 and a bypass capillary 8 in the middle.

通常の暖房運転時には、二方弁7は閉の状態で
暖房サイクルを形成するが、低外気温時に室外熱
交換器温度センサ9からの信号により室外熱交換
器5の着霜を検知すると、除霜制御コントローラ
10より指令を発して圧縮機1の周波数を高め、
圧縮機1の本体温度を上昇させて蓄熱する。そし
て、所定時間経過後、除霜制御コントローラ10
より指令を発して、圧縮機1を最大周波数とし、
二方弁7を開いて高温の吐出ガスの大部分をホツ
トガスバイパス回路6を経て室外熱交換器5の入
口側へ導く。同時に高温の吐出ガスの残りを暖房
運転時と同様に四方弁2、室内熱交換器3、キヤ
ピラリ4と流して若干の暖房運転を継続して行
い、室外熱交換器5の入口でホツトガスバイパス
回路6を通過した冷媒と合流させる。この合流後
の冷媒は、自身のもつ凝縮熱で室外熱交換器5を
除霜した後、四方弁2を経て圧縮機1に戻り、除
霜サイクルを完結する。
During normal heating operation, the two-way valve 7 is closed to form a heating cycle, but when frost is detected on the outdoor heat exchanger 5 by a signal from the outdoor heat exchanger temperature sensor 9 at low outside temperatures, the A command is issued from the frost control controller 10 to increase the frequency of the compressor 1,
The main body temperature of the compressor 1 is increased to store heat. After a predetermined period of time has elapsed, the defrosting control controller 10
issue a command to set the compressor 1 to the maximum frequency,
The two-way valve 7 is opened to direct most of the high temperature discharged gas to the inlet side of the outdoor heat exchanger 5 via the hot gas bypass circuit 6. At the same time, the remainder of the high-temperature discharged gas is passed through the four-way valve 2, indoor heat exchanger 3, and capillary 4 in the same way as during heating operation to continue heating operation slightly, and a hot gas bypass is performed at the inlet of outdoor heat exchanger 5. It is made to merge with the refrigerant that has passed through the circuit 6. After this combined refrigerant defrosts the outdoor heat exchanger 5 with its own heat of condensation, it returns to the compressor 1 via the four-way valve 2 and completes the defrosting cycle.

このように、暖房サイクルのままで除霜を行な
うことができるので、除霜時の快適性の改善を図
ることが可能となつた。
In this way, defrosting can be performed while the heating cycle is still in progress, making it possible to improve comfort during defrosting.

また、第4図は従来のヒートポンプ式空調機の
第2の例における冷凍サイクル図を示す。この例
においては、ホツトガスバイパス回路6のかわり
にキヤピラリ4をバイパスするバイパス回路11
を設けている。そして、バイパス回路11には二
方弁12、逆止弁13の備えている。除霜時に
は、二方弁12を開いてほとんどの冷媒をバイパ
ス回路11を通過させることで、室内熱交換器5
の冷媒圧力を上昇させ、室内熱交換器3および室
外熱交換器5の両方を凝縮器として作用させるこ
とで、第1の例で説明した効果と同様の効果を得
ることが可能である。さらに、蓄熱材を充填した
蓄熱槽を冷媒回路と熱交換的に接続し、暖房運転
時に蓄熱槽に熱に蓄え、除霜運転時に、その熱を
利用して短時間で霜を融かすことができる方式も
提案されている(例えば特公昭54−38737号公
報)。
Moreover, FIG. 4 shows a refrigeration cycle diagram in a second example of a conventional heat pump type air conditioner. In this example, a bypass circuit 11 that bypasses the capillary 4 instead of the hot gas bypass circuit 6 is used.
has been established. The bypass circuit 11 is equipped with a two-way valve 12 and a check valve 13. During defrosting, by opening the two-way valve 12 and letting most of the refrigerant pass through the bypass circuit 11, the indoor heat exchanger 5
By increasing the refrigerant pressure and causing both the indoor heat exchanger 3 and the outdoor heat exchanger 5 to act as condensers, it is possible to obtain the same effect as that described in the first example. Furthermore, by connecting a heat storage tank filled with heat storage material to a refrigerant circuit in a heat exchange manner, the heat is stored in the heat storage tank during heating operation, and during defrosting operation, that heat can be used to melt frost in a short time. A system that can do this has also been proposed (for example, Japanese Patent Publication No. 54-38737).

発明が解決しようとする問題点 しかしながら、上記方法では以下のような問題
点があつた。第5図は、第3図に示す従来のヒー
トポンプ式空調機の第1の例におけるバイパスキ
ヤピラリの絞り量と除霜時間および除霜運転時の
暖房能力との関係を示すものである。同図より明
らかなように、バイパスキヤピラリ8の絞り量を
大きくすれば、除霜運転時に室内熱交換器3を通
過する冷媒の循環量が増加し、圧力も上昇するの
で暖房能力は増加するが、室外熱交換器5を通過
する冷媒の圧力が低下して凝縮能力が減少するの
で、除霜時間が長くなつてしまう。したがつて、
短時間に除霜を終えるためには、暖房能力を大き
くすることはできなかつた。例えば、1馬力クラ
スのヒートポンプ式空調機では、ほとんどのメー
カーが総合電流を20A以下に押えるような制御装
置を設けており、この場合、圧縮機入力のうち冷
媒に与えられる熱量は、発明者らの実験の結果、
最大でも1300Kcal/hである。除霜を5分間で
終えるとすると、この間圧縮機入力より冷媒に与
えられた熱量は108Kcalである。圧縮機重量が10
Kg、比熱が0.1で、圧縮機本体温度が除霜運転中
に30℃降下したとすると、30Kcalの熱量が冷媒
に与えられる。主に、これら2つの熱量の合計
138Kcalの熱が冷媒に与えられる。これに対し
て、着霜量が900gであるとすると、除霜に
72Kcalの熱が用いられ、残りの(138−72)Kcal
の熱が暖房に利用可能である。これは単位時間当
り792Kcal/hであり、この程度の暖房能力で
は、除霜運転時の快適性の低下を十分に押えるこ
とができなかつた。また、圧縮機本体を蓄熱体と
して利用し、乾き度の低い冷媒を吸入して圧縮機
本体の熱を奪つているため、圧縮機信頼性も低か
つた。
Problems to be Solved by the Invention However, the above method has the following problems. FIG. 5 shows the relationship between the throttling amount of the bypass capillary, the defrosting time, and the heating capacity during defrosting operation in the first example of the conventional heat pump air conditioner shown in FIG. As is clear from the figure, if the amount of restriction of the bypass capillary 8 is increased, the amount of refrigerant circulated through the indoor heat exchanger 3 during defrosting operation will increase, and the pressure will also rise, so the heating capacity will increase. However, since the pressure of the refrigerant passing through the outdoor heat exchanger 5 decreases and the condensing capacity decreases, the defrosting time becomes longer. Therefore,
In order to finish defrosting in a short time, it was not possible to increase the heating capacity. For example, most manufacturers of 1-horsepower class heat pump air conditioners are equipped with a control device that keeps the total current below 20A, and in this case, the amount of heat given to the refrigerant out of the compressor input is As a result of the experiment,
The maximum is 1300Kcal/h. Assuming that defrosting is completed in 5 minutes, the amount of heat given to the refrigerant by the compressor input during this time is 108 Kcal. Compressor weight is 10
Kg, specific heat is 0.1, and if the compressor body temperature drops by 30°C during defrosting operation, 30 Kcal of heat will be given to the refrigerant. Mainly, the sum of these two amounts of heat
138Kcal of heat is given to the refrigerant. On the other hand, if the amount of frost is 900g, the defrosting
72 Kcal of heat is used and the remaining (138−72) Kcal
of heat can be used for heating. This was 792 Kcal/h per unit time, and with this level of heating capacity, it was not possible to sufficiently suppress the decrease in comfort during defrosting operation. Furthermore, the reliability of the compressor was low because the compressor body was used as a heat storage body and the refrigerant with low dryness was sucked in to remove heat from the compressor body.

第4図に示す第2の例の場合も、除霜運転時の
暖房能力は低く、第1の例で示したのと同様の問
題点を有していた。さらに、第2の例において室
内機と室外機とを接続配管で結ぶセパレートタイ
プのヒートポンプ式空調機の場合、圧縮機1の周
波数を上昇させて冷媒の循環量を増加させたり、
接続配管を長くしたりすると全冷媒が通過するた
め室内熱交換器3の出口とバイパス回路の入力と
を結ぶ接続配管での圧力損失が増加し、室外熱交
換器5を通過する冷媒の圧力が低下し、凝縮能力
が低下して除霜時間が長くなつてしまつたり、あ
るいは除霜できなくなつてしまうという問題点が
あつた。
The second example shown in FIG. 4 also had a low heating capacity during defrosting operation, and had the same problem as the first example. Furthermore, in the second example, in the case of a separate type heat pump air conditioner that connects the indoor unit and outdoor unit with connection piping, the frequency of the compressor 1 is increased to increase the amount of refrigerant circulation,
If the connecting piping is made longer, all the refrigerant passes through it, so the pressure loss in the connecting piping that connects the outlet of the indoor heat exchanger 3 and the input of the bypass circuit increases, and the pressure of the refrigerant passing through the outdoor heat exchanger 5 increases. There was a problem that the defrosting time became longer due to a decrease in the condensing capacity, or defrosting became impossible.

さらに、蓄熱を利用する方式は、原理的には逆
サイクル除霜方式で、室内熱交換器を蒸発器とし
て作用させて室内より吸熱するかわりに蓄熱され
た熱を取つていた。したがつて、この方式では除
霜時間の短縮および除霜運転時の室内への冷風吹
出しの防止は可能であるが、除霜運転時に室内を
暖房することはできないという問題点があつた。
Furthermore, the method using heat storage is basically a reverse cycle defrosting method, in which the indoor heat exchanger acts as an evaporator and instead of absorbing heat from the room, the stored heat is taken. Therefore, although this method can shorten the defrosting time and prevent cold air from blowing into the room during defrosting operation, it has the problem that it cannot heat the room during defrosting operation.

本発明は上記問題点に鑑み、暖房運転時に蓄熱
材を充填した蓄熱槽に蓄熱し、除霜運転時にこの
熱を利用することで、高い暖房能力を保ちながら
除霜を行ない、かつ圧縮機信頼性の高いヒートポ
ンプ式空調機を提供するものである。
In view of the above problems, the present invention stores heat in a heat storage tank filled with heat storage material during heating operation, and utilizes this heat during defrosting operation, thereby defrosting while maintaining high heating capacity and ensuring compressor reliability. This provides a highly efficient heat pump air conditioner.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポ
ンプ式空調機の冷凍サイクル装置は、圧縮機、四
方弁、室外熱交換器、減圧器、室内熱交換器等を
連結して主冷媒回路を構成し、暖房運転時に高圧
側となる圧縮機から四方弁を経て室内熱交換器に
至る高圧ガス管路と、減圧器から室外熱交換器に
至る低圧管路とを接続する第1補助管路と、前記
高圧ガス管路と室内熱交換器から減圧器に至る高
圧液管路とを接続する第2補助管路と、前記第1
補助管路と前記第2補助管路とを接続する共通補
助管路を設け、前記高圧ガス管路から第1補助管
路、共通補助管路、第2補助管路を経て前記高圧
ガス管路に至る流路にて第1バイパス回路を構成
し、前記高圧液管路から第2補助管路、共通補助
管路、第1補助管路を経て前記低圧管路に至る流
路にて第2バイパス回路を構成し、前記第1補助
管路の第1バイパス回路上に第1開閉弁、前記第
2補助管路の第1バイパス回路上に第2開閉弁、
前記第2補助管路の第2バイパス回路上に第3開
閉弁、前記第1補助管路の第2バイパス回路上に
第4開閉弁をそれぞれ設け、前記第1〜第4開閉
弁の開閉を制御する流路制御手段を設け、内部に
熱交換器を配設し、蓄熱材を充填した蓄熱槽を設
け、前記熱交換器の冷媒流路を前記第3補助管路
の一部となるように構成し、暖房運転時に前記蓄
熱槽に蓄熱する蓄熱暖房時には前記流路制御手段
により前記第1、第2開閉弁を開とし、前記第
3、第4開閉弁を閉とし、前記室外熱交換器の除
霜を行なう除霜運転時には、前記四方弁の流路を
暖房運転のままとし、前記第1、第2開閉弁を閉
とし、前記第3、第4開閉弁を開とする制御を行
なうものである。
Means for Solving the Problems In order to solve the above problems, the refrigeration cycle device for a heat pump air conditioner of the present invention connects a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, an indoor heat exchanger, etc. It forms the main refrigerant circuit, and connects the high-pressure gas pipe that runs from the compressor, which is on the high-pressure side during heating operation, to the indoor heat exchanger via a four-way valve, and the low-pressure pipe that runs from the pressure reducer to the outdoor heat exchanger. a second auxiliary pipe line connecting the high pressure gas pipe line and the high pressure liquid pipe line leading from the indoor heat exchanger to the pressure reducer;
A common auxiliary pipeline is provided to connect the auxiliary pipeline and the second auxiliary pipeline, and the high-pressure gas pipeline is connected to the high-pressure gas pipeline via the first auxiliary pipeline, the common auxiliary pipeline, and the second auxiliary pipeline. A first bypass circuit is formed in the flow path leading to the high-pressure liquid pipe, and a second configuring a bypass circuit, a first on-off valve on the first bypass circuit of the first auxiliary conduit, a second on-off valve on the first bypass circuit of the second auxiliary conduit,
A third on-off valve is provided on the second bypass circuit of the second auxiliary pipe, and a fourth on-off valve is provided on the second bypass circuit of the first auxiliary pipe, and the first to fourth on-off valves are opened and closed. A heat exchanger is disposed therein, a heat storage tank filled with a heat storage material is provided, and the refrigerant flow path of the heat exchanger becomes a part of the third auxiliary pipe. During thermal storage heating in which heat is stored in the heat storage tank during heating operation, the flow path control means opens the first and second on-off valves, closes the third and fourth on-off valves, and performs the outdoor heat exchange. During the defrosting operation to defrost the container, the flow path of the four-way valve is kept in the heating operation, the first and second on-off valves are closed, and the third and fourth on-off valves are opened. It is something to do.

作 用 本発明は、上記手段により次のような作用を有
する。
Effects The present invention has the following effects through the above means.

すなわち、暖房運転時に第1バイパス回路に冷
媒を流して蓄熱槽内の蓄熱材と熱交換を行なつて
蓄熱し、除霜運転時に第2バイパス回路に冷媒を
流して蓄熱材より熱を奪うことで、高い暖房能力
を保ちながら除霜運転を行なうことが可能であ
る。また、第1バイパス回路および第2バイパス
回路と蓄熱槽との熱交換部を1つにすることで蓄
熱槽を小型軽量とし、かつ効率的に熱交換を行な
うことが可能である。また、圧縮機吸入冷媒の乾
き度を高く保つことができるので、圧縮機信頼性
も高い。さらに、セパレートタイプのヒートポン
プ式空調機の場合で接続配管での圧力損失が大き
く、室外熱交換器を通過する冷媒の圧力が低くて
も、過熱域にある冷媒を利用できるので除霜可能
である。
That is, during heating operation, a refrigerant is flowed through the first bypass circuit to exchange heat with the heat storage material in the heat storage tank to store heat, and during defrosting operation, the refrigerant is flowed through the second bypass circuit to remove heat from the heat storage material. This makes it possible to perform defrosting operation while maintaining high heating capacity. Moreover, by integrating the heat exchange parts between the first bypass circuit, the second bypass circuit, and the heat storage tank, it is possible to make the heat storage tank smaller and lighter, and to perform heat exchange efficiently. Furthermore, since the dryness of the refrigerant sucked into the compressor can be kept high, the reliability of the compressor is also high. Furthermore, in the case of separate type heat pump air conditioners, there is a large pressure loss in the connecting piping, and even if the pressure of the refrigerant passing through the outdoor heat exchanger is low, defrosting is possible because the refrigerant in the superheat range can be used. .

実施例 以下、本発明をその一実施例を示す添付図面の
第1図および第2図を参考に説明する。なお、本
実施例を説明するに当り、第3図および第4図に
示す従来のものと同一の機能をもつものには同一
の番号を付して説明を省略する。
Embodiment Hereinafter, the present invention will be described with reference to FIGS. 1 and 2 of the accompanying drawings showing one embodiment thereof. In describing this embodiment, parts having the same functions as those of the conventional system shown in FIGS. 3 and 4 are given the same reference numerals and their explanations will be omitted.

同図において、14は圧縮機1の吐出管をバイ
パスする第1バイパス回路であり、15はキヤピ
ラリ4をバイパスする第2バイパス回路であり、
この2つのバイパス回路は管路の一部を共有して
おり、この共有部分16に熱交換器17が設けら
れている。また、第1バイパス回路14に開閉弁
18,19が、共有部分16をはさんで設けら
れ、第2バイパス回路15には開閉弁20,21
が、共有部分16をはさんで設けられている。
In the figure, 14 is a first bypass circuit that bypasses the discharge pipe of the compressor 1, 15 is a second bypass circuit that bypasses the capillary 4,
These two bypass circuits share a part of the pipe line, and a heat exchanger 17 is provided in this shared part 16. In addition, on-off valves 18 and 19 are provided in the first bypass circuit 14 with the common part 16 in between, and on-off valves 20 and 21 are provided in the second bypass circuit 15.
are provided across the common area 16.

また、22は蓄熱槽で、内部に潜熱蓄熱材
(NaCH3COO・3H2O)23が充填されており、
この蓄熱材23と熱交換可能なように前記熱交換
器17が配設されている。
In addition, 22 is a heat storage tank, inside of which a latent heat storage material (NaCH 3 COO 3H 2 O) 23 is filled.
The heat exchanger 17 is arranged so as to be able to exchange heat with the heat storage material 23.

この冷媒回路において、暖房運転時は開閉弁1
8,19は開、開閉弁20,21は閉の状態をそ
れぞれ保つ。したがつて、圧縮機1から吐出され
た冷媒の一部は主冷媒回路を流れ、残りは第1バ
イパス回路14へ流入して開閉弁18、熱交換器
17、開閉弁19を通過して主冷媒回路を流れて
きた冷媒と合流して四方弁2へと流れ、さらに室
内熱交換器3、キヤピラリ4、室外熱交換器5、
四方弁2と流れて圧縮機1に吸入される。したが
つて、冷媒が持つ熱の一部は熱交換器17を通し
て蓄熱材23に与えられ、蓄熱される。
In this refrigerant circuit, during heating operation, on-off valve 1
8 and 19 remain open, and on-off valves 20 and 21 remain closed, respectively. Therefore, a part of the refrigerant discharged from the compressor 1 flows through the main refrigerant circuit, and the rest flows into the first bypass circuit 14, passes through the on-off valve 18, the heat exchanger 17, and the on-off valve 19, and then flows into the main refrigerant circuit. It joins with the refrigerant that has flowed through the refrigerant circuit, flows to the four-way valve 2, and further includes an indoor heat exchanger 3, a capillary 4, an outdoor heat exchanger 5,
It flows through the four-way valve 2 and is sucked into the compressor 1. Therefore, a part of the heat possessed by the refrigerant is given to the heat storage material 23 through the heat exchanger 17 and is stored therein.

室外熱交換器5に着霜すると、除霜運転を開始
する。除霜運転時は、圧縮機1の周波数を最大と
し、開閉弁18,19を閉、開閉弁20,21を
開とする。したがつて、圧縮機1より吐出された
冷媒は、四方弁2、室内熱交換器3へと流れ、ほ
とんどの冷媒は第2バイパス回路15へ流入して
開閉弁20、熱交換器17、開閉弁21を通過し
て、キヤピラリ4を通過したわずかの冷媒と合流
して室外熱交換器5、四方弁2と流れて圧縮機1
に吸入される。したがつて、冷媒が熱交換器17
を通過する際に、蓄熱材23に蓄えられた熱を奪
い、除霜に利用される。
When the outdoor heat exchanger 5 is frosted, defrosting operation is started. During defrosting operation, the frequency of the compressor 1 is maximized, the on-off valves 18 and 19 are closed, and the on-off valves 20 and 21 are opened. Therefore, the refrigerant discharged from the compressor 1 flows into the four-way valve 2 and the indoor heat exchanger 3, and most of the refrigerant flows into the second bypass circuit 15, where it passes through the on-off valve 20, the heat exchanger 17, and the on-off valve. It passes through the valve 21, joins with a small amount of refrigerant that has passed through the capillary 4, flows to the outdoor heat exchanger 5, the four-way valve 2, and then the compressor 1.
is inhaled. Therefore, the refrigerant is in the heat exchanger 17
When passing through, the heat stored in the heat storage material 23 is taken away and used for defrosting.

第2図は、第1図に示したヒートポンプ式空調
機の除霜運転時の冷凍サイクルをモリエル線図上
に示した図である。同図におけるa〜gの記号
は、第1図におけるa〜gの位置における冷媒の
状態を示す。まず、圧縮機1で圧縮された冷媒は
(a→b)、室内熱交換器3で暖房に利用されて凝
縮し(c→d)、接続配管等を通過の際の圧力損
失で圧力が低下し(d→e)、第2バイパス回路
15に流入して熱交換器17で蓄熱材23より熱
を奪い(e→f)、室外熱交換器5で除霜に利用
されて凝縮し(f→g)、四方弁2を通過して圧
縮機1に吸入される(g→a)。このように、暖
房に用いられて凝縮した冷媒dは、蓄熱材23よ
り熱を奪うことで再びfまでエンタルピが引き上
げられるので、暖房能力を大きくとつても短時間
に除霜を終えることが可能である。
FIG. 2 is a diagram showing the refrigeration cycle of the heat pump air conditioner shown in FIG. 1 during defrosting operation on a Mollier diagram. Symbols a to g in the figure indicate the states of the refrigerant at positions a to g in FIG. First, the refrigerant compressed by the compressor 1 (a → b) is used for heating in the indoor heat exchanger 3 and condenses (c → d), and the pressure decreases due to pressure loss when passing through connecting pipes etc. (d→e), flows into the second bypass circuit 15, removes heat from the heat storage material 23 in the heat exchanger 17 (e→f), is used for defrosting in the outdoor heat exchanger 5, and is condensed (f → g), passes through the four-way valve 2 and is sucked into the compressor 1 (g → a). In this way, the enthalpy of the condensed refrigerant d used for heating is raised to f again by taking heat from the heat storage material 23, so even if the heating capacity is increased, defrosting can be completed in a short time. It is.

ここで、発明者らの実験結果の一例を示すと、
蓄熱材23を2Kg蓄熱槽22に充填した場合、融
解潜熱は60Kcal/Kgであるからこれを全部利用
できたとすると、冷媒に与えられる熱量は従来例
で説明した圧縮機入力108Kcalに潜熱120Kcalを
加えて228Kcalである。一方、除霜に用いられる
熱量は72Kcalであるから残りの156Kcalの熱量が
暖房に利用可能である。これは、単位時間当り
187Kcal/hであるので、十分に室内の快適性を
保つことができる。
Here, an example of the inventors' experimental results is shown.
When the heat storage tank 22 is filled with 2 kg of heat storage material 23, the latent heat of fusion is 60 Kcal/Kg, so if all of this can be used, the amount of heat given to the refrigerant is the compressor input of 108 Kcal explained in the conventional example plus the latent heat of 120 Kcal. It is 228Kcal. On the other hand, since the amount of heat used for defrosting is 72Kcal, the remaining 156Kcal can be used for heating. This is per unit time
Since it is 187Kcal/h, it is possible to maintain sufficient indoor comfort.

また、第1バイパス回路14と第2バイパス回
路15は管路の一部を共有しており、その共有部
分16に熱交換器17を配設しているので、冷媒
から蓄熱材23への蓄熱および蓄熱材23から熱
の取出しの両方をこの1つの熱交換器17を通し
て行なうことができ、蓄熱槽22を小型軽量とす
ることが可能である。しかも、第1バイパス回路
14および第2バイパス回路15を独立した回路
とし、それぞれの回路に熱交換器を設ける構成と
した場合、蓄熱運転時(暖房運転時)には第2バ
イパス回路15に設けられた熱交換器は利用され
ず、除霜運転時には第1バイパス回路14に設け
られた熱交換器が利用されず、したがつて蓄熱槽
22に充填された蓄熱材23と効率的な熱交換が
できないのに対し、前述の構成にすることで蓄熱
材23と効率的な熱交換が可能である。
In addition, the first bypass circuit 14 and the second bypass circuit 15 share a part of the pipe line, and the heat exchanger 17 is disposed in the common part 16, so that heat storage from the refrigerant to the heat storage material 23 is carried out. Both the heat exchanger 17 and the extraction of heat from the heat storage material 23 can be performed through this single heat exchanger 17, and the heat storage tank 22 can be made small and lightweight. Moreover, if the first bypass circuit 14 and the second bypass circuit 15 are made into independent circuits and each circuit is provided with a heat exchanger, the second bypass circuit 15 is provided with a heat exchanger during heat storage operation (heating operation). The heat exchanger provided in the first bypass circuit 14 is not used during defrosting operation, and therefore, efficient heat exchange with the heat storage material 23 filled in the heat storage tank 22 is not performed. However, by using the above-mentioned configuration, efficient heat exchange with the heat storage material 23 is possible.

また、室外熱交換器5で除霜に利用される冷媒
は、ほとんど過熱ガスの状態であるので(f→
g)、圧縮機周波数を上昇させて冷媒循環量を増
加させたり、接続配管を長くすることで(d→
e)の圧力損失が増加し、(f→g)の冷媒の圧
力が低下しても、除霜を行なうことが可能であ
る。しかも、圧縮機吸入冷媒aの乾き度を高く保
つことができるので、圧縮機信頼性の高い除霜運
転を行なうことができる。
In addition, since the refrigerant used for defrosting in the outdoor heat exchanger 5 is almost in the state of superheated gas (f→
g), by increasing the compressor frequency to increase the amount of refrigerant circulation or by lengthening the connecting piping (d→
Even if the pressure loss in e) increases and the pressure of the refrigerant in (f→g) decreases, defrosting can be performed. Moreover, since the degree of dryness of the refrigerant a sucked into the compressor can be kept high, defrosting operation with high reliability of the compressor can be performed.

さらに、蓄熱運転時に蓄熱材23への蓄熱が十
分に行なわれない時、除霜運転途中で蓄熱された
熱を使いきつてしまつて除霜できなくなる場合が
考えられるが、除霜運転開始後所定時間経過後に
開閉弁18,21を開とし、開閉弁19,20を
閉とする制御を加えることで、圧縮機1から吐出
された高温の冷媒の一部を第1バイパス回路1
4、第2バイパス回路15の一部を経て室外熱交
換器5の入口に導くことが可能となり、蓄熱され
た熱を利用してしまつても除霜を行なうことがで
きる。
Furthermore, if sufficient heat is not stored in the heat storage material 23 during heat storage operation, there is a possibility that the stored heat will be used up during defrosting operation and defrosting will not be possible. By adding control to open the on-off valves 18 and 21 and close the on-off valves 19 and 20 after the elapse of time, a part of the high temperature refrigerant discharged from the compressor 1 is transferred to the first bypass circuit 1.
4. It becomes possible to lead the heat to the inlet of the outdoor heat exchanger 5 through a part of the second bypass circuit 15, and even if the stored heat is used, defrosting can be performed.

なお、本実施例においては暖房運転時は常に開
閉弁18,19を開として第1バイパス回路14
に冷媒を流しているが、立上りを早めるために運
転開始後所定時間、開閉弁18,19を閉として
第1バイパス回路14に冷媒を流さない等、その
制御は任意であり、除霜運転開始までに蓄熱槽2
2に必要な熱量を蓄熱できればよい。また、圧縮
機についても一定容量のものを用いてもよい。
In this embodiment, during heating operation, the on-off valves 18 and 19 are always open and the first bypass circuit 14 is closed.
However, this control is optional, such as closing the on-off valves 18 and 19 for a predetermined period of time after the start of operation to prevent refrigerant from flowing through the first bypass circuit 14 in order to speed up the start-up. Heat storage tank 2
It is sufficient if the amount of heat required for 2 can be stored. Furthermore, a compressor with a constant capacity may be used.

さらに、蓄熱材は本実施例で用いた
NaCH3COO・3H2O以外のものを用いてもよい。
Furthermore, the heat storage material used in this example
Something other than NaCH 3 COO·3H 2 O may be used.

発明の効果 以上のように本発明のヒートポンプ式空調機
は、除霜運転時に第2バイパス回路に冷媒を流し
て蓄熱材より熱を奪うことで、高い暖房能力を保
ちながら除霜運転を行なうことが可能であり、ま
た第1バイパス回路および第2バイパス回路と蓄
熱槽との熱交換部を1つにすることで蓄熱槽を小
型軽量とし、かつ効率的に熱交換を行なうことが
可能である。また、圧縮機吸入冷媒の乾き度を高
く保つことができるので、圧縮機信頼性も高く、
さらにセパレートタイプのヒートポンプ式空調機
の場合で接合配管での圧力損失が大きく、室外熱
交換器を通過する冷媒の圧力が低くても、過熱域
にある冷媒を利用できるので除霜可能である等の
利点を有する。
Effects of the Invention As described above, the heat pump air conditioner of the present invention can perform defrosting operation while maintaining high heating capacity by flowing the refrigerant through the second bypass circuit to remove heat from the heat storage material during defrosting operation. Furthermore, by integrating the heat exchange section between the first bypass circuit, the second bypass circuit, and the heat storage tank, it is possible to make the heat storage tank smaller and lighter, and to perform heat exchange efficiently. . In addition, since the dryness of the refrigerant sucked into the compressor can be kept high, the reliability of the compressor is also high.
Furthermore, in the case of separate type heat pump air conditioners, there is a large pressure loss in the joint piping, and even if the pressure of the refrigerant passing through the outdoor heat exchanger is low, defrosting is possible because the refrigerant in the superheat range can be used. It has the following advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるヒートポン
プ式空調機の冷凍サイクル図、第2図は同ヒート
ポンプ式空調機の除霜運転時の冷凍サイクルを示
すモリエル線図、第3図は従来のヒートポンプ式
空調機の第1の例における冷凍サイクル図、第4
図は同ヒートポンプ式空調機の第2の例における
冷凍サイクル図、第5図は同ヒートポンプ式空調
機のバイパスキヤピラリの絞り量と除霜時間、暖
房能力の関係を示す特性図である。 1……周波数可変圧縮機(圧縮機)、2……四
方弁、3……室内熱交換器、4……キヤピラリ
(減圧器)、5……室外熱交換器、14……第1バ
イパス回路、15……第2バイパス回路、16…
…共有部分、17……熱交換器、18〜21……
開閉弁(流路制御手段)、22……蓄熱槽、23
……蓄熱材。
Fig. 1 is a refrigeration cycle diagram of a heat pump air conditioner according to an embodiment of the present invention, Fig. 2 is a Mollier diagram showing the refrigeration cycle during defrosting operation of the heat pump air conditioner, and Fig. 3 is a diagram of a conventional heat pump. Refrigeration cycle diagram in the first example of the type air conditioner, 4th
The figure is a refrigeration cycle diagram in a second example of the heat pump air conditioner, and FIG. 5 is a characteristic diagram showing the relationship between the bypass capillary throttling amount, defrosting time, and heating capacity of the heat pump air conditioner. 1... Frequency variable compressor (compressor), 2... Four-way valve, 3... Indoor heat exchanger, 4... Capillary (pressure reducer), 5... Outdoor heat exchanger, 14... First bypass circuit , 15...second bypass circuit, 16...
...Common parts, 17...Heat exchangers, 18-21...
Opening/closing valve (flow path control means), 22... Heat storage tank, 23
...Heat storage material.

Claims (1)

【特許請求の範囲】 1 圧縮機、四方弁、室外熱交換器、減圧器、室
内熱交換器を連結して主冷媒回路を構成し、暖房
運転時に高圧側となる圧縮機から四方弁を経て室
内熱交換器に至る高圧ガス管路と、減圧器から室
外熱交換器に至る低圧管路とを接続する第1補助
管路と、前記高圧ガス管路と室内熱交換器から減
圧器に至る高圧液管路とを接続する第2補助管路
と、前記第1補助管路と前記第2補助管路とを接
続する共通補助管路を設け、前記高圧ガス管路か
ら第1補助管路、共通補助管路、第2補助管路を
経て前記高圧ガス管路に至る流路にて第1バイパ
ス回路を構成し、前記高圧液管路から第2補助管
路、共通補助管路、第1補助管路を経て前記低圧
管路に至る流路にて第2バイパス回路を構成し、
前記第1補助管路の第1バイパス回路上に第1開
閉弁、前記第2補助管路の第1バイパス回路上に
第2開閉弁、前記第2補助管路の第2バイパス回
路上に第3開閉弁、前記第1補助管路の第2バイ
パス回路上に第4開閉弁をそれぞれ設け、前記第
1〜第4開閉弁の開閉を制御する流路制御手段を
設け、内部に熱交換器を配設し、蓄熱材を充填し
た蓄熱槽を設け、前記熱交換器の冷媒流路を前記
共通補助管路の一部となるように構成し、暖房運
転時に前記蓄熱槽に蓄熱する蓄熱暖房時には前記
流路制御手段により前記第1、第2開閉弁を開と
し、前記第3、第4開閉弁を閉とし、前記室外熱
交換器の除霜を行なう除霜運転時には前記四方弁
の流路を暖房運転のままとし、前記第1、第2開
閉弁を閉とし、前記第3、第4開閉弁を開とする
制御を行なうヒートポンプ式空調機の冷凍サイク
ル装置。 2 除霜運転時に第1、第2開閉弁の少なくとも
どちらか1つを開とし、第3開閉弁を閉、第4開
閉弁を開とする制御も可能とする流路制御手段を
有する特許請求の範囲第1項記載のヒートポンプ
式空調機の冷凍サイクル装置。
[Claims] 1. A main refrigerant circuit is constructed by connecting a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducer, and an indoor heat exchanger, and the refrigerant is connected to the compressor, which is on the high-pressure side during heating operation, through the four-way valve. a first auxiliary pipeline connecting a high pressure gas pipeline leading to the indoor heat exchanger and a low pressure pipeline leading from the pressure reducer to the outdoor heat exchanger; and a first auxiliary pipeline connecting the high pressure gas pipeline and the indoor heat exchanger to the pressure reducer. A second auxiliary pipe line connecting the high-pressure liquid pipe line, and a common auxiliary line connecting the first auxiliary line and the second auxiliary line; , a common auxiliary pipe, a second auxiliary pipe, and a flow path leading to the high-pressure gas pipe, forming a first bypass circuit; A second bypass circuit is configured with a flow path leading to the low pressure pipe through the first auxiliary pipe,
A first on-off valve is provided on the first bypass circuit of the first auxiliary conduit, a second on-off valve is provided on the first bypass circuit of the second auxiliary conduit, and a second on-off valve is provided on the second bypass circuit of the second auxiliary conduit. 3 on-off valves, a 4th on-off valve on the second bypass circuit of the first auxiliary pipe, flow path control means for controlling opening and closing of the first to fourth on-off valves, and a heat exchanger inside. , a heat storage tank filled with a heat storage material is provided, the refrigerant flow path of the heat exchanger is configured to become a part of the common auxiliary pipe, and heat is stored in the heat storage tank during heating operation. At times, the flow path control means opens the first and second on-off valves and closes the third and fourth on-off valves, and during a defrosting operation to defrost the outdoor heat exchanger, the flow of the four-way valve is controlled. A refrigeration cycle device for a heat pump air conditioner that performs control such that a heating operation is maintained, the first and second on-off valves are closed, and the third and fourth on-off valves are opened. 2. A patent claim having flow path control means that also enables control to open at least one of the first and second on-off valves, close the third on-off valve, and open the fourth on-off valve during defrosting operation. A refrigeration cycle device for a heat pump air conditioner according to item 1.
JP29944386A 1986-12-16 1986-12-16 Refrigeration cycle device for heat pump type air conditioner Granted JPS63150567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29944386A JPS63150567A (en) 1986-12-16 1986-12-16 Refrigeration cycle device for heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29944386A JPS63150567A (en) 1986-12-16 1986-12-16 Refrigeration cycle device for heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS63150567A JPS63150567A (en) 1988-06-23
JPH0515949B2 true JPH0515949B2 (en) 1993-03-03

Family

ID=17872646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29944386A Granted JPS63150567A (en) 1986-12-16 1986-12-16 Refrigeration cycle device for heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS63150567A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842841U (en) * 1981-09-17 1983-03-22 キヤノン株式会社 Image forming device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485452U (en) * 1977-11-29 1979-06-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842841U (en) * 1981-09-17 1983-03-22 キヤノン株式会社 Image forming device

Also Published As

Publication number Publication date
JPS63150567A (en) 1988-06-23

Similar Documents

Publication Publication Date Title
US8220531B2 (en) Heat pump system with auxiliary water heating
US6931880B2 (en) Method and arrangement for defrosting a vapor compression system
US20080197206A1 (en) Refrigerant System With Water Heating
JP2008082589A (en) Air conditioner
JPH01118080A (en) Heat pump type air conditioner
JPS63169457A (en) Heat pump type air conditioner
JP3511161B2 (en) Air conditioner
JPH0515949B2 (en)
JPS61262560A (en) Heat pump type air conditioner
JPS63108173A (en) Defrostation method of heat pump type air conditioner
JPH0578744B2 (en)
JP2842471B2 (en) Thermal storage type air conditioner
JP2737543B2 (en) Heat pump water heater
JPH07107471B2 (en) Heat pump air conditioner
JPS63176971A (en) Heat pump type air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPH0579901B2 (en)
JPS63176970A (en) Heat pump type air conditioner
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JP2001330347A (en) Air-conditioner
JPS6015084Y2 (en) Refrigeration equipment
JPH03255864A (en) Heat pump type air conditioner
JPS6032534Y2 (en) Heat recovery air conditioner
JPH0648125B2 (en) Heat pump type air conditioner
JPH076714B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees