JPH05156953A - Intake controller of internal combustion engine - Google Patents

Intake controller of internal combustion engine

Info

Publication number
JPH05156953A
JPH05156953A JP3324262A JP32426291A JPH05156953A JP H05156953 A JPH05156953 A JP H05156953A JP 3324262 A JP3324262 A JP 3324262A JP 32426291 A JP32426291 A JP 32426291A JP H05156953 A JPH05156953 A JP H05156953A
Authority
JP
Japan
Prior art keywords
intake
valve
control valve
intake passage
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3324262A
Other languages
Japanese (ja)
Other versions
JP2738190B2 (en
Inventor
Akio Yoshimatsu
昭夫 吉松
Toshio Yamada
敏生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3324262A priority Critical patent/JP2738190B2/en
Publication of JPH05156953A publication Critical patent/JPH05156953A/en
Application granted granted Critical
Publication of JP2738190B2 publication Critical patent/JP2738190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To make sure of good combustion as reducing the extent of any pumping loss. CONSTITUTION:An intake passage is divided into two parts, a first intake passage 8a and a second intake passage 8b, while an intake control valve 13 is set up in the first intake passages 8a, and an intake cutoff valve 15 is set up in the second intake passage 8b. At the time of engine low load driving, this intake cutoff valve 15 is closed, and a valve closing period of the intake control valve 13 is controlled, through which an intake air quantity being fed into a combustion chamber 4 is controlled. the valve closing period of the valve 13 at this time is made later as compared with the valve closing period at a time when one intake passage is installed at each cylinder and the intake control valve 13 is set up in this intake passage. At the time of engine high load driving, the intake cutoff valve 15 is fully opened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の吸気制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control system for an internal combustion engine.

【0002】[0002]

【従来の技術】吸気弁を介して燃焼室内に通ずる機関吸
気通路内に吸気制御弁を配置し、機関低負荷運転時には
吸気弁開弁後に吸気制御弁を開弁せしめると共に吸気弁
閉弁前に吸気制御弁を閉弁せしめるようにした内燃機関
が公知である(特開昭62−294719号公報参
照)。このように機関低負荷運転時に吸気制御弁の閉弁
時期を吸気弁の閉弁時期よりも早めるとそれに応じてス
ロットル弁の開度を大きくすることができ、斯くして機
関のポンピング損失を低減することができる。
2. Description of the Related Art An intake control valve is arranged in an engine intake passage communicating with a combustion chamber through an intake valve, and during low engine load operation, the intake control valve is opened after the intake valve is opened and before the intake valve is closed. There is known an internal combustion engine in which an intake control valve is closed (see Japanese Patent Laid-Open No. 62-294719). In this way, when the intake control valve is closed earlier than the intake valve during the engine low load operation, the throttle valve opening can be increased accordingly, thus reducing the pumping loss of the engine. can do.

【0003】[0003]

【発明が解決しようとする課題】ところで内燃機関では
燃焼室内に流入する吸入空気流によって燃焼室内に乱れ
が発生せしめられ、この乱れが圧縮行程末期まで持続す
るとこの乱れによって燃焼速度が速められるために良好
な燃焼を得ることができる。ところが上述のように吸気
制御弁の閉弁時期を早めると燃焼室内への吸入空気の流
入が停止してから圧縮行程末期までの時間が長くなるた
めに吸入空気流によって燃焼室内に発生した乱れが圧縮
行程末期までにかなり減衰してしまい、斯くして良好な
燃焼が得られなくなるという問題を生ずる。
In an internal combustion engine, however, a turbulence is generated in the combustion chamber by the intake air flow flowing into the combustion chamber, and if the turbulence lasts until the end of the compression stroke, the turbulence accelerates the combustion speed. Good combustion can be obtained. However, as described above, if the closing timing of the intake control valve is advanced, the time from the stop of the inflow of intake air into the combustion chamber to the end of the compression stroke becomes longer. By the end of the compression stroke, there is a considerable amount of decay, thus giving rise to the problem that good combustion cannot be obtained.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば、吸気弁を介して燃焼室内に通ずる
機関吸気通路を第1の吸気通路と第2の吸気通路に分割
し、第1の吸気通路内に吸気制御弁を配置して少くとも
機関低負荷運転時には吸気弁が開弁する前に吸気制御弁
を開弁させると共に吸気弁の開弁期間中における吸気制
御弁の開弁期間を制御して燃焼室内に供給される吸入空
気量を制御するようにし、第2の吸気通路内に吸気遮断
弁を配置して機関高負荷運転時には吸気遮断弁を開弁
し、機関低負荷運転時には吸気遮断弁を閉弁するように
している。
In order to solve the above problems, according to the present invention, an engine intake passage communicating with a combustion chamber through an intake valve is divided into a first intake passage and a second intake passage. , The intake control valve is arranged in the first intake passage to open the intake control valve before the intake valve opens at least during engine low load operation, and to prevent the intake control valve from opening during the opening period of the intake valve. The valve opening period is controlled to control the amount of intake air supplied to the combustion chamber, the intake cutoff valve is arranged in the second intake passage, and the intake cutoff valve is opened during engine high load operation. The intake cutoff valve is closed during low load operation.

【0005】[0005]

【作用】吸気通路を第1の吸気通路と第2の吸気通路に
分割し、第2の吸気通路内に配置された吸気遮断弁を閉
弁して第1の吸気通路内に配置された吸気制御弁により
吸入空気量を制御するようにした場合と、吸気通路を分
割することなく吸気通路を一つとし、この一つの吸気通
路内に配置された吸気制御弁により吸入空気量を制御す
るようにした場合とを比較してみると同一の吸入空気量
を得るためには吸気通路を分割した場合の吸気制御弁の
開弁期間が吸気通路を一つとした場合の吸気制御弁の開
弁期間に比べて長くなる。云い換えると吸気通路を分割
した場合には吸気通路を一つとした場合に比べて吸気制
御弁の閉弁時期が遅くなる。このように吸気遮断弁が閉
弁している機関低負荷運転時には吸気制御弁の閉弁時期
が遅らされるので吸入空気の流入作用によって燃焼室内
に発生せしめられた乱れがさほど減衰することなく圧縮
行程末期まで持続せしめられる。
The intake passage is divided into a first intake passage and a second intake passage, and an intake cutoff valve arranged in the second intake passage is closed to close the intake passage arranged in the first intake passage. A case where the intake air amount is controlled by a control valve and a case where the intake passage is divided into one intake passage and the intake air amount is controlled by an intake control valve arranged in this one intake passage Compared with the case where the intake air flow rate is the same, in order to obtain the same amount of intake air, the intake control valve open period when the intake passage is divided is the intake control valve open period when there is one intake passage. It will be longer than. In other words, when the intake passage is divided, the closing timing of the intake control valve is delayed as compared with the case where only one intake passage is provided. In this way, the closing timing of the intake control valve is delayed during engine low load operation when the intake cutoff valve is closed, so the turbulence generated in the combustion chamber due to the inflow action of intake air is not significantly attenuated. It is maintained until the end of the compression stroke.

【0006】[0006]

【実施例】図1および図2を参照すると、1はシリンダ
ブロック、2はピストン、3はシリンダヘッド、4は燃
焼室、5は一対の吸気弁、6は一対の吸気ポート、7は
一対の排気弁を夫々示す。各吸気ポート6は吸気枝管8
を介して共通のサージタンク9に接続され、サージタン
ク9はエアフローメータ10を介してエアクリーナ11
に連結される。図1に示されるように吸気枝管8内は第
1の吸気通路8aと第2の吸気通路8bとに分割されて
おり、各吸気通路8a,8bは夫々対応する吸気ポート
6に連通せしめられる。
1 and 2, reference numeral 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is a combustion chamber, 5 is a pair of intake valves, 6 is a pair of intake ports, and 7 is a pair of intake ports. Exhaust valves are shown respectively. Each intake port 6 is an intake branch pipe 8
Is connected to a common surge tank 9 via an air flow meter 10 and an air cleaner 11
Connected to. As shown in FIG. 1, the inside of the intake branch pipe 8 is divided into a first intake passage 8a and a second intake passage 8b, and the respective intake passages 8a and 8b are connected to the corresponding intake ports 6. ..

【0007】第1吸気通路8a内にはアクチュエータ1
2によって開閉制御される吸気制御弁13が配置され、
第2吸気通路8b内には負圧ダイアフラム装置14によ
って開閉制御される吸気遮断弁15が配置される。負圧
ダイアフラム装置14のダイアフラム負圧室14aは大
気に連通可能な電磁切換弁16を介して負圧タンク17
に連結され、この負圧タンク17は負圧ポンプ17aに
連結される。吸気制御弁13および吸気制御弁15下流
の吸気枝管8の上壁面には各吸気ポート6内に向けて燃
料を噴射するための燃料噴射弁18が配置される。図1
に示す実施例では第1吸気通路8aおよびこれに連通す
る吸気ポート6と第2吸気通路8bおよびこれに連通す
る吸気ポート6とは隔壁19によってほぼ完全に分離さ
れているが燃料噴射弁18の下流側において第1吸気通
路8aおよびこれに連通する吸気ポート6と第2吸気通
路8bおよびこれに連通する吸気ポート6とを互いに連
通せしめることもできる。なお、図1および図2からわ
かるように図1および図2に示す実施例では機関吸気通
路にアクセルペダル28に連結されたスロットル弁は配
置されていない。
The actuator 1 is provided in the first intake passage 8a.
An intake control valve 13 whose opening and closing is controlled by 2 is arranged,
An intake cutoff valve 15 whose opening and closing is controlled by a negative pressure diaphragm device 14 is arranged in the second intake passage 8b. The diaphragm negative pressure chamber 14a of the negative pressure diaphragm device 14 is provided with a negative pressure tank 17 via an electromagnetic switching valve 16 that can communicate with the atmosphere.
The negative pressure tank 17 is connected to the negative pressure pump 17a. A fuel injection valve 18 for injecting fuel toward each intake port 6 is arranged on the upper wall surface of the intake branch pipe 8 downstream of the intake control valve 13 and the intake control valve 15. Figure 1
In the embodiment shown in FIG. 1, the first intake passage 8a and the intake port 6 communicating therewith and the second intake passage 8b and the intake port 6 communicating therewith are almost completely separated by the partition wall 19. On the downstream side, the first intake passage 8a and the intake port 6 communicating therewith, and the second intake passage 8b and the intake port 6 communicating therewith can also be made to communicate with each other. As can be seen from FIGS. 1 and 2, in the embodiment shown in FIGS. 1 and 2, the throttle valve connected to the accelerator pedal 28 is not arranged in the engine intake passage.

【0008】電子制御ユニット20はディジタルコンピ
ュータからなり、双方向性バス21によって相互に接続
されたROM(リードオンリメモリ)22,RAM(ラ
ンダムアクセスメモリ)23,CPU(マイクロプロセ
ッサ)24、入力ポート25および出力ポート26を具
備する。エアフローメータ10は吸入空気量に比例した
出力電圧を発生し、この出力電圧はAD変換器27を介
して入力ポート25に入力される。また、アクセルペダ
ル28にはアクセルペダル28の踏込み量に比例した出
力電圧を発生する負荷センサ29が取付けられ、この負
荷センサ29の出力電圧はAD変換器30を介して入力
ポート25に入力される。更に入力ポート25には機関
回転数を表わす出力パルスを発生する回転数センサ31
が接続される。一方、出力ポート26は対応する駆動回
路32,33を介して吸気制御弁13のアクチュエータ
12および電磁切換弁16に接続される。
The electronic control unit 20 is composed of a digital computer and has a ROM (read only memory) 22, a RAM (random access memory) 23, a CPU (microprocessor) 24, and an input port 25 which are mutually connected by a bidirectional bus 21. And an output port 26. The air flow meter 10 generates an output voltage proportional to the intake air amount, and this output voltage is input to the input port 25 via the AD converter 27. A load sensor 29 that generates an output voltage proportional to the depression amount of the accelerator pedal 28 is attached to the accelerator pedal 28, and the output voltage of the load sensor 29 is input to the input port 25 via the AD converter 30. .. Further, the input port 25 has a rotation speed sensor 31 for generating an output pulse representing the engine rotation speed.
Are connected. On the other hand, the output port 26 is connected to the actuator 12 of the intake control valve 13 and the electromagnetic switching valve 16 via the corresponding drive circuits 32 and 33.

【0009】図3(A)および(B)にアクチュエータ
12および駆動回路32を概略的に示す。図1および図
2に示されるように吸気制御弁13の弁軸40の下端部
には円筒状の永久磁石41が固定されており、図3
(A)および(B)に示すようにこの永久磁石41には
弁軸40の軸線に対して互いに反対側にN極とS極が形
成される。永久磁石41に周囲には90度の角度間隔を
隔てて永久磁石42、電磁石43、永久磁石44、電磁
石45が順次配列されている。永久磁石42には永久磁
石41の外周面に対面する側にS極が形成されており、
永久磁石44には永久磁石41の外周面に対面する側に
N極が形成されている。
The actuator 12 and the drive circuit 32 are schematically shown in FIGS. As shown in FIGS. 1 and 2, a cylindrical permanent magnet 41 is fixed to the lower end of the valve shaft 40 of the intake control valve 13,
As shown in (A) and (B), an N pole and an S pole are formed on the permanent magnet 41 on opposite sides to the axis of the valve shaft 40. Permanent magnets 41, electromagnets 43, permanent magnets 44, and electromagnets 45 are sequentially arranged around the permanent magnets 41 at intervals of 90 degrees. The permanent magnet 42 has an S pole formed on the side facing the outer peripheral surface of the permanent magnet 41,
An N pole is formed on the permanent magnet 44 on the side facing the outer peripheral surface of the permanent magnet 41.

【0010】電磁石43の励磁コイル46の一端および
電磁石45の励磁コイル47の一端は互いに接続され、
励磁コイル46の他端および励磁コイル47の他端は夫
々駆動回路32の可動接点48,49に接続される。駆
動回路32は実際には電子回路からなるが図3(A)お
よび(B)ではこれを簡略化して可動接点48,49で
表わしている。これら可動接点48,49の切換え作用
は電子制御ユニット20の出力信号に基いて行われる。
One end of the exciting coil 46 of the electromagnet 43 and one end of the exciting coil 47 of the electromagnet 45 are connected to each other,
The other end of the exciting coil 46 and the other end of the exciting coil 47 are connected to the movable contacts 48 and 49 of the drive circuit 32, respectively. The drive circuit 32 is actually composed of an electronic circuit, but in FIGS. 3A and 3B, it is represented by movable contacts 48 and 49 in a simplified form. The switching operation of the movable contacts 48 and 49 is performed based on the output signal of the electronic control unit 20.

【0011】図3(A)に示されるように可動接点48
が電源に接続され、可動接点49が接地されると電磁石
43は永久磁石41の外周面に対面する側がN極とな
り、電磁石45は永久磁石41の外周面に対面する側が
S極となる。このとき吸気制御弁13は図1において破
線で示されるように全開する。これに対して図3(B)
に示されるように可動接点48が接地され、可動接点4
9が電源に接続されると電磁石43は永久磁石41の外
周面に対面する側がS極となり、電磁石45は永久磁石
41に対面する側がN極となる。従ってこのときには吸
気制御弁13が90度回転し、吸気制御弁13は図1に
おいて実線で示されるように吸気枝管8内の通路を全閉
する。従って可動接点48,49を切換えることによっ
て吸気制御弁13を全開又は全閉せしめることができる
ことがわかる。
As shown in FIG. 3A, the movable contact 48
Is connected to a power source and the movable contact 49 is grounded, the electromagnet 43 has an N pole on the side facing the outer peripheral surface of the permanent magnet 41, and the electromagnet 45 has an S pole on the side facing the outer peripheral surface of the permanent magnet 41. At this time, the intake control valve 13 is fully opened as shown by the broken line in FIG. On the other hand, FIG. 3 (B)
The movable contact 48 is grounded as shown in FIG.
When 9 is connected to a power source, the electromagnet 43 has an S pole on the side facing the outer peripheral surface of the permanent magnet 41, and the electromagnet 45 has an N pole on the side facing the permanent magnet 41. Therefore, at this time, the intake control valve 13 rotates 90 degrees, and the intake control valve 13 fully closes the passage in the intake branch pipe 8 as shown by the solid line in FIG. Therefore, it is understood that the intake control valve 13 can be fully opened or fully closed by switching the movable contacts 48, 49.

【0012】一方、電磁切換弁16の切替え作用によっ
てダイアフラム負圧室14aを大気に開放すると吸気遮
断弁15は図1に示されるように全閉する。これに対し
て電磁切換弁16の切換え作用によってダイアフラム負
圧室14aが負圧タンク17に連結されると吸気遮断弁
15は全開する。従って電磁切換弁16を切換えること
によって吸気遮断弁15を全開又は全閉せしめることが
できることがわかる。
On the other hand, when the diaphragm negative pressure chamber 14a is opened to the atmosphere by the switching action of the electromagnetic switching valve 16, the intake cutoff valve 15 is fully closed as shown in FIG. On the other hand, when the diaphragm negative pressure chamber 14a is connected to the negative pressure tank 17 by the switching action of the electromagnetic switching valve 16, the intake cutoff valve 15 is fully opened. Therefore, it is understood that the intake cutoff valve 15 can be fully opened or fully closed by switching the electromagnetic switching valve 16.

【0013】本発明において採用されている吸気制御方
法では基本的には各気筒に対して1個の吸気通路を設け
ると共にこの吸気通路内に吸気制御弁13を設け、この
吸気制御弁13を図4のA,Bで示されるように吸気弁
5が開弁せしめられる前に全開せしめ、吸気弁5が閉弁
する前に閉弁せしめる。更に、吸気弁5の開弁期間およ
び吸気制御弁13の開弁時期θ0は固定しておき、吸気
制御弁13の閉弁時期θCを制御する。燃焼室4内に吸
入空気が供給されるのは吸気弁5および吸気制御弁13
が共に開弁している期間たけであり、従って吸気制御弁
13の閉弁時期θCを制御することによって燃焼室4内
に供給される吸入空気量が制御されることになる。従っ
て吸入空気量の多い機関高負荷運転時には図4において
Aで示されるように吸気制御弁13の閉弁時期が遅くな
り、吸入空気量の少ない機関低負荷運転時には図4にお
いてBで示されるように吸気制御弁13の閉弁時期が早
められる。
In the intake control method adopted in the present invention, basically, one intake passage is provided for each cylinder, and an intake control valve 13 is provided in the intake passage. 4, the intake valve 5 is fully opened before being opened, and the intake valve 5 is closed before being closed. Further, the opening period of the intake valve 5 and the opening timing θ0 of the intake control valve 13 are fixed, and the closing timing θC of the intake control valve 13 is controlled. The intake air is supplied into the combustion chamber 4 by the intake valve 5 and the intake control valve 13.
Are only open for a while, and therefore the amount of intake air supplied into the combustion chamber 4 is controlled by controlling the closing timing θC of the intake control valve 13. Therefore, the closing timing of the intake control valve 13 is delayed as shown by A in FIG. 4 during engine high load operation with a large intake air amount, and as shown by B in FIG. 4 during engine low load operation with a small intake air amount. Then, the closing timing of the intake control valve 13 is advanced.

【0014】ところで本発明において採用されている吸
気制御方法では基本的には機関吸気通路内にアクセルペ
ダルに連結されたスロットル弁は設けられておらず、ま
た上述したように吸気制御弁13は吸気弁5が開弁する
前に開弁せしめられる。従って吸気弁5が開弁する直前
には吸気ポート6内は大気圧となっている。次いで吸気
弁5が開弁して燃焼室4内に吸入空気の流入が開始され
ても吸気制御弁13は全開しているので燃焼室4内は大
きな負圧が発生することなくほぼ大気圧に維持され、斯
くしてポンピング損失を低減することができることにな
る。
By the way, in the intake control method employed in the present invention, basically, no throttle valve connected to the accelerator pedal is provided in the engine intake passage, and as described above, the intake control valve 13 is the intake valve. The valve 5 is opened before it is opened. Therefore, immediately before the intake valve 5 opens, the inside of the intake port 6 is at atmospheric pressure. Next, even if the intake valve 5 is opened and the intake air is started to flow into the combustion chamber 4, the intake control valve 13 is fully opened, so that the inside of the combustion chamber 4 does not generate a large negative pressure and becomes almost atmospheric pressure. It will be maintained and thus the pumping losses can be reduced.

【0015】ところが機関負荷が低くなると図4におい
てBで示されるように吸気制御弁13の閉弁時期が早め
られる。ところが吸気制御弁13の閉弁時期が早められ
ると燃焼室4内への吸入空気の流入が停止してから圧縮
行程末期までの期間が長くなる。その結果、燃焼室4内
に流入した空気によって燃焼室4内に発生した乱れが圧
縮行程末期までにかなり減衰し、斯くしてポンピング損
失は低減できるものの、良好な燃焼を得ることができな
くなる。図5はこのことを示している。即ち、図5にお
いて破線はスロットル弁を具えた通常の内燃機関におけ
るトルク変動を示しており、吸気制御弁13を用いた場
合には図5において実線で示されるように機関負荷が低
くなると燃焼が悪化してトルク変動が大きくなる。
However, when the engine load decreases, the closing timing of the intake control valve 13 is advanced as indicated by B in FIG. However, if the closing timing of the intake control valve 13 is advanced, the period from the stop of the inflow of intake air into the combustion chamber 4 to the end of the compression stroke becomes longer. As a result, the turbulence generated in the combustion chamber 4 due to the air flowing into the combustion chamber 4 is considerably attenuated by the end of the compression stroke. Therefore, although pumping loss can be reduced, good combustion cannot be obtained. FIG. 5 illustrates this. That is, the broken line in FIG. 5 shows the torque fluctuation in a normal internal combustion engine equipped with a throttle valve, and when the intake control valve 13 is used, combustion will occur when the engine load becomes low as shown by the solid line in FIG. It deteriorates and the torque fluctuation increases.

【0016】そこで本発明による実施例では機関低負荷
運転時にトルク変動が大きくなるのを阻止するために吸
気通路を第1吸気通路8aと第2吸気通路8bとに分割
し、第1吸気通路8a内に吸気制御弁13を配置すると
共に第2吸気通路8b内に吸気遮断弁15を配置し、機
関低負荷運転時には吸気遮断弁15を全閉すると共に吸
気制御弁13の閉弁時期を制御して燃焼室4内に供給さ
れる吸入空気量を制御するようにしている。このように
吸気通路を2分割して片方の吸気通路を吸気遮断弁15
によって閉弁すると吸入空気の流れ面積は1個の吸気通
路を用いた場合に比べてかなり小さくなる。従って吸入
空気が流入しずらくなるために同一吸入空気量を得るた
めには1個の吸気通路を用いた場合に比べて吸気制御弁
13の閉弁時期を遅くしなければならないことになる。
云い換えると吸気制御弁13の閉弁時期を遅くすること
ができ、斯くして吸入空気流により燃焼室4内に発生し
た乱れを圧縮行程末期までさほど減衰することなく持続
することができるようになるので機関低負荷運転時であ
っても良好な燃焼が得られることになる。これが本発明
の基本的な考え方である。
Therefore, in the embodiment according to the present invention, the intake passage is divided into the first intake passage 8a and the second intake passage 8b in order to prevent the torque fluctuation from increasing during low engine load operation. The intake control valve 13 is disposed therein, and the intake cutoff valve 15 is disposed in the second intake passage 8b. The intake cutoff valve 15 is fully closed and the closing timing of the intake control valve 13 is controlled during engine low load operation. Therefore, the amount of intake air supplied into the combustion chamber 4 is controlled. Thus, the intake passage is divided into two, and one intake passage is connected to the intake cutoff valve 15
When the valve is closed by, the flow area of the intake air becomes considerably smaller than the case where one intake passage is used. Therefore, since the intake air becomes difficult to flow in, in order to obtain the same intake air amount, it is necessary to delay the closing timing of the intake control valve 13 as compared with the case where one intake passage is used.
In other words, the closing timing of the intake control valve 13 can be delayed, so that the turbulence generated in the combustion chamber 4 due to the intake air flow can be maintained until the end of the compression stroke without being significantly attenuated. Therefore, good combustion can be obtained even during engine low load operation. This is the basic idea of the present invention.

【0017】ところで本発明による実施例ではトルク変
動が大きくなる機関低負荷運転時ばかりでなく、第1吸
気通路8aのみから吸入空気を流入させていたのでは吸
入空気量が不足する限界まで吸気遮断弁15を全閉せし
めるようにしている。この限界は吸入空気量Qと機関回
転数Nの関数であり、この限界が図6においてQnli
mitで示されている。図6からわかるように吸入空気
量QがQnlimitよりも少ないときは吸気遮断弁1
5が全閉せしめられ、吸入空気量QがQnlimitよ
りも多くなると吸気制御弁15が全開せしめられる。
By the way, in the embodiment according to the present invention, not only during engine low load operation where torque fluctuation becomes large, but intake air is cut off to the limit where the intake air amount becomes insufficient if intake air is introduced only from the first intake passage 8a. The valve 15 is fully closed. This limit is a function of the intake air amount Q and the engine speed N, and this limit is Qnli in FIG.
It is shown in mit. As can be seen from FIG. 6, when the intake air amount Q is smaller than Qnlimit, the intake cutoff valve 1
5 is fully closed, and when the intake air amount Q becomes larger than Qnlimit, the intake control valve 15 is fully opened.

【0018】図7は本発明による実施例において用いら
れている吸気制御弁13の開度制御を示している。図7
において吸気制御弁13はクランク角θ0において開弁
せしめられ、クランクθCにおいて閉弁せしめられる。
この場合、吸気制御弁13の開弁時期θ0は吸気弁5が
開弁する前の一定クランク角に固定されており、吸気制
御弁13の閉弁時期θCが制御される。
FIG. 7 shows the opening control of the intake control valve 13 used in the embodiment according to the present invention. Figure 7
In, the intake control valve 13 is opened at the crank angle θ0 and closed at the crank θC.
In this case, the opening timing θ0 of the intake control valve 13 is fixed to a constant crank angle before the intake valve 5 opens, and the closing timing θC of the intake control valve 13 is controlled.

【0019】吸気制御弁13の開弁時期θCはアクセル
ペダル28の踏込み量Lと機関回転数Nとの関数であ
り、これが図8に示されている。なお、図8において実
線Xは吸気遮断弁15が閉弁せしめられているときの吸
気制御弁13の閉弁時期θCを示しており、破線Yは吸
気遮断弁15が開弁せしめられているときの吸気制御弁
13の閉弁時期θCを示している。また図8(A)は機
関回転数Nを一定とした場合の、図8(B)はアクセル
ペダル28の踏込み量Lを一定とした場合の吸気制御弁
13の閉弁時期θCの変化を示している。
The valve opening timing θC of the intake control valve 13 is a function of the depression amount L of the accelerator pedal 28 and the engine speed N, which is shown in FIG. In FIG. 8, a solid line X indicates the closing timing θC of the intake control valve 13 when the intake cutoff valve 15 is closed, and a broken line Y indicates when the intake cutoff valve 15 is opened. The closing timing θC of the intake control valve 13 is shown. Further, FIG. 8A shows a change in the closing timing θC of the intake control valve 13 when the engine speed N is constant, and FIG. 8B is when the depression amount L of the accelerator pedal 28 is constant. ing.

【0020】図8(A)からわかるように吸気遮断弁1
5が閉弁せしめられていようと開弁せしめられていよう
とアクセルペダル28の踏込み量Lが大きくなるほど吸
気制御弁13の閉弁時期θCが大きくなり、即ち吸気制
御弁13の閉弁時期θCが遅くなり、斯くして燃焼室4
内に供給される吸入空気量が増大せしめられる。一方、
アクセルペダル28の踏込み量Lが一定の場合には、即
ち吸気制御弁13の閉弁時期θCが一定の場合には機関
回転数Nが高くなるほど吸入空気量が減少する。従って
機関回転数Nが高くなっても吸入空気量が減少しないよ
うに、即ち吸入空気量が機関回転数Nにかかわらずにア
クセルペダル28の踏込み量Lによって定まる最適な吸
入空気量となるように図8(B)に示す如く機関回転数
Nが高くなるにつれて吸気制御弁13の閉弁時期θCが
遅くされる。
As can be seen from FIG. 8 (A), the intake cutoff valve 1
5 is closed or opened, the larger the depression amount L of the accelerator pedal 28, the larger the closing timing θC of the intake control valve 13, that is, the closing timing θC of the intake control valve 13. Slower, thus combustion chamber 4
The amount of intake air supplied to the inside is increased. on the other hand,
When the depression amount L of the accelerator pedal 28 is constant, that is, when the closing timing θC of the intake control valve 13 is constant, the intake air amount decreases as the engine speed N increases. Therefore, even if the engine speed N becomes high, the intake air amount does not decrease, that is, the intake air amount becomes an optimum intake air amount determined by the depression amount L of the accelerator pedal 28 regardless of the engine speed N. As shown in FIG. 8B, the closing timing θC of the intake control valve 13 is delayed as the engine speed N increases.

【0021】なお、図8においてXで示される吸気遮断
弁15が閉弁せしめられているときの吸気制御弁13の
閉弁時期θCはアクセルペダル踏込み量Lと機関回転数
Nの関数として図9(A)に示すマップの形で予めRO
M22内に記憶されており、図8においてYで示される
吸気遮断弁15が開弁せしめられているときの吸気制御
弁13の閉弁時期θCはアクセルペダル踏込み量Lと機
関回転数Nの関数として図9(B)に示すマップの形で
予めROM22内に記憶されている。なお、吸気遮断弁
15が閉弁せしめられているときの吸気制御弁13の閉
弁時期θCは一個の吸気通路を設けた場合に比べて遅く
なっている。
It should be noted that the closing timing θC of the intake control valve 13 when the intake cutoff valve 15 shown by X in FIG. 8 is closed is a function of the accelerator pedal depression amount L and the engine speed N as shown in FIG. RO in advance in the form of the map shown in (A)
The valve closing timing θC of the intake control valve 13 stored in M22 and indicated by Y in FIG. 8 when the intake cutoff valve 15 is opened is a function of the accelerator pedal depression amount L and the engine speed N. Is stored in advance in the ROM 22 in the form of the map shown in FIG. The closing timing θC of the intake control valve 13 when the intake cutoff valve 15 is closed is delayed as compared with the case where one intake passage is provided.

【0022】図10は吸気制御弁13および吸気遮断弁
15の制御ルーチンを示しており、このルーチンは例え
ば一定クランク角度毎の割込みによって実行される。図
10を参照するとまず初めにステップ60において吸入
空気量Q、機関回転数Nおよびアクセルペダル踏込み量
Lが読込まれる。次いでステップ61では吸入空気量Q
および機関回転数Nに基いて図6からQnlimitが
算出される。次いでステップ62では吸入空気量QがQ
nlimitよりも小さいか否かが判別される。Q≦Q
nlimitのときにはステップ63に進んで吸気制御
弁13の開弁時期θ0が読込まれる。この開弁時期θ0
は固定値である。次いでステップ64ではアクセルペダ
ル踏込み量Lおよび機関回転数Nに基いて図9(A)に
示すマップから吸気制御弁13の閉弁時期θCが算出さ
れる。
FIG. 10 shows a control routine for the intake control valve 13 and the intake cutoff valve 15. This routine is executed, for example, by interruption every fixed crank angle. Referring to FIG. 10, first, at step 60, the intake air amount Q, the engine speed N and the accelerator pedal depression amount L are read. Next, at step 61, the intake air amount Q
And Qnlimit is calculated from FIG. 6 based on the engine speed N. Next, at step 62, the intake air amount Q is Q
It is determined whether it is smaller than nlimit. Q ≦ Q
When it is nlimit, the routine proceeds to step 63, where the opening timing θ0 of the intake control valve 13 is read. This valve opening timing θ0
Is a fixed value. Next, at step 64, the valve closing timing θC of the intake control valve 13 is calculated from the map shown in FIG. 9A based on the accelerator pedal depression amount L and the engine speed N.

【0023】次いでステップ65ではダイアフラム負圧
室14aを大気に開放するように電磁切換弁16が切換
えられ、斯くして吸気遮断弁15が閉弁せしめられる。
次いでステップ66では吸気制御弁13を開弁時期θ0
から開弁時期θCまで全開せしめるための処理が行われ
る。一方、ステップ62においてQ>Qnlimitで
あると判別されたときにはステップ67に進んで吸気制
御弁13の開弁時期θ0が読込まれる。この開弁時期θ
0は前述したように固定値である。次いでステップ68
では図9(B)に示すマップに基いてアクセルペダル踏
込み量Lおよび機関回転数Nに応じた吸気制御弁13の
閉弁時期θCが算出される。次いでステップ69ではダ
イアフラム負圧室14aを負圧タンク17に連結するよ
うに電磁切換弁16が切換えられ、斯くして吸気遮断弁
15が全開せしめられる。次いでステップ66では吸気
制御弁13を開弁時期θ0から開弁時期θCまで全開せ
しめるための処理が行われる。
Next, at step 65, the electromagnetic switching valve 16 is switched so as to open the diaphragm negative pressure chamber 14a to the atmosphere, and thus the intake cutoff valve 15 is closed.
Next, at step 66, the intake control valve 13 is opened at the timing θ0.
To the valve opening timing θC is performed. On the other hand, when it is determined in step 62 that Q> Qnlimit, the routine proceeds to step 67, where the valve opening timing θ0 of the intake control valve 13 is read. This valve opening timing θ
0 is a fixed value as described above. Then step 68
Then, the valve closing timing θC of the intake control valve 13 is calculated according to the accelerator pedal depression amount L and the engine speed N based on the map shown in FIG. 9B. Next, at step 69, the electromagnetic switching valve 16 is switched so as to connect the diaphragm negative pressure chamber 14a to the negative pressure tank 17, and thus the intake cutoff valve 15 is fully opened. Next, at step 66, processing is performed to fully open the intake control valve 13 from the valve opening timing θ0 to the valve opening timing θC.

【0024】吸入空気量QがQnlimitよりも大き
くなって吸気遮断弁15が開弁せしめられるような高吸
入空気量時には本来的にポンピング損失が小さくなる。
従ってこのときにはこれまで述べたように吸気制御弁1
3の閉弁時期θCを制御することなく吸気制御弁13を
全開状態に保持し、エアフローメータ10とサージタン
ク9間にスロットル弁を設けてこのスロットル弁により
吸入空気量を制御するようにしてもよい。ただし、この
場合には吸入空気量QがQnlimitよりも小さいと
きにはスロットル弁は全開又は全開近くに保持される。
When the intake air amount Q is larger than Qnlimit and the intake cutoff valve 15 is opened, the pumping loss is essentially reduced when the intake air amount is high.
Therefore, at this time, as described above, the intake control valve 1
Even if the intake control valve 13 is kept fully open without controlling the valve closing timing θC of No. 3, a throttle valve is provided between the air flow meter 10 and the surge tank 9, and the intake air amount is controlled by this throttle valve. Good. However, in this case, when the intake air amount Q is smaller than Qnlimit, the throttle valve is held at or near full opening.

【0025】[0025]

【発明の効果】機関の全運転領域に亘ってポンピング損
失を低減しつつ良好な燃焼を得ることができる。
As described above, good combustion can be obtained while reducing pumping loss over the entire operating region of the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】内燃機関の平面断面図である。FIG. 1 is a plan sectional view of an internal combustion engine.

【図2】図1に示す内燃機関の全体図である。FIG. 2 is an overall view of the internal combustion engine shown in FIG.

【図3】アクチュエータおよび駆動回路を概略的に示す
図である。
FIG. 3 is a diagram schematically showing an actuator and a drive circuit.

【図4】吸気制御弁の開度変化を示す図である。FIG. 4 is a diagram showing changes in the opening of the intake control valve.

【図5】トルク変動を示す図である。FIG. 5 is a diagram showing torque fluctuations.

【図6】吸気遮断弁の開閉領域を示す図である。FIG. 6 is a diagram showing an opening / closing region of an intake cutoff valve.

【図7】吸気制御弁の開度変化を示す線図である。FIG. 7 is a diagram showing a change in the opening of the intake control valve.

【図8】吸気制御弁の閉弁時期を示す線図である。FIG. 8 is a diagram showing a valve closing timing of an intake control valve.

【図9】マップを示す図である。FIG. 9 is a diagram showing a map.

【図10】吸気制御弁および吸気遮断弁を制御するため
のフローチャートである。
FIG. 10 is a flowchart for controlling an intake control valve and an intake cutoff valve.

【符号の説明】[Explanation of symbols]

5…吸気弁 6…吸気ポート 8a…第1吸気通路 8b…第2吸気通路 13…吸気制御弁 15…吸気遮断弁 5 ... Intake valve 6 ... Intake port 8a ... 1st intake passage 8b ... 2nd intake passage 13 ... Intake control valve 15 ... Intake cutoff valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸気弁を介して燃焼室内に通ずる機関吸
気通路を第1の吸気通路と第2の吸気通路に分割し、該
第1の吸気通路内に吸気制御弁を配置して少くとも機関
低負荷運転時には吸気弁が開弁する前に吸気制御弁を開
弁させると共に吸気弁の開弁期間中における吸気制御弁
の開弁期間を制御して燃焼室内に供給される吸入空気量
を制御するようにし、該第2の吸気通路内に吸気遮断弁
を配置して機関高負荷運転時には該吸気遮断弁を開弁
し、機関低負荷運転時には該吸気遮断弁を閉弁するよう
にした内燃機関の吸気制御装置。
1. An engine intake passage communicating with a combustion chamber through an intake valve is divided into a first intake passage and a second intake passage, and an intake control valve is disposed in the first intake passage at least. During low engine load operation, the intake control valve is opened before the intake valve is opened, and the opening period of the intake control valve during the opening period of the intake valve is controlled to control the intake air amount supplied to the combustion chamber. The intake cutoff valve is arranged in the second intake passage so that the intake cutoff valve is opened during high engine load operation and the intake cutoff valve is closed during engine low load operation. Intake control device for internal combustion engine.
JP3324262A 1991-12-09 1991-12-09 Intake control device for internal combustion engine Expired - Fee Related JP2738190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3324262A JP2738190B2 (en) 1991-12-09 1991-12-09 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3324262A JP2738190B2 (en) 1991-12-09 1991-12-09 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH05156953A true JPH05156953A (en) 1993-06-22
JP2738190B2 JP2738190B2 (en) 1998-04-08

Family

ID=18163845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324262A Expired - Fee Related JP2738190B2 (en) 1991-12-09 1991-12-09 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2738190B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564384A (en) * 1993-11-08 1996-10-15 Hitachi, Ltd. Intake system for internal combustion engine
JP2002285852A (en) * 2001-03-27 2002-10-03 Denso Corp Valve device for controlling intake air for internal combustion engine
DE4447938B4 (en) * 1993-11-08 2005-03-10 Hitachi Ltd Intake system for IC engine - has high speed air admitted to combustion chamber to give swirl to air- fuel mixture
JP2008025562A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Control device for internal combustion engine
JP2010196590A (en) * 2009-02-25 2010-09-09 Denso Corp Intake valve drive unit and intake valve device
US7917279B2 (en) 2006-07-25 2011-03-29 Toyota Jidosha Kabushiki Kaisha Method of controlling a mechanical compression ratio, a closing timing of an intake valve and air stream

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698536A (en) * 1980-01-07 1981-08-08 Isao Matsui Internal combustion engine
JPS57173526A (en) * 1981-04-20 1982-10-25 Mazda Motor Corp Intake device of engine
JPS58117317A (en) * 1981-12-29 1983-07-12 Yamaha Motor Co Ltd Suction device for four-cycle engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698536A (en) * 1980-01-07 1981-08-08 Isao Matsui Internal combustion engine
JPS57173526A (en) * 1981-04-20 1982-10-25 Mazda Motor Corp Intake device of engine
JPS58117317A (en) * 1981-12-29 1983-07-12 Yamaha Motor Co Ltd Suction device for four-cycle engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564384A (en) * 1993-11-08 1996-10-15 Hitachi, Ltd. Intake system for internal combustion engine
US5645029A (en) * 1993-11-08 1997-07-08 Hitachi, Ltd. Intake system for internal combustion engine
US5765524A (en) * 1993-11-08 1998-06-16 Hitachi, Ltd. Intake system for internal combustion engine
DE4447938B4 (en) * 1993-11-08 2005-03-10 Hitachi Ltd Intake system for IC engine - has high speed air admitted to combustion chamber to give swirl to air- fuel mixture
JP2002285852A (en) * 2001-03-27 2002-10-03 Denso Corp Valve device for controlling intake air for internal combustion engine
JP4557116B2 (en) * 2001-03-27 2010-10-06 株式会社デンソー Valve device for intake control of internal combustion engine
JP2008025562A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Control device for internal combustion engine
US7917279B2 (en) 2006-07-25 2011-03-29 Toyota Jidosha Kabushiki Kaisha Method of controlling a mechanical compression ratio, a closing timing of an intake valve and air stream
JP2010196590A (en) * 2009-02-25 2010-09-09 Denso Corp Intake valve drive unit and intake valve device

Also Published As

Publication number Publication date
JP2738190B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US5632249A (en) Air flow control device of engine
EP1249593B1 (en) Control system and method for a multi-cylinder internal combustion engine
JP2738190B2 (en) Intake control device for internal combustion engine
JP2001159345A (en) Intake air quantity control device for engine
JP2001159355A (en) Intake air quantity control device for engine
JP2857950B2 (en) Intake control device for internal combustion engine
JPH07133726A (en) Intake air controller of internal combustion engine
JPH05187238A (en) Air intake control device for internal combustion engine
JPS61164009A (en) Low noise and high output operated tappet valve system
JP2897570B2 (en) Intake control device for internal combustion engine
JPH05156951A (en) Intake controller for internal combustion engine
JPS60240822A (en) Suction system for engine
JPS608117Y2 (en) engine intake system
KR200149879Y1 (en) Intake apparatus in engine
JPH08109854A (en) Exhaust reflux control device for internal combustion engine
JPH10141072A (en) Control device for engine with mechanical supercharger
JP2591258B2 (en) Intake device for internal combustion engine
JPH05332145A (en) Intake controller of internal combustion engine
JPH04325716A (en) Intake air device of internal combustion engine
JPS61218722A (en) Intake device of engine
JPH1030502A (en) Flow controller of internal combustion engine
JPH05272343A (en) Intake air controller of internal combustion engine
JPH05187237A (en) Intake air control device for internal combustion engine
JPH05312066A (en) Fuel injection quantity control method of engine equipped with variable intake system
JPH04347338A (en) Intake system for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees