JPH05152208A - Semiconductor production device - Google Patents

Semiconductor production device

Info

Publication number
JPH05152208A
JPH05152208A JP31510391A JP31510391A JPH05152208A JP H05152208 A JPH05152208 A JP H05152208A JP 31510391 A JP31510391 A JP 31510391A JP 31510391 A JP31510391 A JP 31510391A JP H05152208 A JPH05152208 A JP H05152208A
Authority
JP
Japan
Prior art keywords
reaction
shower head
wafer
reaction gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31510391A
Other languages
Japanese (ja)
Inventor
Takayuki Oba
隆之 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31510391A priority Critical patent/JPH05152208A/en
Publication of JPH05152208A publication Critical patent/JPH05152208A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

PURPOSE:To propose device constitution capable of growing a uniform film extending over a large area regarding a semiconductor production device conducting vapor growth. CONSTITUTION:The upper section of a substrate to be treated, which is being heated, is supplied with a plurality of reaction gases from a shower head 2 while measuring the temperature of the substrate to be treated by using a radiation thermometer 8, and reaction is performed while conducting evacuation. The shower head 2 feeding the reaction gases is organized by providing at least intermediate chambers 9, 10 pooling a plurality of supply gases respectively, a plurality of introducing holes 11 dividing and supplying each reaction gas to a plurality of nozzles formed to the underside of the shower head 2 from the intermediate chambers 9, 10, and a temperature measuring hole 12 for the radiation thermometer 6 being penetrated and mounted at the center of the shower head 2 and having a supply pipe of one reaction gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体基板(以下略して
ウエハ)上に気相成長法(CVD法)を用いて均一な厚
さに膜成長を行うのに適した半導体製造装置の構成に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a semiconductor manufacturing apparatus suitable for growing a film on a semiconductor substrate (wafer for short) to a uniform thickness by using a vapor deposition method (CVD method). ..

【0002】半導体にはシリコン(Si)で代表される単体
半導体とガリウム・砒素(GaAs)で代表される化合物半導
体とがあり、半導体装置は薄膜形成技術, 写真蝕刻技
術, 不純物注入技術などを用いて作られている。
Semiconductors include a single semiconductor typified by silicon (Si) and a compound semiconductor typified by gallium arsenide (GaAs). Semiconductor devices use thin film forming technology, photo-etching technology, impurity implantation technology and the like. Is made.

【0003】こゝで、集積回路を始めとし、レーザなど
何れの半導体装置についても量産化が行われており、ス
ケールメリット(Scale-merit) を活かすめに、使用する
ウエハの大きさは年と共に増大しており、Siウエハにつ
いては8インチ径のものが使用されつゝある。
Here, mass production of semiconductor devices such as lasers including integrated circuits has been carried out, and the size of the wafer to be used has been changed with the years in order to make full use of the scale-merit. The number of Si wafers is increasing, and 8-inch diameter Si wafers are being used.

【0004】一方、集積回路においては集積度は著しく
向上しているものゝ、これは主として単位素子の小形化
により行われているものであり、導体線路の最小線幅は
サブミクロン(Sub-micron)に達している。
On the other hand, in the integrated circuit, the degree of integration is remarkably improved. This is mainly done by miniaturizing the unit element, and the minimum line width of the conductor line is a sub-micron (Sub-micron). ) Has been reached.

【0005】そのため、製造歩留りを向上するためには
半導体基板の全域に亙って処理条件が均一なことが必要
であり、特に膜形成工程やエッチング工程においてウエ
ハの中央部と周辺部とで薄膜の成長速度やドライエッチ
ングにおけるエッチング速度に差のないことが必要であ
る。
Therefore, in order to improve the manufacturing yield, it is necessary that the processing conditions are uniform over the entire area of the semiconductor substrate. Especially, in the film forming step and the etching step, the thin film is formed in the central portion and the peripheral portion of the wafer. It is necessary that there be no difference in the growth rate of Pd and the etching rate in dry etching.

【0006】[0006]

【従来の技術】CVD装置にはバッチ式のものと枚葉式
のものとがあるが、本発明は枚葉式の装置に関するもの
である。
2. Description of the Related Art Although there are a batch type and a single-wafer type CVD apparatus, the present invention relates to a single-wafer type apparatus.

【0007】さて、ウエハ上に再現性よく膜成長を行う
にはウエハの温度を正しく測定し、所定の温度に保つこ
とゝ、ウエハ上に均一な濃度分布で反応ガスを供給する
ことが必要である。
In order to grow a film on a wafer with good reproducibility, it is necessary to measure the temperature of the wafer correctly and keep it at a predetermined temperature, and to supply the reaction gas with a uniform concentration distribution on the wafer. is there.

【0008】こゝで、ウエハの温度測定には熱電対を使
用するものと放射温度計を使用するものとがある。そし
て、熱電対を使用する場合は、ウエハが載置されている
サセプタに熱電対を接触させるか或いは直接にウエハに
接触させて測定する方法がとられている。
Here, there are two types of wafer temperature measurement, one using a thermocouple and the other using a radiation thermometer. When a thermocouple is used, a method is used in which the thermocouple is brought into contact with the susceptor on which the wafer is placed, or the wafer is directly brought into contact with the wafer for measurement.

【0009】然し、反応ガスによる熱電対の変質,反応
膜の付着,塵埃の付着などの問題があり、高い精度で温
度測定と制御を行うことは容易ではない。また、放射温
度計を使用する方法では反応室の側壁に設けて測定を行
う場合が多いが、この温度計の設置により乱流が発生し
たり、これにより生じた塵埃が測定用の透過窓に付着し
透過率を低下させると云う問題がある。
However, there are problems such as deterioration of the thermocouple due to the reaction gas, adhesion of the reaction film, and adhesion of dust, and it is not easy to measure and control the temperature with high accuracy. In addition, in the method using a radiation thermometer, it is often installed on the side wall of the reaction chamber for measurement, but turbulent flow occurs due to the installation of this thermometer, and dust generated by this causes the measurement in the transmission window for measurement. There is a problem that they are attached and the transmittance is lowered.

【0010】以上のことから、成膜に支障を及ぼすこと
なく且つ精度よくウエハの温度を測定する方法の実用化
が望まれていた。また、複数の反応ガスを供給してウエ
ハ上で反応せしめCVD膜を形成する方法として従来は
シャワーヘッドの中で複数のガスを混合し、シャワーヘ
ッドの下面に多数設けられている吹き出し口からウエハ
に反応ガスを吹き出させる方法がとられていた。
From the above, it has been desired to put into practical use a method for measuring the temperature of the wafer with high accuracy without affecting the film formation. Further, as a method for forming a CVD film by supplying a plurality of reaction gases to cause a reaction on a wafer, conventionally, a plurality of gases are mixed in a shower head, and a large number of blowout holes are provided on the lower surface of the shower head to provide a wafer. The method of blowing out the reaction gas was used.

【0011】然し、CVD成長が行われるチャンバ内は
排気系を用い、減圧して使用する場合が多いことから、
シャワーヘッド内の圧力はチャンバ内に較べると格段に
高く、シャワーヘッド内で気相反応が生ずることが避け
られなかった。
However, an exhaust system is often used in the chamber where the CVD growth is carried out, and the chamber is used under reduced pressure.
The pressure in the shower head was much higher than that in the chamber, and it was unavoidable that a gas phase reaction occurred in the shower head.

【0012】また、この現象を避けるために複数のシャ
ワーよりそれぞれ異なった反応ガスを供給すると、ウエ
ハ上での濃度分布が異なるために膜厚分布が異なると云
う問題が生じる。
If different reaction gases are supplied from a plurality of showers in order to avoid this phenomenon, there arises a problem that the film thickness distribution is different because the concentration distribution on the wafer is different.

【0013】これらのことから、複数の反応ガスをそれ
ぞれ独立に均等な濃度分布でウエハ上に供給し、ウエハ
上で気相反応させる方法の実用化が望まれていた。
For these reasons, it has been desired to put into practical use a method in which a plurality of reaction gases are independently supplied to the wafer in a uniform concentration distribution to cause a gas phase reaction on the wafer.

【0014】[0014]

【発明が解決しようとする課題】以上記したように直径
の大きなウエハ上に均一な膜厚分布のCVD膜を再現性
よく成長させるにはウエハの温度を精度よく測定すると
共にウエハ上で均等な濃度分布で反応ガスを気相反応さ
せることが必要である。
As described above, in order to grow a CVD film having a uniform film thickness distribution on a wafer having a large diameter with good reproducibility, the temperature of the wafer is accurately measured and the CVD film is evenly distributed on the wafer. It is necessary to react the reaction gas in a gas phase with a concentration distribution.

【0015】そこで、この装置構成を実用化することが
課題である。
Therefore, it is an object to put this device configuration into practical use.

【0016】[0016]

【課題を解決するための手段】上記の課題はウエハの温
度を放射温度計を用いて測定しながら、ウエハ加熱が行
われているウエハ上にシャワーヘッドより複数の反応ガ
スを供給し、減圧排気しながら反応を行わせる装置にお
いて、反応ガスを供給するシャワーヘッドが、複数の供
給ガスをそれぞれプールする中間室と、この中間室より
それぞれの反応ガスをシャワーヘッドの下面に設けてあ
る複数の噴出口に分割して供給する複数の導入孔と、こ
のシャワーヘッドの中央に貫通して設けてあり、一方の
反応ガスの供給管を備えた放射温度計用の測温穴とを少
なくとも備えて構成されていることを特徴として半導体
製造装置を構成することにより解決することができる。
Means for Solving the Problems The above problem is to supply a plurality of reaction gases from a shower head onto a wafer being heated while measuring the temperature of the wafer by using a radiation thermometer, and to evacuate under reduced pressure. However, in the apparatus for carrying out the reaction, a shower head for supplying the reaction gas has an intermediate chamber for pooling the plurality of supply gases, and a plurality of jets provided for the respective reaction gases from the intermediate chamber on the lower surface of the shower head. A plurality of introduction holes that are dividedly supplied to the outlet and at least a temperature-measuring hole for a radiation thermometer that is provided so as to penetrate through the center of the shower head and that is provided with one reaction gas supply pipe It is possible to solve the problems by configuring a semiconductor manufacturing apparatus characterized by the above.

【0017】[0017]

【作用】本発明はシャワーヘッド内で複数の反応ガスが
気相反応するのを防ぐ方法としてシャワーヘッド内に反
応ガスの数だけの中間室を設け、これより多数の異種配
管をシャワーヘッドの下面に向けて設けてガスを吹き出
させる方法をとることにより、ウエハ上での反応を除く
気相反応を抑制すると共に、シャワーヘッドの中央に放
射温度計の測温窓を設け、一方の反応ガスを供給するこ
とにより透過窓の汚染による測定精度の低下をなくする
ものである。
According to the present invention, as a method for preventing a plurality of reaction gases from reacting in a vapor phase in the showerhead, an intermediate chamber is provided in the showerhead as many as the reaction gases. The gas-phase reaction excluding the reaction on the wafer is suppressed by using the method of blowing the gas toward the front of the chamber, and the temperature measuring window of the radiation thermometer is installed in the center of the shower head to allow one reaction gas to flow. The supply prevents the deterioration of measurement accuracy due to contamination of the transmission window.

【0018】図1は本発明に係るシャワーヘッドの断面
図(A)と下面図(B)であり、また、図2は半導体装
置の断面図であり、二種類の反応ガスを使用する場合に
ついて示している。
FIG. 1 is a cross-sectional view (A) and a bottom view (B) of a shower head according to the present invention, and FIG. 2 is a cross-sectional view of a semiconductor device, in which two kinds of reaction gases are used. Shows.

【0019】すなわち、図示を省略した排気系を用いて
チャンバ1の中を高真空に排気した状態で、シャワーヘ
ッド2に設けてある第1のガス供給口3より反応ガス
(イ)を、また第2のガス供給口4より反応ガス(ロ)
をチャンバ1に供給し、所定の減圧度に保持した状態
で、赤外線ランプなどのヒータ5に通電し、サセプタ6
を通じてウエハ7を加熱し、このウエハ7の温度を放射
温度計8で測定し、所定の基板温度に保持した状態でこ
のウエハ上で反応ガス(イ)と(ロ)を反応させること
により膜成長が行われている。
That is, while the chamber 1 is evacuated to a high vacuum using an exhaust system (not shown), the reaction gas (a) is supplied from the first gas supply port 3 provided in the shower head 2, Reaction gas (b) from the second gas supply port 4
Of the susceptor 6 is supplied to the chamber 1 and the heater 5 such as an infrared lamp is energized while maintaining a predetermined degree of pressure reduction.
The wafer 7 is heated through the wafer, the temperature of the wafer 7 is measured by the radiation thermometer 8, and the reaction gas (a) and (b) are reacted on the wafer while the substrate temperature is maintained at a predetermined value to grow a film. Is being done.

【0020】こゝで、本発明に係るシャワーヘッド2は
図1に示すように反応ガス(イ)をプールする第1の中
間室9と反応ガス(ロ)をプールする第2の中間室10を
積層して備え、この中間室より多数の導入孔11がシャワ
ーヘッド2の下面に開口している。
As shown in FIG. 1, the shower head 2 according to the present invention has a first intermediate chamber 9 for pooling the reaction gas (a) and a second intermediate chamber 10 for pooling the reaction gas (b). Are provided in a stacked manner, and a large number of introduction holes 11 are opened from the intermediate chamber to the lower surface of the shower head 2.

【0021】こゝで、第1のガス溜め部9と第2のガス
溜め部10は中央に放射温度計8の測温穴12を備え、円形
をした偏平状をしており、それぞれのガス溜部よりの配
管は交互にシャワーヘッド2の下面に開口しており、同
図(B)はこの状態を示している。
Here, the first gas reservoir 9 and the second gas reservoir 10 are provided with a temperature measuring hole 12 of the radiation thermometer 8 in the center and have a circular flat shape. The pipes from the reservoir are alternately opened to the lower surface of the shower head 2, and FIG. 6B shows this state.

【0022】こゝで、ウエハの温度は測温穴12を用い、
透過窓13を通して放射温度計8により測定されている
が、本発明においては透過窓13への反応生成物の付着に
よる測定精度の低下をなくする方法として反応ガス
(イ)を測温穴12にバイパスさせるものである。
Here, the temperature of the wafer is measured using the temperature measuring hole 12,
The temperature is measured by the radiation thermometer 8 through the transmission window 13. In the present invention, the reaction gas (a) is introduced into the temperature measurement hole 12 as a method for eliminating the decrease in measurement accuracy due to the adhesion of the reaction product to the transmission window 13. Bypass.

【0023】なお、測温穴12には別途独立にガスを供給
することが望ましい。このようにすると測温穴12の中に
反応生成物が侵入することがないので、透過窓13の汚染
を無くすることができる。
It is desirable to separately supply gas to the temperature measuring hole 12. In this way, the reaction product does not enter the temperature measuring hole 12, so that the transmission window 13 can be prevented from being contaminated.

【0024】以上のような装置構成をとることにより、
均一の濃度分布で且つ正しい温度で膜成長を行うことが
できる。
By adopting the above device configuration,
The film can be grown with a uniform concentration distribution and at the correct temperature.

【0025】[0025]

【実施例】実施例1:(W膜の成長例) 被処理基板としては6インチのSiウエハを用い、この上
に16Mビットの単位素子を構成するW配線の形成例であ
り、膜形成されている厚さが6000Åの酸化膜に窓開けさ
れている直径0.5 μm の多数の接続孔をWで埋め込むも
のである。
Example 1 (Example of W film growth) A 6-inch Si wafer is used as a substrate to be processed, and an example of W wiring forming a 16-Mbit unit element is formed on the Si wafer. A large number of connecting holes with a diameter of 0.5 μm, which are opened in an oxide film having a thickness of 6000Å, are filled with W.

【0026】図1において、シャワーヘッド2を構成す
る第1の中間室9と第2の中間室10は径200 mmで厚さが
10mmであり、この各々より内径0.5 mmの導入孔11を100
本づつシャワー面に取り出した。
In FIG. 1, the first intermediate chamber 9 and the second intermediate chamber 10 constituting the shower head 2 have a diameter of 200 mm and a thickness of 200 mm.
10 mm, and from each of these 100
I took out the books one by one on the shower surface.

【0027】次に、第1のガス溜め部9に供給する反応
ガス(イ)としてはシラン(SiH4)と水素(H2) をそれ
ぞれ3sccmと50sccmの流量で、また、第2のガス溜め部
10に供給する反応ガス(ロ)として弗化タングステン
(WF6)を5sccmの流量で供給した。
Next, silane (SiH 4 ) and hydrogen (H 2 ) were used as the reaction gas (a) supplied to the first gas reservoir 9 at flow rates of 3 sccm and 50 sccm, respectively, and the second gas reservoir was used. Department
Tungsten fluoride (WF 6 ) was supplied as a reaction gas (II) to 10 at a flow rate of 5 sccm.

【0028】そして、チャンバ内を40m torrに保つと共
にWハロゲンランプを加熱源としてSi基板を280 ℃に加
熱し、Si面上に厚さが6000ÅのW膜の選択成長を行っ
た。こゝで、観測穴12には膜成長を通じて還元ガス
(イ)のみが流れているために弗化バリウム(BaF)より
なる透過窓13は全く汚染されることはなかった。
Then, the inside of the chamber was kept at 40 mTorr and the Si substrate was heated to 280 ° C. by using a W halogen lamp as a heating source to selectively grow a W film having a thickness of 6000 Å on the Si surface. Here, since only the reducing gas (a) flows through the observation hole 12 through the film growth, the transmission window 13 made of barium fluoride (BaF) was not contaminated at all.

【0029】このように形成したW膜の膜厚の変動を測
定した結果、従来の方法による場合の変動量は±5%で
あったのに対し、±3%以内にすることができた。 実施例2:(TiN の成長例) 実施例1で使用したシャワーヘッドを用い、同じ6イン
チのSiウエハを用い、実施例1と同様にして窒化チタン
(TiN) よりなる接続孔を形成した。
As a result of measuring the fluctuation of the film thickness of the W film thus formed, the fluctuation amount in the case of the conventional method was ± 5%, but could be within ± 3%. Example 2: (Example of TiN growth) Titanium nitride was used in the same manner as in Example 1 except that the same 6-inch Si wafer was used using the showerhead used in Example 1.
A connection hole made of (TiN) was formed.

【0030】なお、この場合はパッキン15,16 を冷却し
ながら、還流孔17にシリコーン油を流し、シャワーヘッ
ドを200 ℃に加熱して行った。こゝで、第1の中間室9
に供給する反応ガス(イ)としてはアンモニア(NH3)と
水素(H2) をそれぞれ100sccmと50sccmの流量で、ま
た、第2の中間室10に供給する反応ガス(ロ)として塩
化チタン(TiCl4) を5sccmの流量で供給した。
In this case, while cooling the packings 15 and 16, silicone oil was flown through the reflux holes 17 and the shower head was heated to 200 ° C. Here, the first intermediate chamber 9
Ammonia (NH 3 ) and hydrogen (H 2 ) at a flow rate of 100 sccm and 50 sccm, respectively, as the reaction gas (a) to be supplied to the second intermediate chamber 10 and titanium chloride (b) as the reaction gas (b) to be supplied to the second intermediate chamber 10. TiCl 4 ) was supplied at a flow rate of 5 sccm.

【0031】そして、チャンバ内を500m torrに保つと
共にWハロゲンランプを加熱源としてSi基板を650 ℃に
加熱し、Si面上に厚さ500ÅのTiN膜のブランケット成長
を行った。
Then, the inside of the chamber was kept at 500 mTorr and the Si substrate was heated to 650 ° C. by using a W halogen lamp as a heating source to grow a blanket of a TiN film having a thickness of 500 Å on the Si surface.

【0032】このように形成したTiN膜の膜厚の変動を
測定した結果、従来の方法による場合の変動量は±5%
であったのに対し、±3%以内であった。
As a result of measuring the variation in the thickness of the TiN film thus formed, the variation in the case of the conventional method is ± 5%.
However, it was within ± 3%.

【0033】[0033]

【発明の効果】反応ガス毎に設けた中間室より多数の導
入孔をシャワー面に取り出して噴出させると共に、片方
の反応ガスの一部を放射温度計の測温穴にバイパスさせ
るか、或いは別途に不活性ガスを供給するシャワーヘッ
ドの使用により、膜厚変動の少ないCVD膜を成長させ
ることができる。
EFFECTS OF THE INVENTION A large number of introduction holes are taken out from the intermediate chamber provided for each reaction gas to the shower surface and ejected, and a part of one reaction gas is bypassed to the temperature measuring hole of the radiation thermometer, or separately. By using a shower head for supplying an inert gas to the substrate, it is possible to grow a CVD film having a small film thickness variation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るシャワーヘッドの断面図(A)と
下面図(B)である。
FIG. 1 is a sectional view (A) and a bottom view (B) of a shower head according to the present invention.

【図2】本発明のシャワーヘッドを備えた半導体装置の
断面図である。
FIG. 2 is a cross-sectional view of a semiconductor device equipped with the shower head of the present invention.

【符号の説明】[Explanation of symbols]

2 シャワーヘッド 3 第1のガス供給口 4 第2のガス供給口 7 ウエハ 9 第1の中間室 10 第2の中間室 11 導入孔 12 測温穴 13 透過窓 2 shower head 3 first gas supply port 4 second gas supply port 7 wafer 9 first intermediate chamber 10 second intermediate chamber 11 introduction hole 12 temperature measuring hole 13 transparent window

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被処理基板(7)の温度を放射温度計(8)を
用いて測定しながら、基板加熱が行われている被処理基
板(7)上にシャワーヘッド(2)より複数の反応ガスを供給
し、減圧排気しながら反応を行わせる装置において、 反応ガスを供給する前記シャワーヘッド(2)が、 複数の供給ガスをそれぞれプールする中間室(9)(10)
と、 該中間室(9)(10)よりそれぞれの反応ガスをシャワーヘ
ッド(2)の下面に設けてある複数の噴出口に分割して供
給する複数の導入孔(11)と、 該シャワーヘッド(2)の中央に貫通して設けてあり、一
方の反応ガスの供給管を備えた放射温度計(8)用の測温
穴(12)と、 を少なくとも備えて構成されていることを特徴とする半
導体製造装置。
1. While measuring the temperature of the substrate to be processed (7) using a radiation thermometer (8), a plurality of shower heads (2) are provided on the substrate to be processed (7) on which the substrate is being heated. In a device for supplying a reaction gas and performing a reaction while exhausting under reduced pressure, the shower head (2) for supplying the reaction gas is an intermediate chamber (9) (10) for pooling a plurality of supply gases, respectively.
A plurality of introduction holes (11) for supplying the respective reaction gases from the intermediate chambers (9) and (10) to a plurality of jet ports provided on the lower surface of the shower head (2) in a divided manner; (2) is provided so as to penetrate through the center thereof, and at least a temperature measuring hole (12) for a radiation thermometer (8) equipped with one reaction gas supply pipe is provided, and And semiconductor manufacturing equipment.
JP31510391A 1991-11-29 1991-11-29 Semiconductor production device Withdrawn JPH05152208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31510391A JPH05152208A (en) 1991-11-29 1991-11-29 Semiconductor production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31510391A JPH05152208A (en) 1991-11-29 1991-11-29 Semiconductor production device

Publications (1)

Publication Number Publication Date
JPH05152208A true JPH05152208A (en) 1993-06-18

Family

ID=18061458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31510391A Withdrawn JPH05152208A (en) 1991-11-29 1991-11-29 Semiconductor production device

Country Status (1)

Country Link
JP (1) JPH05152208A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595606A (en) * 1995-04-20 1997-01-21 Tokyo Electron Limited Shower head and film forming apparatus using the same
US6143144A (en) * 1999-07-30 2000-11-07 Tokyo Electronlimited Method for etch rate enhancement by background oxygen control in a soft etch system
US6161500A (en) * 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US6173673B1 (en) 1999-03-31 2001-01-16 Tokyo Electron Limited Method and apparatus for insulating a high power RF electrode through which plasma discharge gases are injected into a processing chamber
WO2001016396A1 (en) * 1999-08-31 2001-03-08 Tokyo Electron Limited Film deposition apparatus and method
US6499425B1 (en) * 1999-01-22 2002-12-31 Micron Technology, Inc. Quasi-remote plasma processing method and apparatus
WO2004090961A1 (en) * 2003-04-10 2004-10-21 Tokyo Electron Limited Shower head structure and treating device
JP2007258734A (en) * 2002-02-28 2007-10-04 Tokyo Electron Ltd Shower head structure, and deposition equipment
KR100854995B1 (en) * 2005-03-02 2008-08-28 삼성전자주식회사 High density plasma chemical vapor deposition apparatus
WO2008117675A1 (en) * 2007-03-27 2008-10-02 Tokyo Electron Limited Filming apparatus, filming method, and storage medium
JP2009516777A (en) * 2005-11-22 2009-04-23 アイクストロン、アーゲー Multilayer thin film deposition method in CVD reactor and gas inlet part of CVD reactor
US7572337B2 (en) 2004-05-26 2009-08-11 Applied Materials, Inc. Blocker plate bypass to distribute gases in a chemical vapor deposition system
US7622005B2 (en) 2004-05-26 2009-11-24 Applied Materials, Inc. Uniformity control for low flow process and chamber to chamber matching
US20100229793A1 (en) * 2009-03-16 2010-09-16 Alta Devices, Inc. Showerhead for vapor deposition
US20110256315A1 (en) * 2010-04-14 2011-10-20 Applied Materials, Inc. Showerhead assembly with gas injection distribution devices
JP2013145873A (en) * 2011-12-15 2013-07-25 Nuflare Technology Inc Deposition apparatus and deposition method
JP2020013929A (en) * 2018-07-19 2020-01-23 サムコ株式会社 Capacitively coupled plasma processing device
US10774420B2 (en) 2016-09-12 2020-09-15 Kabushiki Kaisha Toshiba Flow passage structure and processing apparatus

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595606A (en) * 1995-04-20 1997-01-21 Tokyo Electron Limited Shower head and film forming apparatus using the same
US6161500A (en) * 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US6368987B1 (en) 1997-09-30 2002-04-09 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US6499425B1 (en) * 1999-01-22 2002-12-31 Micron Technology, Inc. Quasi-remote plasma processing method and apparatus
US6173673B1 (en) 1999-03-31 2001-01-16 Tokyo Electron Limited Method and apparatus for insulating a high power RF electrode through which plasma discharge gases are injected into a processing chamber
US6143144A (en) * 1999-07-30 2000-11-07 Tokyo Electronlimited Method for etch rate enhancement by background oxygen control in a soft etch system
WO2001016396A1 (en) * 1999-08-31 2001-03-08 Tokyo Electron Limited Film deposition apparatus and method
US6800139B1 (en) 1999-08-31 2004-10-05 Tokyo Electron Limited Film deposition apparatus and method
JP2007258734A (en) * 2002-02-28 2007-10-04 Tokyo Electron Ltd Shower head structure, and deposition equipment
WO2004090961A1 (en) * 2003-04-10 2004-10-21 Tokyo Electron Limited Shower head structure and treating device
KR100753695B1 (en) * 2003-04-10 2007-08-30 동경 엘렉트론 주식회사 Shower head structure and treating device
US8070910B2 (en) 2003-04-10 2011-12-06 Tokyo Electron Limited Shower head structure and treating device
US7829145B2 (en) 2004-05-26 2010-11-09 Applied Materials, Inc. Methods of uniformity control for low flow process and chamber to chamber matching
US7572337B2 (en) 2004-05-26 2009-08-11 Applied Materials, Inc. Blocker plate bypass to distribute gases in a chemical vapor deposition system
US7622005B2 (en) 2004-05-26 2009-11-24 Applied Materials, Inc. Uniformity control for low flow process and chamber to chamber matching
KR100854995B1 (en) * 2005-03-02 2008-08-28 삼성전자주식회사 High density plasma chemical vapor deposition apparatus
JP2009516777A (en) * 2005-11-22 2009-04-23 アイクストロン、アーゲー Multilayer thin film deposition method in CVD reactor and gas inlet part of CVD reactor
US8539908B2 (en) 2007-03-27 2013-09-24 Tokyo Electron Limited Film forming apparatus, film forming method and storage medium
WO2008117675A1 (en) * 2007-03-27 2008-10-02 Tokyo Electron Limited Filming apparatus, filming method, and storage medium
JP2008244142A (en) * 2007-03-27 2008-10-09 Tokyo Electron Ltd Film deposition apparatus and method, and storage medium
US20100229793A1 (en) * 2009-03-16 2010-09-16 Alta Devices, Inc. Showerhead for vapor deposition
US20110256315A1 (en) * 2010-04-14 2011-10-20 Applied Materials, Inc. Showerhead assembly with gas injection distribution devices
US10130958B2 (en) * 2010-04-14 2018-11-20 Applied Materials, Inc. Showerhead assembly with gas injection distribution devices
JP2013145873A (en) * 2011-12-15 2013-07-25 Nuflare Technology Inc Deposition apparatus and deposition method
US10774420B2 (en) 2016-09-12 2020-09-15 Kabushiki Kaisha Toshiba Flow passage structure and processing apparatus
JP2020013929A (en) * 2018-07-19 2020-01-23 サムコ株式会社 Capacitively coupled plasma processing device

Similar Documents

Publication Publication Date Title
JPH05152208A (en) Semiconductor production device
US6645884B1 (en) Method of forming a silicon nitride layer on a substrate
US4796562A (en) Rapid thermal cvd apparatus
JP5844919B2 (en) Substrate processing apparatus including auxiliary gas supply port
JPS6318079A (en) Method and apparatus for forming thin film
US6797068B1 (en) Film forming unit
US10593545B2 (en) Method for substrate processing using exhaust ports
KR20010053027A (en) Method for single chamber processing of PECVD-Ti and CVD-TiN films in IC manufacturing
JP3207832B2 (en) CVD reactor and method for producing epitaxially grown semiconductor wafers
JP2010077534A (en) Process and apparatus for vapor-depositing titanium nitride on substrate with chemical vapor deposition method
US4781945A (en) Process for the formation of phosphosilicate glass coating
JP3085364B2 (en) Cleaning method for CVD equipment
JP2004263209A (en) Vacuum treatment apparatus
KR100393751B1 (en) How to make a film
JP3263176B2 (en) Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, and method for removing natural oxide film
JP3015710B2 (en) Semiconductor manufacturing method
JP3611780B2 (en) Semiconductor manufacturing equipment
JP2762576B2 (en) Vapor phase growth equipment
JPH1050615A (en) Single wafer processing gas-phase growth device
JPH1050613A (en) Epitaxial growth device
JPH0319324A (en) Vapor growth device
JP3403194B2 (en) CVD apparatus and CVD method
JP2002141290A (en) System for producing semiconductor
JP3231312B2 (en) Vapor phase growth equipment
JPS61251119A (en) Chemical vapor deposition method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204