JPH0515778B2 - - Google Patents

Info

Publication number
JPH0515778B2
JPH0515778B2 JP58115106A JP11510683A JPH0515778B2 JP H0515778 B2 JPH0515778 B2 JP H0515778B2 JP 58115106 A JP58115106 A JP 58115106A JP 11510683 A JP11510683 A JP 11510683A JP H0515778 B2 JPH0515778 B2 JP H0515778B2
Authority
JP
Japan
Prior art keywords
magnetic
alloy
recording medium
thin film
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58115106A
Other languages
Japanese (ja)
Other versions
JPS609855A (en
Inventor
Masashi Sato
Tetsuhiko Mizoguchi
Koichiro Inomata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11510683A priority Critical patent/JPS609855A/en
Publication of JPS609855A publication Critical patent/JPS609855A/en
Publication of JPH0515778B2 publication Critical patent/JPH0515778B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は磁性合金に関し、特にノイズ特性の優
れた磁気記録媒体用に適したDy−Fe−Co系低磁
歪の磁性合金に関する。 [発明の技術的背景とその問題点] 一般に磁気層の磁化容易軸が基体面に垂直に揃
つた磁気記録媒体は自己減磁が小さいので高密度
の記録に適している。このうち、特にキユーリー
点が室温よりやや高いところにある薄膜の上記磁
気記録媒体は高密度の磁気光学記録媒体としての
用途が期待されている。 磁気光学記録媒体とは、該媒体に光(レザー)
を照射し、熱磁気的に磁化方向を逆転せしめるこ
とにより情報を記録し、また光のカー(Kerr)
回転角を測定することによつて情報を読み取るこ
とができる記録媒体である。 現在、このような磁気光学記録媒体として公知
となつている磁性薄膜には、MnBiで代表される
多結晶性金属薄膜、GIG(Gadelinium Iron
Garnet)で代表される化合物単結晶薄膜、Gd−
FeおよびDy−Fe等の非晶質金属薄膜がある。 ところで、MnBiに代表される多結晶性金属薄
膜はキユーリー点が高すぎる(MnBiではキユー
リー点Tc=360℃)ため、書き込みに大きなエネ
ルギーを要し、しかも、多結晶体であるので化学
量論的組成の薄膜とする必要があり、その製造が
技術的に困難であるという欠点を有している。 GIG等の化合物単結晶薄膜にあつては、その製
造費が高すぎるので到底実用化が困難である。ま
た、Gd−Fe等の非晶質金属薄膜は室温における
保磁力が小さく(300〜500Oe)、記録情報が不安
定であるという欠点がある。 しかるに、Dy−Fe等の非晶質金属薄膜は、
MnBiやGIGと違つて、非晶質であるため任意の
基体上に薄膜を製造することができ、しかも、多
少の不純物を加えることによつて、キユーリー点
をある程度任意に制御することができるという利
点を有し、また、Dyの1イオン異方性のため、
上記Gd−Feに比べて、著しく保磁力(数KOe)
が大きいという長所を有する。このため、磁気記
録媒体、特に磁気光学記録媒体として注目されて
いる。 しかしながら、Dy−Fe等の磁性合金は磁歪定
数が大きい(飽和磁歪定数λs1×10-4)のた
め、ノイズ特性の優れた磁気記録媒体が得られに
くいという問題があつた。すなわち、Dy−Fe合
金材料から磁気記録媒体を製造する際、媒体中に
何らかの原因によつて内部応力σが発生すると、
磁歪の逆効果によつて生ずるσ方向の磁気異方性
エネルギーKd=3/2λsσのため異方性等の物性が
微視的に不均一となり、その結果S/N比の低下
を招いてしまうのである。例えば、バイアス・ス
パツタリング法によつて、Dy−Fe磁性合金薄膜
を製造する場合、ベルジヤー内のガス圧やスパツ
タ時のバイアス電圧によつて、膜内応力が変動す
るため、膜の物性が微視的に不均一となり、その
結果、得られる磁気記録媒体のノイズ特性が著し
く低下するということが問題となつていた。 [発明の目的] 本発明は、低磁歪で、かつ一軸磁気異方性、保
磁力性の優れた磁性合金を提供し、以つて磁気記
録媒体のノイズ特性を改善することを目的とす
る。 [発明の概要] 本発明者らは、上記目的を達成すべく、Dy−
Fe系合金の組成および組織につき鋭意研究を重
ねた結果、磁歪特性へのCoのFe置換効果が顕著
であることを発見し、より詳細に現象解析を試み
たところ、(Fe1-aCoazDy1-bRbなる組成であら
わした場合、a<0.2とa≧0.2とでは、磁歪特性
〔例えば(Fe1-aCoazDy1-bRb結晶質においては、
λ111(立方晶<111>結晶軸方向の磁歪)特性〕が
著じるしく異なり、a≧0.2の場合、特にa>0.3
のとき顕著であるが、a<0.2に比し、1KOeを超
える強磁場下での磁歪特性が1桁以上小さい低磁
歪特性を示す新事実を見い出し本発明を完成する
に到つた。 すなわち本発明の磁性合金は、(Fe1-aCoaz
Dy1-bRb(ここでR:Gd、Tb、Ho、Erのうちの
1種類又は2種以上の組み合わせ)0.3<a≦
0.7、0.02≦b≦0.8、1.0≦z≦4.0であることを特
徴とする。 本発明において、a(Coの置換量)を0.3を超え
て0.7以下とするのは、0.2未満では、λsの減少が
顕著でなく、高保持力(1KOe以上)を有する記
録媒体のごとく作用磁場の大なる場合、特に好ま
しくなく、本発明の目的が十分達成されず、また
0.7を超えるとキユーリー点が著じるしく減少す
るとともに、非晶質の結晶化温度を著じるしく低
下し、キユーリー点以下となり、本発明の目的を
満さなくなる。 b(Rの置換量)を0.02以上0.8以下とするのは
Rの置換により、低磁歪特性は維持したまま記録
媒体特性(保持力、動作温度、カー回転角)が向
上するが0.02未満ではその効果が認められない。
また、0.8を超えると低磁歪特性と記録媒体特性
の両立が困難となり、よつて発明の目的が達成さ
れないためである。 z(遷移金属/希土類元素モル比)を1.0≦z≦
4.0とするのは、10.未満では保持力がで低下し、
4.0を超えても保持力が低下し、本発明の目的が
達成されないかむである。 本発明の磁性合金中、DyはDy単独またはRと
の複合効果により垂直磁気異方性および保持力を
高める上で必須の成分である。 本発明の磁性合金は通常、薄膜もしくは粉末と
して提供される。より好ましくは薄膜の形態をと
る。薄膜においては、より高密度の磁気記録が可
能となるからである。 合金組織は多結晶もしくは非晶質であつてもよ
いが、多結晶ではその結晶粒界が物性不均一の生
因となり易くノイズ特性が低下するので、非晶質
であることが好ましい。 次に本発明の(Fe1-aCoazDy1-bRb系磁性合金
の調整法およびその非晶質薄膜の製造方法につい
て例示する。 本発明の(Fe1-aCoazDy1-bRb系磁性合金は、
上記組成の合金材料を周知の方法によつて真空、
不活性ガスもしくは還元ガス雰囲気中、融点以上
の温度で溶解した後、冷却することによつてイン
ゴツトとして得られる。 このインゴツトを適当な寸法に切断して、スパ
ツタリング用のターゲツト(陰極)を得た後、こ
れを用いて、例えばガラス基板上にDy−Fe−Co
系合金をスパツタリングすると、その非晶質薄膜
磁性合金が得られる。 このようにして得られた非晶質薄膜磁性合金は
膜面に垂直な方向に一軸磁気異方性を有し、その
方向が磁化容易軸であるとともに、50℃〜200℃
の間にキユーリー点があり、しかもその飽和磁歪
定数の絶対値が1×10-5以下となるため、ノイズ
特性の優れた磁気記録媒体となり、とりわけ、磁
気光学記録媒体に適する。 [発明の実施例] 以下、本発明の磁性合金を実施例によつて詳説
する。 実施例 1 (Fe.5Co.53.35Dy0.6Tb0.2Ho0.2から成る合金材
料を真空誘導融解炉で溶解.冷却して合金インゴ
ツトを得た。次に、この合金インゴツトを適当な
寸法に切断して、スパツタ用ターゲツト(陰極)
を作製した。 上記ターゲツトを用いて、アルゴンガス圧6×
10-2Torr、基板バイアス電圧−50Vでバイアスス
パツタリング法により、ガラス基板上に膜厚1000
Åの非晶質薄膜からなる本発明の磁性合金を得
た。 この磁性合金は垂直磁気異方性を有しており、
飽和磁束密度4πMs 600Gauss、保持力5.0KOe、
キユーリー点120℃および飽和磁歪値(λs<1×
10-5)を示した。 これを磁気光学記録媒体として使用した場合の
書換え可能デイスクの各諸元を第1表に示した。 比較例 1 合金組成がFe3.8Dyであることを除いては、実
施例1と同様に非晶質合金膜を作製した。得られ
た垂直磁気異方性を有する非晶質磁性薄膜は膜厚
1000Å、飽和磁束密度750Gauss、保磁力
1.2KOe、キユーリー点65℃、飽和磁歪値λs>20
×10-5であつた。本磁性薄膜を記録媒体として使
用した場合の書換え可能デイスクの各諸元を第1
表に示す。 実施例1および比較例1より、Coを添加した
(Fe1-aCoazDy1-bRb系低磁歪非晶質磁性薄膜は
磁歪値の大なるDy−Fe系磁性薄膜に比し、優れ
たS/N比を示すことは明らかである。加えて
Co添加による一回転角の改善も同時に認められ
両者の相乗効果がS/N比の著じるしい改善をも
たらしている。
[Technical Field of the Invention] The present invention relates to a magnetic alloy, and particularly to a Dy-Fe-Co based low magnetostriction magnetic alloy suitable for use in magnetic recording media with excellent noise characteristics. [Technical background of the invention and its problems] Generally, a magnetic recording medium in which the axis of easy magnetization of the magnetic layer is aligned perpendicular to the substrate surface has low self-demagnetization and is therefore suitable for high-density recording. Among these, the thin film magnetic recording medium whose Curie point is slightly higher than room temperature is particularly expected to be used as a high-density magneto-optical recording medium. A magneto-optical recording medium is a recording medium that uses light (laser) on the medium.
It records information by irradiating it and thermomagnetically reversing the direction of magnetization, and it also records information by
It is a recording medium from which information can be read by measuring the rotation angle. Currently, magnetic thin films known as such magneto-optical recording media include polycrystalline metal thin films represented by MnBi, GIG (Gadelinium Iron), etc.
Compound single crystal thin film represented by Garnet), Gd-
There are amorphous metal thin films such as Fe and Dy-Fe. By the way, a polycrystalline metal thin film such as MnBi has a very high Curie point (Curie point Tc = 360°C for MnBi), so it requires a large amount of energy to write. It has the disadvantage that it needs to be a thin film with a certain composition, and its production is technically difficult. Since the manufacturing cost of single crystal thin films of compounds such as GIG is too high, it is difficult to put them into practical use. Furthermore, an amorphous metal thin film such as Gd-Fe has a small coercive force (300 to 500 Oe) at room temperature, and has the disadvantage that recorded information is unstable. However, amorphous metal thin films such as Dy-Fe
Unlike MnBi and GIG, it is amorphous, so thin films can be produced on any substrate, and by adding some impurities, the Curie point can be controlled to some extent. Also, due to the one-ion anisotropy of Dy,
Significant coercive force (several KOe) compared to the above Gd-Fe
It has the advantage of being large. For this reason, it is attracting attention as a magnetic recording medium, particularly as a magneto-optical recording medium. However, since magnetic alloys such as Dy-Fe have a large magnetostriction constant (saturation magnetostriction constant λ s 1×10 −4 ), there has been a problem in that it is difficult to obtain a magnetic recording medium with excellent noise characteristics. In other words, when manufacturing a magnetic recording medium from Dy-Fe alloy material, if internal stress σ is generated in the medium for some reason,
Due to the magnetic anisotropy energy Kd = 3/2λ s σ in the σ direction caused by the reverse effect of magnetostriction, physical properties such as anisotropy become microscopically non-uniform, resulting in a decrease in the S/N ratio. It ends up being. For example, when producing a Dy-Fe magnetic alloy thin film using the bias sputtering method, the stress within the film fluctuates depending on the gas pressure in the bell jar and the bias voltage during sputtering, so the physical properties of the film may be microscopically affected. The problem has been that the noise characteristics of the resulting magnetic recording medium are significantly degraded. [Object of the Invention] An object of the present invention is to provide a magnetic alloy with low magnetostriction and excellent uniaxial magnetic anisotropy and coercive force, thereby improving the noise characteristics of a magnetic recording medium. [Summary of the Invention] In order to achieve the above object, the present inventors have developed Dy-
As a result of extensive research into the composition and structure of Fe-based alloys, we discovered that the effect of replacing Co with Fe on the magnetostrictive properties was remarkable.When we attempted to analyze the phenomenon in more detail, we found that (Fe 1-a Co a ) z Dy 1-b Rb, when a<0.2 and a≧0.2, the magnetostrictive property [for example, (Fe 1-a Co a ) z Dy 1-b Rb crystalline,
λ 111 (magnetostriction in the cubic <111> crystal axis direction) characteristics] are significantly different, and when a≧0.2, especially when a>0.3
We have now discovered a new fact that exhibits low magnetostriction, which is remarkable when a<0.2, but the magnetostriction in a strong magnetic field exceeding 1 KOe is one order of magnitude smaller than that in a strong magnetic field of more than 1 KOe, and we have completed the present invention. That is, the magnetic alloy of the present invention has (Fe 1-a Co a ) z
Dy 1-b Rb (here, R: one type or a combination of two or more of Gd, Tb, Ho, Er) 0.3<a≦
0.7, 0.02≦b≦0.8, and 1.0≦z≦4.0. In the present invention, the reason why a (amount of Co substitution) is set to be more than 0.3 and less than 0.7 is that if it is less than 0.2, the decrease in λ s will not be noticeable, and it will function like a recording medium with high coercive force (1 KOe or more). If the magnetic field is large, it is particularly undesirable, and the object of the present invention cannot be fully achieved.
If it exceeds 0.7, the Curie point will be significantly reduced, and the crystallization temperature of the amorphous will also be significantly lowered to below the Curie point, which will no longer satisfy the purpose of the present invention. Setting b (substitution amount of R) between 0.02 and 0.8 improves recording medium characteristics (coercive force, operating temperature, Kerr rotation angle) while maintaining low magnetostriction characteristics, but when it is less than 0.02, the recording medium characteristics (coercive force, operating temperature, Kerr rotation angle) improve. No effect observed.
Further, if it exceeds 0.8, it becomes difficult to achieve both low magnetostriction characteristics and recording medium characteristics, and the object of the invention is therefore not achieved. z (transition metal/rare earth element molar ratio) is 1.0≦z≦
The reason for setting 4.0 is that if it is less than 10, the holding power will decrease.
Even if it exceeds 4.0, the holding force will decrease and the object of the present invention will not be achieved. In the magnetic alloy of the present invention, Dy is an essential component for increasing the perpendicular magnetic anisotropy and coercive force through the effect of Dy alone or in combination with R. The magnetic alloy of the present invention is usually provided as a thin film or powder. More preferably, it takes the form of a thin film. This is because thin films enable higher density magnetic recording. The alloy structure may be polycrystalline or amorphous, but polycrystalline grain boundaries tend to cause non-uniform physical properties and noise characteristics deteriorate, so amorphous is preferable. Next, a method for preparing the (Fe 1-a Co a ) z Dy 1-b Rb-based magnetic alloy of the present invention and a method for producing an amorphous thin film thereof will be illustrated. The (Fe 1-a Co a ) z Dy 1-b Rb magnetic alloy of the present invention is
An alloy material having the above composition is vacuum-treated by a well-known method.
It is obtained as an ingot by melting it at a temperature above the melting point in an inert gas or reducing gas atmosphere and then cooling it. After cutting this ingot into appropriate dimensions to obtain a sputtering target (cathode), use this to deposit Dy-Fe-Co on a glass substrate, for example.
By sputtering the alloy, an amorphous thin film magnetic alloy is obtained. The amorphous thin film magnetic alloy thus obtained has uniaxial magnetic anisotropy in the direction perpendicular to the film surface, and this direction is the axis of easy magnetization.
Since there is a Curie point between them and the absolute value of the saturation magnetostriction constant is 1×10 −5 or less, the magnetic recording medium has excellent noise characteristics and is particularly suitable for magneto-optical recording media. [Examples of the Invention] The magnetic alloy of the present invention will be explained in detail below with reference to Examples. Example 1 An alloy material consisting of (Fe .5 Co .5 ) 3.35 Dy 0.6 Tb 0.2 Ho 0.2 was melted in a vacuum induction melting furnace. It was cooled to obtain an alloy ingot. Next, this alloy ingot is cut into appropriate dimensions and used as a sputtering target (cathode).
was created. Using the above target, argon gas pressure 6×
A film with a thickness of 1000 mm was deposited on a glass substrate by bias sputtering at 10 -2 Torr and a substrate bias voltage of -50 V.
A magnetic alloy of the present invention consisting of an amorphous thin film with a thickness of 1.5 Å was obtained. This magnetic alloy has perpendicular magnetic anisotropy,
Saturation magnetic flux density 4πMs 600Gauss, coercive force 5.0KOe,
Curie point 120℃ and saturation magnetostriction value (λ s <1×
10 -5 ). Table 1 shows the specifications of the rewritable disk when it is used as a magneto-optical recording medium. Comparative Example 1 An amorphous alloy film was produced in the same manner as in Example 1, except that the alloy composition was Fe 3.8 Dy. The obtained amorphous magnetic thin film with perpendicular magnetic anisotropy has a film thickness of
1000Å, saturation magnetic flux density 750Gauss, coercive force
1.2KOe, Curie point 65℃, saturation magnetostriction value λ s > 20
It was ×10 -5 . The specifications of the rewritable disk when this magnetic thin film is used as a recording medium are shown in the first section.
Shown in the table. From Example 1 and Comparative Example 1, the low magnetostriction amorphous magnetic thin film containing Co (Fe 1-a Co a ) z Dy 1-b Rb has a higher magnetostriction value than the Dy-Fe magnetic thin film. , it is clear that it shows an excellent S/N ratio. In addition
At the same time, an improvement in the rotation angle due to the addition of Co was observed, and the synergistic effect of the two brought about a remarkable improvement in the S/N ratio.

【表】 実施例2〜6および比較例2〜5 第2表に示す組成(原子%)の実施例2〜6及
び比較例2〜5の9種類の合金材料を用いて、実
施例1と同様の方法で非晶質合金膜からなる磁性
合金を得た。 これら磁性合金の膜厚、飽和磁束密度、キユリ
ー点、飽和磁歪定数を組成と共に第2表に示し
た。 第2表から明らかな通り、本発明の磁性合金
(実施例2〜6)は、比較例2〜5の磁性合金に
比べ飽和磁歪定数の絶対値が著しく小さい。
[Table] Examples 2 to 6 and Comparative Examples 2 to 5 Using nine types of alloy materials of Examples 2 to 6 and Comparative Examples 2 to 5 having the compositions (atomic %) shown in Table 2, Example 1 and Comparative Examples 2 to 5 were used. A magnetic alloy consisting of an amorphous alloy film was obtained in a similar manner. The film thicknesses, saturation magnetic flux densities, Curie points, and saturation magnetostriction constants of these magnetic alloys are shown in Table 2 together with their compositions. As is clear from Table 2, the magnetic alloys of the present invention (Examples 2 to 6) have significantly smaller absolute values of saturation magnetostriction constants than the magnetic alloys of Comparative Examples 2 to 5.

【表】 [発明の効果] 以上の説明から明らかな通り、本発明の磁性合
金は飽和磁歪定数の絶対値が1×10-5以下であ
るため、その加工時に加わる内部応力によつて磁
気異方性が微視的に変動することがなく、物性の
均一性が保たれるので、得られる磁気記録媒体の
ノイズ特性が優れ、特に磁気光学記録媒体にあつ
ては、光磁気書き込み(熱磁気)時の熱的外乱に
よる媒体の特性劣化が防止されること、また、
Coa添加によつて、磁気光学記録媒体のケル回転
角が大きくなり、上記との相乗効果によつてノ
イズ特性が著しく改善されること、1イオン異
方性の大なるDy、Tb系合金であるため一軸磁気
異方性および保磁力特性に優れること、キユリ
ー点が50〜200℃の間にあるので光磁気書き込み
に大きなエネルギーを要しないこと、等の効果を
奏し、その工業的価値は極めて大である。
[Table] [Effects of the Invention] As is clear from the above explanation, since the magnetic alloy of the present invention has an absolute value of the saturation magnetostriction constant of 1×10 -5 or less, magnetic anomalies occur due to internal stress applied during processing. Since there is no microscopic change in orientation and the uniformity of physical properties is maintained, the resulting magnetic recording medium has excellent noise characteristics. ), the deterioration of the characteristics of the medium due to thermal disturbances is prevented;
The addition of Coa increases the Kel rotation angle of the magneto-optical recording medium, and the synergistic effect with the above significantly improves the noise characteristics.It is a Dy and Tb based alloy with large one-ion anisotropy. As a result, it has excellent uniaxial magnetic anisotropy and coercive force characteristics, and since the Curie point is between 50 and 200 degrees Celsius, it does not require much energy for magneto-optical writing, and its industrial value is extremely high. It is.

Claims (1)

【特許請求の範囲】 1 (Fe1-aCoazDy1-bRb (ここでR:Gd、Tb、Ho、Erのうちの一種ま
たは2種以上の組み合わせ) 0.3<a≦0.7 0.02≦b≦0.8 1.0≦z≦4.0 であることを特徴とする磁性合金。 2 磁性合金の形状が薄膜である特許請求の範囲
第1項記載の磁性合金。 3 磁性合金が非晶質である特許請求の範囲第1
項記載の磁性合金。
[Claims] 1 (Fe 1-a Co a ) z Dy 1-b R b (where R: one or a combination of two or more of Gd, Tb, Ho, and Er) 0.3<a≦0.7 A magnetic alloy characterized in that 0.02≦b≦0.8 and 1.0≦z≦4.0. 2. The magnetic alloy according to claim 1, wherein the magnetic alloy is in the form of a thin film. 3 Claim 1 in which the magnetic alloy is amorphous
Magnetic alloys described in section.
JP11510683A 1983-06-28 1983-06-28 Magnetic alloy Granted JPS609855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11510683A JPS609855A (en) 1983-06-28 1983-06-28 Magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11510683A JPS609855A (en) 1983-06-28 1983-06-28 Magnetic alloy

Publications (2)

Publication Number Publication Date
JPS609855A JPS609855A (en) 1985-01-18
JPH0515778B2 true JPH0515778B2 (en) 1993-03-02

Family

ID=14654376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11510683A Granted JPS609855A (en) 1983-06-28 1983-06-28 Magnetic alloy

Country Status (1)

Country Link
JP (1) JPS609855A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107751A (en) * 1983-11-17 1985-06-13 Canon Inc Photothermomagnetic recording medium
JPH0782670B2 (en) * 1985-07-12 1995-09-06 株式会社日立製作所 Magneto-optical recording medium
JPS62241547A (en) * 1986-04-14 1987-10-22 Nippon Sangyo Gijutsu Kk Contact reactor by concentric double cylindrical rotor
DE3904611A1 (en) * 1989-02-16 1990-08-23 Hoechst Ag MAGNETOOPTIC LAYER AND METHOD FOR THEIR PRODUCTION
DE69014049T2 (en) * 1989-09-08 1995-03-23 Toshiba Kawasaki Kk Magnetostrictive cobalt iron alloys and their product applications.
US5336337A (en) * 1991-02-05 1994-08-09 Kabushiki Kaisha Toshiba Magnetrostrictive materials and methods of making such materials
JPH05182265A (en) * 1991-04-30 1993-07-23 Canon Inc Magneto-optical recording medium
JPH05174437A (en) * 1991-04-30 1993-07-13 Canon Inc Magneto-optical recording medium
JP2925424B2 (en) * 1992-09-09 1999-07-28 三菱電機株式会社 Overwritable high-density magneto-optical recording medium
JP3192281B2 (en) * 1993-06-21 2001-07-23 シャープ株式会社 Recording method for magneto-optical recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961011A (en) * 1982-09-30 1984-04-07 Ricoh Co Ltd Optical magnetic recording medium

Also Published As

Publication number Publication date
JPS609855A (en) 1985-01-18

Similar Documents

Publication Publication Date Title
JPH0118506B2 (en)
JPS59103314A (en) Photomagnetic recording medium
JPH0515778B2 (en)
JPS6079702A (en) Photomagnetic recording medium
JPS6115308A (en) Photomagnetic recording material
US4497870A (en) Magneto-optical recording medium
JP2619623B2 (en) Magneto-optical recording medium
US5501913A (en) Garnet polycrystalline film for magneto-optical recording medium
US5053287A (en) Magnetooptical recording media and processes for production thereof
US5100741A (en) Magneto-optic recording systems
JPH0470705B2 (en)
JPS59162250A (en) Magnetic alloy
JPS6243847A (en) Photomagnetic recording medium
JPS59113162A (en) Magnetic alloy
JPS59159510A (en) Magnetooptical recording medium
JP3007239B2 (en) Garnet double layer film for magneto-optical recording medium and magneto-optical recording disk
JPH0646617B2 (en) Method for manufacturing magneto-optical recording material
JP2771674B2 (en) Soft magnetic alloy film
JPS62222609A (en) Photomagnetic recording medium
JPS61165846A (en) Photomagnetic recording medium
JPH0614488B2 (en) Magneto-optical recording medium
JP2635421B2 (en) Soft magnetic alloy film
JPH03178105A (en) Thin garnet film for magneto-optical recording medium
JPS62267950A (en) Magneto-optical recording medium
JPH0354845B2 (en)