JPH05156950A - Intake controller for internal combustion engine - Google Patents

Intake controller for internal combustion engine

Info

Publication number
JPH05156950A
JPH05156950A JP3321844A JP32184491A JPH05156950A JP H05156950 A JPH05156950 A JP H05156950A JP 3321844 A JP3321844 A JP 3321844A JP 32184491 A JP32184491 A JP 32184491A JP H05156950 A JPH05156950 A JP H05156950A
Authority
JP
Japan
Prior art keywords
control valve
intake
intake control
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3321844A
Other languages
Japanese (ja)
Other versions
JP2857950B2 (en
Inventor
昭夫 ▲吉▼松
Akio Yoshimatsu
Yurio Nomura
由利夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP3321844A priority Critical patent/JP2857950B2/en
Publication of JPH05156950A publication Critical patent/JPH05156950A/en
Application granted granted Critical
Publication of JP2857950B2 publication Critical patent/JP2857950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To make sure of good combustion as reducing the extent of any pumping loss. CONSTITUTION:An intake control valve 13 is set up in an intake branch pipe 8. This intake control valve 13 is fully opened before an intake valve is opened while this valve 13 is fully closed prior to the valve 5 closed to the full. At the time of engine high load driving, valve closing timing for the intake control valve 13 is controlled, through which an intake air quantity being fed into a combustion chamber 4 is controlled. At the time of engine low load driving, the intake control valve 13 is kept in a state of being partially opened in time of opening this valve 13, and simultaneously the closing timing of the intake control valve 13 is made later than that of the valve 13 at a time when this valve 13 is fully opened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の吸気制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control system for an internal combustion engine.

【0002】[0002]

【従来の技術】吸気弁を介して燃焼室内に通ずる機関吸
気通路内に吸気制御弁を配置し、機関低負荷運転時には
吸気弁開弁後に吸気制御弁を開弁せしめると共に吸気弁
閉弁前に吸気制御弁を閉弁せしめるようにした内燃機関
が公知である(特開昭62−294719号公報参
照)。このように機関低負荷運転時に吸気制御弁の閉弁
時期を吸気弁の閉弁時期よりも早めると機関のポンピン
グ損失を低減することができる。
2. Description of the Related Art An intake control valve is arranged in an engine intake passage communicating with a combustion chamber through an intake valve, and during low engine load operation, the intake control valve is opened after the intake valve is opened and before the intake valve is closed. There is known an internal combustion engine in which an intake control valve is closed (see Japanese Patent Laid-Open No. 62-294719). As described above, when the intake control valve is closed at an engine low load operation earlier than the intake valve is closed, the pumping loss of the engine can be reduced.

【0003】[0003]

【発明が解決しようとする課題】ところで内燃機関では
燃焼室内に流入する吸入空気流によって燃焼室内に乱れ
が発生せしめられ、この乱れが圧縮行程末期まで持続す
るとこの乱れによって燃焼速度が速められるために良好
な燃焼を得ることができる。ところが上述のように吸気
制御弁の閉弁時期を早めると燃焼室内への吸入空気の流
入が停止してから圧縮行程末期までの時間が長くなるた
めに吸入空気流によって燃焼室内に発生した乱れが圧縮
行程末期までにかなり減衰してしまい、斯くして良好な
燃焼が得られなくなるという問題を生ずる。
In an internal combustion engine, however, a turbulence is generated in the combustion chamber by the intake air flow flowing into the combustion chamber, and if the turbulence lasts until the end of the compression stroke, the turbulence accelerates the combustion speed. Good combustion can be obtained. However, as described above, if the closing timing of the intake control valve is advanced, the time from the stop of the inflow of intake air into the combustion chamber to the end of the compression stroke becomes longer. By the end of the compression stroke, there is a considerable amount of decay, thus giving rise to the problem that good combustion cannot be obtained.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば、吸気弁を介して燃焼室内に通ずる
機関吸気通路内に吸気制御弁を配置して吸気弁が開弁す
る前に吸気制御弁を開弁させると共に吸気弁の開弁期間
中における吸気制御弁の開弁期間を制御して燃焼室内に
供給される吸入空気量を制御するようにした内燃機関の
吸気制御装置において、機関高負荷運転時には吸気制御
弁の開弁時に吸気制御弁を全開させ、機関低負荷運転時
には吸気制御弁下流の吸気通路面積を減少させるか又は
吸気制御弁の開弁時に吸気制御弁を部分開状態に保持す
ると共に、吸気制御弁下流の吸気通路面積を減少させず
かつ吸気制御弁の開弁時に吸気制御弁を全開状態に保持
した場合に比べて吸気制御弁の閉弁時期を遅らせるよう
にしている。
In order to solve the above problems, according to the present invention, an intake control valve is arranged in an engine intake passage communicating with the combustion chamber through the intake valve to open the intake valve. An intake control device for an internal combustion engine, in which the intake control valve is opened before, and the intake control valve opening period is controlled during the intake valve opening period to control the intake air amount supplied to the combustion chamber. At the time of engine high load operation, the intake control valve is fully opened when the intake control valve is opened, and the intake passage area downstream of the intake control valve is reduced during engine low load operation, or the intake control valve is opened when the intake control valve is opened. The intake control valve is held in a partially open state, the intake passage area downstream of the intake control valve is not reduced, and the closing timing of the intake control valve is delayed compared to the case where the intake control valve is held in a fully open state when the intake control valve is opened. I am trying.

【0005】[0005]

【作用】機関低負荷運転時には吸気制御弁の閉弁時期が
遅らされ、斯くして吸入空気の流入作用によって燃焼室
内に発生せしめられた乱れがさほど減衰することなく圧
縮行程末期まで持続せしめられる。
When the engine is operating at a low load, the closing timing of the intake control valve is delayed, so that the turbulence generated in the combustion chamber due to the inflow action of intake air is maintained until the end of the compression stroke without being significantly attenuated. ..

【0006】[0006]

【実施例】図1および図2を参照すると、1はシリンダ
ブロック、2はピストン、3はシリンダヘッド、4は燃
焼室、5は吸気弁、6は吸気ポート、7は排気弁を夫々
示す。各吸気ポート6は対応する吸気枝管8を介して共
通のサージタンク9に接続され、サージタンク9はエア
フローメータ10を介してエアクリーナ11に連結され
る。各吸気枝管8内にはアクチュエータ12によって開
閉制御される吸気制御弁13が配置され、このアクチュ
エータ12は電子制御ユニット20の出力信号により制
御される。更に吸気制御弁13下流の吸気枝管8内には
吸気ポート6内に向けて燃料を噴射するための燃料噴射
弁14が配置される。なお、図1からわかるように本発
明による実施例では機関吸気通路にアクセルペダル15
に連結されたスロットル弁は配置されていない。
1 and 2, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is a combustion chamber, 5 is an intake valve, 6 is an intake port, and 7 is an exhaust valve. Each intake port 6 is connected to a common surge tank 9 via a corresponding intake branch pipe 8, and the surge tank 9 is connected to an air cleaner 11 via an air flow meter 10. An intake control valve 13 whose opening and closing is controlled by an actuator 12 is arranged in each intake branch pipe 8, and the actuator 12 is controlled by an output signal of the electronic control unit 20. Further, a fuel injection valve 14 for injecting fuel toward the intake port 6 is arranged in the intake branch pipe 8 downstream of the intake control valve 13. As can be seen from FIG. 1, the accelerator pedal 15 is provided in the engine intake passage in the embodiment according to the present invention.
There is no throttle valve connected to.

【0007】電子制御ユニット20はディジタルコンピ
ュータからなり、双方向性バス21によって相互に接続
されたROM(リードオンリメモリ)22、RAM(ラ
ンダムアクセスメモリ)23、CPU(マイクロプロセ
ッサ)24、入力ポート25および出力ポート26を具
備する。エアフローメータ10は吸入空気量に比例した
出力電圧を発生し、この出力電圧はAD変換器27を介
して入力ポート25に入力される。また、アクセルペダ
ル15にはアクセルペダル15の踏込み量に比例した出
力電圧を発生する負荷センサ28が取付けられ、この負
荷センサ28の出力電圧はAD変換器29を介して入力
ポート25に入力される。更に入力ポート25には機関
回転数を表わす出力パルスを発生する回転数センサ30
が接続される。一方、出力ポート26は駆動回路31を
介して吸気制御弁13のアクチュエータ12に接続され
る。
The electronic control unit 20 is composed of a digital computer, and has a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, a CPU (Microprocessor) 24, and an input port 25 which are mutually connected by a bidirectional bus 21. And an output port 26. The air flow meter 10 generates an output voltage proportional to the intake air amount, and this output voltage is input to the input port 25 via the AD converter 27. A load sensor 28 that generates an output voltage proportional to the depression amount of the accelerator pedal 15 is attached to the accelerator pedal 15, and the output voltage of the load sensor 28 is input to the input port 25 via the AD converter 29. .. Further, the input port 25 has a rotation speed sensor 30 for generating an output pulse representing the engine rotation speed.
Are connected. On the other hand, the output port 26 is connected to the actuator 12 of the intake control valve 13 via the drive circuit 31.

【0008】図3(A)および(B)にアクチュエータ
12および駆動回路31を概略的に示す。図1および図
2に示されるように吸気制御弁13の弁軸40の下端部
には円筒状の永久磁石41が固定されており、図3
(A)および(B)に示すようにこの永久磁石41には
弁軸40の軸線に対して互いに反対側にN極とS極が形
成される。永久磁石41の周囲には90度の角度間隔を
隔てて永久磁石42、電磁石43、永久磁石44,電磁
石45が順次配列されている。永久磁石42には永久磁
石41の外周面に対面する側にS極が形成されており、
永久磁石44には永久磁石41の外周面に対面する側に
N極が形成されている。
The actuator 12 and the drive circuit 31 are schematically shown in FIGS. As shown in FIGS. 1 and 2, a cylindrical permanent magnet 41 is fixed to the lower end of the valve shaft 40 of the intake control valve 13,
As shown in (A) and (B), an N pole and an S pole are formed on the permanent magnet 41 on opposite sides to the axis of the valve shaft 40. Around the permanent magnet 41, a permanent magnet 42, an electromagnet 43, a permanent magnet 44, and an electromagnet 45 are sequentially arranged at angular intervals of 90 degrees. The permanent magnet 42 has an S pole formed on the side facing the outer peripheral surface of the permanent magnet 41,
An N pole is formed on the permanent magnet 44 on the side facing the outer peripheral surface of the permanent magnet 41.

【0009】電磁石43の励磁コイル46の一端および
電磁石45の励磁コイル47の一端は互いに接続され、
励磁コイル46の他端および励磁コイル47の他端は夫
々駆動回路31の可動接点48,49に接続される。駆
動回路31は実際には電子回路からなるが図3(A)お
よび(B)ではこれを簡略化して可動接点48,49で
表わしている。これら可動接点48,49の切換え作用
は電子制御ユニット20の出力信号に基いて行われる。
One end of the exciting coil 46 of the electromagnet 43 and one end of the exciting coil 47 of the electromagnet 45 are connected to each other,
The other end of the exciting coil 46 and the other end of the exciting coil 47 are connected to the movable contacts 48 and 49 of the drive circuit 31, respectively. The drive circuit 31 is actually an electronic circuit, but in FIGS. 3A and 3B, it is represented by movable contacts 48 and 49 in a simplified form. The switching operation of the movable contacts 48 and 49 is performed based on the output signal of the electronic control unit 20.

【0010】図3(A)に示されるように可動接点48
が電源に接続され、可動接点49が接地されると電磁石
43は永久磁石41の外周面に対面する側がN極とな
り、電磁石45は永久磁石41の外周面に対面する側が
S極となる。このとき吸気制御弁13は図2において破
線で示されるように全開する。これに対して図3(B)
に示されるように可動接点48が接地され、可動接点4
9が電源に接続されると電磁石43は永久磁石41の外
周面に対面する側がS極となり、電磁石45は永久磁石
41に対面する側がN極となる。従ってこのときには吸
気制御弁13が90度回転し、吸気制御弁13は図2に
おいて実線で示されるように吸気枝管8内の通路を全閉
する。
As shown in FIG. 3 (A), the movable contact 48
Is connected to a power source and the movable contact 49 is grounded, the electromagnet 43 has an N pole on the side facing the outer peripheral surface of the permanent magnet 41, and the electromagnet 45 has an S pole on the side facing the outer peripheral surface of the permanent magnet 41. At this time, the intake control valve 13 is fully opened as shown by the broken line in FIG. On the other hand, FIG. 3 (B)
The movable contact 48 is grounded as shown in FIG.
When 9 is connected to a power source, the electromagnet 43 has an S pole on the side facing the outer peripheral surface of the permanent magnet 41, and the electromagnet 45 has an N pole on the side facing the permanent magnet 41. Therefore, at this time, the intake control valve 13 rotates 90 degrees, and the intake control valve 13 fully closes the passage in the intake branch pipe 8 as shown by the solid line in FIG.

【0011】ところで例えば図3(A)において各励磁
コイル46,47を流れる電流を減少させていくと吸気
制御弁13は反時計回りに回動し、各励磁コイル46,
47への通電を停止すると吸気制御弁13は半開状態と
なる。一方、図3(B)において各励磁コイル46,4
7を流れる電流を減少させていくと吸気制御弁13は時
計回りに回動し、各励磁コイル46,47への通電を停
止すると吸気制御弁13は半開状態となる。従って各励
磁コイル46,47を流れる電流値および電流の向きを
制御することによって吸気制御弁13の開度を全閉から
全開の間の任意の開度に制御できることになる。
By the way, for example, in FIG. 3A, when the current flowing through each of the exciting coils 46 and 47 is decreased, the intake control valve 13 rotates counterclockwise to cause the exciting coils 46 and 47 to rotate.
When the power supply to 47 is stopped, the intake control valve 13 is in a half open state. On the other hand, in FIG. 3B, each exciting coil 46, 4
When the current flowing through 7 is decreased, the intake control valve 13 rotates clockwise, and when the energization of the exciting coils 46 and 47 is stopped, the intake control valve 13 is in a half-open state. Therefore, the opening of the intake control valve 13 can be controlled to an arbitrary opening between fully closed by controlling the current value and the direction of the current flowing through each exciting coil 46, 47.

【0012】図3(A)および(B)に示される実施例
では各可動接点48,49を電源或いは接地側に間欠的
に接続し、各可動接点48,49を電源或いは接地側に
接続している時間割合、即ちデューティー比を変えるこ
とによって各励磁コイル46,47を流れる電流値を制
御するようにしている。図4は図3(B)に示すように
可動接点48,49を夫々接地側および電源に接続して
いる時間割合を表わすデューティー比D1と、図3
(A)に示すように可動接点48,49を夫々電源およ
び接地側に接続している時間割合を表わすデューティー
比D2と、吸気制御弁13の開度Sとの関係を示してい
る。図4からわかるようにデューティー比D2を零にし
た状態でデューティー比D1を小さくしていけば吸気制
御弁13が全閉状態から半開状態に向けて開弁し、デュ
ーティー比D1を零にした状態でデューティー比D2を
大きくしていけば吸気制御弁13が半開状態から全開状
態に向けて開弁する。
In the embodiment shown in FIGS. 3A and 3B, the movable contacts 48 and 49 are intermittently connected to the power source or the ground side, and the movable contacts 48 and 49 are connected to the power source or the ground side. The current value flowing through each of the exciting coils 46 and 47 is controlled by changing the time ratio, that is, the duty ratio. As shown in FIG. 3B, FIG. 4 shows a duty ratio D1 representing a time ratio of connecting the movable contacts 48 and 49 to the ground side and the power source, respectively, and FIG.
As shown in (A), the relationship between the duty ratio D2, which represents the time ratio of connecting the movable contacts 48 and 49 to the power source and the ground side, and the opening S of the intake control valve 13 is shown. As can be seen from FIG. 4, if the duty ratio D1 is reduced while the duty ratio D2 is zero, the intake control valve 13 opens from the fully closed state to the half open state, and the duty ratio D1 is zero. By increasing the duty ratio D2, the intake control valve 13 opens from the half open state to the full open state.

【0013】本発明では基本的には図5に示されるよう
に吸気制御弁13は吸気弁5が開弁せしめられる前に全
開せしめられ、吸気弁5が閉弁する前に閉弁せしめられ
る。更に、吸気弁5の開弁期間および吸気制御弁13の
開弁時期ΘOは固定されており、吸気制御弁13の閉弁
時期ΘCが制御される。なお、吸気制御弁13の開弁時
期ΘOは吸気弁5の開弁時期よりも早い時期であれば任
意に設定することができる。燃焼室4内に吸入空気が供
給されるのは吸気弁5および吸気制御弁13が共に開弁
している期間だけであり、従って吸気制御弁13の閉弁
期間ΘCを制御することによって燃焼室4内に供給され
る吸入空気量が制御されることになる。
In the present invention, basically, as shown in FIG. 5, the intake control valve 13 is fully opened before the intake valve 5 is opened, and is closed before the intake valve 5 is closed. Further, the opening period of the intake valve 5 and the opening timing ΘO of the intake control valve 13 are fixed, and the closing timing ΘC of the intake control valve 13 is controlled. The opening timing ΘO of the intake control valve 13 can be arbitrarily set as long as it is earlier than the opening timing of the intake valve 5. The intake air is supplied into the combustion chamber 4 only during the period when the intake valve 5 and the intake control valve 13 are both open. Therefore, by controlling the closing period ΘC of the intake control valve 13, the combustion chamber 4 is controlled. The amount of intake air supplied to the inside of 4 is controlled.

【0014】吸気制御弁13の閉弁時期ΘCはアクセル
ペダル15の踏込み量Lおよび機関回転数Nの関数とし
て図7(C)に示すマップの形で予めROM22内に記
憶されている。図7(A)は機関回転数Nを一定とした
場合の、図7(B)はアクセルペダル15の踏込み量L
を一定とした場合の吸気制御弁13の開弁期間ΘCの変
化を示している。図7(A)からわかるようにアクセル
ペダル15の踏込み量Lが大きくなるほど吸気制御弁1
3の閉弁時期ΘCが大きくなり、即ち吸気制御弁13の
閉弁時期ΘCが遅くなり、斯くして燃焼室4内に供給さ
れる吸入空気量が増大せしめられる。一方、アクセルペ
ダル15の踏込み量Lが一定の場合には、即ち吸気制御
弁13の閉弁時期ΘCが一定の場合には機関回転数Nが
高くなるほど吸入空気量が減少する。従って機関回転数
Nが高くなっても吸入空気量が減少しないように、即ち
吸入空気量が機関回転数Nにかかわらずにアクセルペダ
ル15の踏込み量Lによって定まる最適な吸入空気量と
なるように図7(B)に示す如く機関回転数Nが高くな
るにつれて吸気制御弁13の閉弁時期ΘCが遅くされ
る。
The closing timing ΘC of the intake control valve 13 is stored in advance in the ROM 22 in the form of a map shown in FIG. 7C as a function of the depression amount L of the accelerator pedal 15 and the engine speed N. FIG. 7A shows a case where the engine speed N is constant, and FIG. 7B shows a depression amount L of the accelerator pedal 15.
The graph shows the change in the valve opening period ΘC of the intake control valve 13 when is constant. As can be seen from FIG. 7A, the intake control valve 1 increases as the depression amount L of the accelerator pedal 15 increases.
The valve closing timing ΘC of No. 3 becomes large, that is, the valve closing timing ΘC of the intake control valve 13 becomes late, so that the amount of intake air supplied into the combustion chamber 4 is increased. On the other hand, when the depression amount L of the accelerator pedal 15 is constant, that is, when the closing timing ΘC of the intake control valve 13 is constant, the intake air amount decreases as the engine speed N increases. Therefore, even if the engine speed N increases, the intake air amount does not decrease, that is, the intake air amount becomes an optimum intake air amount that is determined by the depression amount L of the accelerator pedal 15 regardless of the engine speed N. As shown in FIG. 7B, the closing timing ΘC of the intake control valve 13 is delayed as the engine speed N increases.

【0015】前述したように本発明による実施例では、
機関吸気通路内にアクセルペダル15に連結されたスロ
ットル弁は設けられておらず、また吸気制御弁13は吸
気弁5が開弁する前に開弁せしめられる。従って吸気弁
5が開弁する直前には吸気ポート6内は大気圧となって
いる。次いで吸気弁5が開弁して燃焼室4内に吸入空気
の流入が開始されても吸気制御弁13は全開しているの
で燃焼室4内は大きな負圧が発生することなくほぼ大気
圧に維持され、斯くしてポンピング損失を低減できるこ
とになる。
As described above, in the embodiment according to the present invention,
There is no throttle valve connected to the accelerator pedal 15 in the engine intake passage, and the intake control valve 13 is opened before the intake valve 5 is opened. Therefore, immediately before the intake valve 5 opens, the inside of the intake port 6 is at atmospheric pressure. Next, even if the intake valve 5 is opened and the intake air is started to flow into the combustion chamber 4, the intake control valve 13 is fully opened, so that the inside of the combustion chamber 4 does not generate a large negative pressure and becomes almost atmospheric pressure. Will be maintained, thus reducing pumping losses.

【0016】一方、アクセルペダル15の踏込み量Lが
小さくなると図6において破線で示すように吸気制御弁
13の閉弁時期ΘCが早められる。ところが吸気制御弁
13の閉弁時期ΘCが早められると燃焼室4内への吸入
空気の流入が停止してから圧縮行程末期までの期間が長
くなる。その結果、燃焼室4内に流入した空気によって
燃焼室4内に発生した乱れが圧縮行程末期までにかなり
減衰し、斯くしてポンピング損失は低減できるものの、
良好な燃焼を得ることができなくなる。図8はこのこと
を示している。即ち、図8(A)において破線はスロッ
トル弁を具えた通常の内燃機関におけるトルク変動を示
しており、吸気制御弁13を用いた場合には図8(A)
において実線で示されるように吸入空気量Qが或る量Q
nlimitよりも少なくなると燃焼が悪化してトルク変動が
大きくなる。なお、Qnlimitは図8(B)に示されるよ
うに機関回転数Nの関数である。
On the other hand, when the depression amount L of the accelerator pedal 15 decreases, the closing timing ΘC of the intake control valve 13 is advanced as shown by the broken line in FIG. However, if the closing timing ΘC of the intake control valve 13 is advanced, the period from the stop of the inflow of intake air into the combustion chamber 4 to the end of the compression stroke becomes longer. As a result, the turbulence generated in the combustion chamber 4 due to the air flowing into the combustion chamber 4 is considerably attenuated by the end of the compression stroke, and thus the pumping loss can be reduced.
It becomes impossible to obtain good combustion. FIG. 8 shows this. That is, the broken line in FIG. 8 (A) shows the torque fluctuation in an ordinary internal combustion engine equipped with a throttle valve, and when the intake control valve 13 is used, FIG.
, The intake air amount Q is a certain amount Q
When it is less than nlimit, combustion deteriorates and torque fluctuation increases. Note that Qnlimit is a function of the engine speed N as shown in FIG. 8 (B).

【0017】そこで本発明による実施例では基本的には
図6において実線で示すように吸入空気量QがQnlimit
よりも少なくなったときには吸気制御弁13の閉弁期間
ΘCを吸気制御弁13全開時(破線)に比べて遅くし、
同時に吸気制御弁13を部分開状態に保持するようにし
ている。即ち、吸気制御弁13全開時と同じ吸入空気量
を得るためには吸気制御弁13の閉弁時期ΘCを遅くす
れば吸気制御弁13の開度は小さくしなければならず、
斯くして吸気制御弁13の閉弁時期ΘCを遅くすると共
に吸気制御弁13の開度を小さくするようにしている。
このように吸気制御弁13の閉弁時期ΘCを遅くすると
吸入空気流により燃焼室4内に発生した乱れはさほど減
衰することなく圧縮行程末期まで持続し、斯くして良好
な燃焼を得られることになる。
Therefore, in the embodiment according to the present invention, the intake air amount Q is basically Qnlimit as shown by the solid line in FIG.
When the intake control valve 13 is less than the above, the closing period ΘC of the intake control valve 13 is delayed compared to when the intake control valve 13 is fully opened (broken line).
At the same time, the intake control valve 13 is held in a partially open state. That is, in order to obtain the same intake air amount as when the intake control valve 13 is fully opened, if the closing timing ΘC of the intake control valve 13 is delayed, the opening degree of the intake control valve 13 must be reduced.
Thus, the closing timing ΘC of the intake control valve 13 is delayed and the opening degree of the intake control valve 13 is reduced.
As described above, when the closing timing ΘC of the intake control valve 13 is delayed, the turbulence generated in the combustion chamber 4 by the intake air flow is not significantly attenuated and lasts until the end of the compression stroke, and thus good combustion can be obtained. become.

【0018】ところで吸気行程中において上死点TDC
から一定クランク角以後に、例えば上死点後60°以後
に燃焼室4内への吸入空気の流入を停止すれば吸入空気
流により燃焼室4内に発生した乱れはさほど減衰するこ
となく圧縮行程末期まで持続することが判明している。
従って本発明による実施例では図9に示されるように吸
入空気量QがQnlimitよりも少なくなったときには吸気
制御弁13の閉弁時期ΘCが一定クランク角、例えば上
死点後60°に維持され、吸気制御弁13の閉弁時期Θ
Cが一定に維持されている間、吸入空気量Qが減少する
につれて吸気制御弁13の開度Sが減少せしめられる。
By the way, during the intake stroke, the top dead center TDC
After a certain crank angle, for example, 60 ° after top dead center, if the inflow of intake air into the combustion chamber 4 is stopped, the turbulence generated in the combustion chamber 4 due to the intake air flow is not significantly attenuated and the compression stroke is reduced. It is known to last until the end of life.
Therefore, in the embodiment according to the present invention, as shown in FIG. 9, when the intake air amount Q becomes smaller than Qnlimit, the closing timing ΘC of the intake control valve 13 is maintained at a constant crank angle, for example, 60 ° after top dead center. , The closing timing Θ of the intake control valve 13
While C is maintained constant, the opening degree S of the intake control valve 13 is decreased as the intake air amount Q is decreased.

【0019】ところで吸気制御弁13の開度Sを小さく
すると吸入空気が燃焼室4内に吸入されているときに燃
焼室4内は負圧となり、従ってポンピング損失が発生す
るようにみえる。しかしながら吸気制御弁13を早く閉
弁すればその後燃焼室4内には長期間に亘って大きな負
圧が発生し、吸気制御弁13を遅く閉弁すればその後燃
焼室4内に発生する負圧は小さくなり、しかも負圧が発
生する期間は短くなる。従って吸気制御弁13の開度S
を小さくしても閉弁時期ΘCを遅くすれば吸気制御弁1
3を全開した場合に比べてポンピング損失が大きくなる
とは限らず、小さくなる場合もある。
By the way, when the opening degree S of the intake control valve 13 is reduced, it seems that when the intake air is being sucked into the combustion chamber 4, the inside of the combustion chamber 4 has a negative pressure, so that pumping loss occurs. However, if the intake control valve 13 is closed early, a large negative pressure will be generated in the combustion chamber 4 for a long period of time thereafter, and if the intake control valve 13 is closed late, the negative pressure will be generated in the combustion chamber 4 thereafter. Becomes smaller, and the period during which negative pressure is generated becomes shorter. Therefore, the opening S of the intake control valve 13
If the valve closing timing ΘC is delayed, the intake control valve 1
The pumping loss does not always increase as compared with the case where 3 is fully opened, and may decrease in some cases.

【0020】図10は吸気制御弁13を図6において破
線で示されるように全開にした場合に発生するポンピン
グ損失と同じポンピング損失を発生する吸気制御弁13
の開度Sと閉弁時期ΘCとの関係を示している。なお、
図10において曲線Aは最も機関負荷が低いときを示し
ており、B,C,Dの順に機関負荷が高くなる。図10
から吸気制御弁13の開度Sが小さくなるにつれて吸気
制御弁13の閉弁時期ΘCを遅くすれば吸気制御弁13
全開時と同じポンピング損失に抑えることができること
がわかる。また、吸気制御弁13の閉弁時期ΘCを同一
とした場合には吸気制御弁13全開時と同じポンピング
損失が発生する吸気制御弁13の開度Sは機関負荷が低
くなるほど小さくなることがわかる。
FIG. 10 shows the intake control valve 13 that produces the same pumping loss as that which occurs when the intake control valve 13 is fully opened as shown by the broken line in FIG.
The relationship between the opening degree S and the valve closing timing ΘC is shown. In addition,
In FIG. 10, a curve A shows the case where the engine load is the lowest, and the engine load becomes higher in the order of B, C, and D. Figure 10
Therefore, if the closing timing ΘC of the intake control valve 13 is delayed as the opening degree S of the intake control valve 13 decreases, the intake control valve 13
It can be seen that the same pumping loss as when fully opened can be suppressed. Further, when the closing timing ΘC of the intake control valve 13 is the same, the opening S of the intake control valve 13 that causes the same pumping loss as when the intake control valve 13 is fully opened decreases as the engine load decreases. ..

【0021】良好な燃焼を得るために吸気制御弁13を
部分開状態にして閉弁時期ΘCを遅らせてもポンピング
損失が増大したのでは意味がない。従って吸気制御弁1
3を部分開状態にして閉弁時期ΘCを遅らせた場合であ
っても吸気制御弁13全開時に比べて少なくともポンピ
ング損失が増大しないように吸気制御弁13の開度Sお
よび閉弁時期ΘCを定める必要がある。そこで本発明に
よる実施例では吸気制御弁13の閉弁時期ΘCを例えば
上死点後60°に固定し、図10のA,B,C,Dで示
される各機関負荷に対して吸気制御弁13の開度Sを夫
々a,b,c,dで示される開度に制御するようにして
いる。この吸気制御弁13の開度Sは実際には機関負荷
Q/N(吸入空気量Q/機関回転数N)および機関回転
数Nの関数であり、この吸気制御弁13の開度Sは図1
1(c)に示すようなマップの形で予めROM22内に
記憶されている。この吸気制御弁13の開度Sは図11
(a)に示されるように機関負荷Q/Nが高くなるにつ
れて大きくなり、図11(b)に示されるように機関回
転数Nが高くなるにつれて大きくなる。
Even if the intake control valve 13 is partially opened to delay the closing timing ΘC in order to obtain good combustion, it does not make sense to increase the pumping loss. Therefore, the intake control valve 1
Even when 3 is partially opened and the closing timing ΘC is delayed, the opening degree S and the closing timing ΘC of the intake control valve 13 are determined so that at least the pumping loss does not increase compared to when the intake control valve 13 is fully opened. There is a need. Therefore, in the embodiment according to the present invention, the closing timing ΘC of the intake control valve 13 is fixed to, for example, 60 ° after the top dead center, and the intake control valve is controlled for each engine load shown by A, B, C and D in FIG. The opening degree S of 13 is controlled to the opening degrees indicated by a, b, c and d, respectively. The opening S of the intake control valve 13 is actually a function of the engine load Q / N (intake air amount Q / engine speed N) and the engine speed N. 1
It is stored in advance in the ROM 22 in the form of a map as shown in 1 (c). The opening degree S of the intake control valve 13 is shown in FIG.
As shown in FIG. 11A, it increases as the engine load Q / N increases, and as shown in FIG. 11B, it increases as the engine speed N increases.

【0022】図12は吸気制御弁13の制御ルーチンを
示しており、このルーチンは例えば一定クランク角度毎
の割込みによって実行される。図12を参照するとまず
初めにステップ60において吸入空気量Q、機関回転数
Nおよびアクセルペダル踏込み量Lが読込まれる。次い
でステップ61では図8(B)に示す関係に基いて機関
回転数NからQnlimitが算出される。次いでステップ6
2では吸入空気量QがQnlimitよりも小さいか否かが判
別される。Q<Qnlimitのときにはステップ63に進ん
で吸気制御弁13の開弁時期ΘOが読込まれる。この開
弁時期ΘOは固定値である。次いでステップ64では吸
気制御弁13の閉弁時期ΘCが読込まれる。この閉弁時
期ΘCは固定値、例えば上死点後60°である。次いで
ステップ65では図11(c)に示すマップから機関負
荷Q/Nおよび機関回転数Nに応じた吸気制御弁13の
開度Sが算出される。
FIG. 12 shows a control routine for the intake control valve 13, and this routine is executed, for example, by interruption every constant crank angle. Referring to FIG. 12, first, at step 60, the intake air amount Q, the engine speed N and the accelerator pedal depression amount L are read. Next, at step 61, Qnlimit is calculated from the engine speed N based on the relationship shown in FIG. 8 (B). Then step 6
In 2, it is determined whether or not the intake air amount Q is smaller than Qnlimit. When Q <Qnlimit, the routine proceeds to step 63, where the opening timing ΘO of the intake control valve 13 is read. This valve opening timing ΘO is a fixed value. Next, at step 64, the closing timing ΘC of the intake control valve 13 is read. This valve closing timing ΘC is a fixed value, for example, 60 ° after top dead center. Next, at step 65, the opening degree S of the intake control valve 13 according to the engine load Q / N and the engine speed N is calculated from the map shown in FIG. 11 (c).

【0023】次いでステップ66では吸気制御弁13の
駆動処理が行われる。即ち、吸気制御弁13の開度Sに
対応したデューティー比D1およびD2が図4に基づい
て算出され、開弁時期ΘOから閉弁時期ΘCまでの間、
各励磁コイル46,47がこれらデューティー比D1,
D2に従って励磁される。一方、ステップ62において
Q>Qnlimitであると判別されたときにはステップ67
に進んで吸気制御弁13の開弁時期ΘOが読込まれる。
この開弁時期ΘOは前述したように固定値である。次い
でステップ68では図7(c)に示すマップに基づいて
アクセルペダル踏込み量Lおよび機関回転数Nに応じた
吸気制御弁13の閉弁時期ΘCが算出される。次いでス
テップ69では吸気制御弁13の開度Sが読込まれる。
この開度Sは全開である。次いでステップ66では開弁
時期ΘOから閉弁時期ΘCまでの間、吸気制御弁13が
全開せしめられる。
Next, at step 66, the drive processing of the intake control valve 13 is performed. That is, the duty ratios D1 and D2 corresponding to the opening degree S of the intake control valve 13 are calculated based on FIG. 4, and between the valve opening timing ΘO and the valve closing timing ΘC,
Each exciting coil 46, 47 has a duty ratio D1,
Excited according to D2. On the other hand, when it is determined in step 62 that Q> Qnlimit, step 67
Then, the opening timing ΘO of the intake control valve 13 is read.
This valve opening timing ΘO is a fixed value as described above. Next, at step 68, the closing timing ΘC of the intake control valve 13 according to the accelerator pedal depression amount L and the engine speed N is calculated based on the map shown in FIG. 7 (c). Next, at step 69, the opening degree S of the intake control valve 13 is read.
The opening S is fully open. Next, at step 66, the intake control valve 13 is fully opened from the valve opening timing ΘO to the valve closing timing ΘC.

【0024】なお、吸気制御弁13下流の吸気枝管8内
に吸気枝管内の通路面積を制御するための流量制御弁を
設け、吸入空気量QがQnlimitよりも少なくなったとき
に吸気制御弁13の開度を小さくする代わりにこの流量
制御弁の開度を小さくし、吸気制御弁13を全開させる
こともできる。ただし、この場合には吸気制御弁13の
閉弁時期ΘCは図6において実線で示される閉弁時期ま
で遅らされる。
A flow rate control valve for controlling the passage area in the intake branch pipe is provided in the intake branch pipe 8 downstream of the intake control valve 13, and the intake control valve is provided when the intake air amount Q becomes smaller than Qnlimit. Instead of decreasing the opening degree of 13, the opening degree of the flow rate control valve may be decreased and the intake control valve 13 may be fully opened. However, in this case, the valve closing timing ΘC of the intake control valve 13 is delayed until the valve closing timing shown by the solid line in FIG.

【0025】[0025]

【発明の効果】機関の全運転領域に亘ってポンピング損
失を低減しつつ良好な燃焼を得ることができる。
As described above, good combustion can be obtained while reducing pumping loss over the entire operating region of the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】図1に示す内燃機関の平面断面図である。FIG. 2 is a plan sectional view of the internal combustion engine shown in FIG.

【図3】アクチュエータおよび駆動回路を概略的に示す
図である。
FIG. 3 is a diagram schematically showing an actuator and a drive circuit.

【図4】吸気制御弁の開度とデューティー比との関係を
示す図である。
FIG. 4 is a diagram showing a relationship between an opening degree of an intake control valve and a duty ratio.

【図5】機関高負荷運転時における吸気制御弁の開度変
化を示す線図である。
FIG. 5 is a diagram showing a change in the opening of the intake control valve during engine high load operation.

【図6】機関低負荷運転時における吸気制御弁の開度変
化を示す線図である。
FIG. 6 is a diagram showing a change in an opening of an intake control valve during engine low load operation.

【図7】吸気制御弁の閉弁時期を示す線図である。FIG. 7 is a diagram showing a valve closing timing of an intake control valve.

【図8】トルク変動を示す線図である。FIG. 8 is a diagram showing torque fluctuation.

【図9】吸気制御弁の開弁期間と開度とを示す線図であ
る。
FIG. 9 is a diagram showing a valve opening period and an opening of an intake control valve.

【図10】吸気制御弁の開度と閉弁時期との関係を示す
線図である。
FIG. 10 is a diagram showing the relationship between the opening degree of the intake control valve and the valve closing timing.

【図11】吸気制御弁の開度を示す線図である。FIG. 11 is a diagram showing an opening of an intake control valve.

【図12】吸気制御弁を制御するためのフローチャート
である。
FIG. 12 is a flowchart for controlling an intake control valve.

【符号の説明】[Explanation of symbols]

5…吸気弁 8…吸気枝管 12…アクチュエータ 13…吸気制御弁 5 ... Intake valve 8 ... Intake branch pipe 12 ... Actuator 13 ... Intake control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 吸気弁を介して燃焼室内に通ずる機関吸
気通路内に吸気制御弁を配置して吸気弁が開弁する前に
吸気制御弁を開弁させると共に吸気弁の開弁期間中にお
ける吸気制御弁の開弁期間を制御して燃焼室内に供給さ
れる吸入空気量を制御するようにした内燃機関の吸気制
御装置において、機関高負荷運転時には吸気制御弁の開
弁時に吸気制御弁を全開させ、機関低負荷運転時には吸
気制御弁下流の吸気通路面積を減少させるか又は吸気制
御弁の開弁時に吸気制御弁を部分開状態に保持すると共
に、吸気制御弁下流の吸気通路面積を減少させずかつ吸
気制御弁の開弁時に吸気制御弁を全開状態に保持した場
合に比べて吸気制御弁の閉弁時期を遅らせるようにした
内燃機関の吸気制御装置。
1. An intake control valve is arranged in an engine intake passage communicating with a combustion chamber via an intake valve to open the intake control valve before the intake valve opens and during the opening period of the intake valve. In an intake control device for an internal combustion engine that controls the intake air amount supplied to the combustion chamber by controlling the opening period of the intake control valve, the intake control valve is opened when the intake control valve is open during high engine load operation. Fully open and reduce the intake passage area downstream of the intake control valve during engine low load operation, or hold the intake control valve in a partially open state when the intake control valve opens, and reduce the intake passage area downstream of the intake control valve. An intake control device for an internal combustion engine, which delays the closing timing of the intake control valve as compared with the case where the intake control valve is kept fully open when the intake control valve is opened.
JP3321844A 1991-12-05 1991-12-05 Intake control device for internal combustion engine Expired - Fee Related JP2857950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3321844A JP2857950B2 (en) 1991-12-05 1991-12-05 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3321844A JP2857950B2 (en) 1991-12-05 1991-12-05 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH05156950A true JPH05156950A (en) 1993-06-22
JP2857950B2 JP2857950B2 (en) 1999-02-17

Family

ID=18137061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3321844A Expired - Fee Related JP2857950B2 (en) 1991-12-05 1991-12-05 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2857950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622695B2 (en) 2001-11-20 2003-09-23 Denso Corporation Intake control system of internal combustion engine
JP2008025562A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622695B2 (en) 2001-11-20 2003-09-23 Denso Corporation Intake control system of internal combustion engine
JP2008025562A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2857950B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
US7051687B2 (en) Valve operation controller
JP2006046293A (en) Intake air control device for internal combustion engine
JP3695118B2 (en) Control device for electromagnetically driven valve
US6622695B2 (en) Intake control system of internal combustion engine
JP3627601B2 (en) Engine intake air amount control device
JP2001159340A (en) Intake air quantity control device for engine
JP3601386B2 (en) Engine intake air control system
JP2738190B2 (en) Intake control device for internal combustion engine
JPH10288055A (en) Intake air amount control device of internal combustion engine
JP2857950B2 (en) Intake control device for internal combustion engine
JP2001227399A (en) Control device for internal combustion engine
JPH07133726A (en) Intake air controller of internal combustion engine
JPH05156951A (en) Intake controller for internal combustion engine
JP2897570B2 (en) Intake control device for internal combustion engine
JPH05187238A (en) Air intake control device for internal combustion engine
JP2001271665A (en) Control device for variable valve system engine
JP2003193889A (en) Intake control device for multi-cylinder internal combustion engine
JPH09298898A (en) Stepper motor type drive unit
JP2007321707A (en) Fuel injection control device for internal combustion engine
JPH06101484A (en) Swirl control device for internal combustion engine
JPH04347338A (en) Intake system for internal combustion engine
JPH04325716A (en) Intake air device of internal combustion engine
JPH05332145A (en) Intake controller of internal combustion engine
JP2005061285A (en) Intake device of internal combustion engine
JPH04179824A (en) Suction control apparatus for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees