JPH05150190A - Linear polarized light conversion device - Google Patents

Linear polarized light conversion device

Info

Publication number
JPH05150190A
JPH05150190A JP3341791A JP34179191A JPH05150190A JP H05150190 A JPH05150190 A JP H05150190A JP 3341791 A JP3341791 A JP 3341791A JP 34179191 A JP34179191 A JP 34179191A JP H05150190 A JPH05150190 A JP H05150190A
Authority
JP
Japan
Prior art keywords
light
wave
polarized light
optical fiber
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3341791A
Other languages
Japanese (ja)
Inventor
Tomohide Inada
智英 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP3341791A priority Critical patent/JPH05150190A/en
Publication of JPH05150190A publication Critical patent/JPH05150190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

PURPOSE:To convert all of light into light which is polarized in a constant direction without using any polarizing plate to take linear polarized light out of natural light, to double the quantity of the light, and to prevent a polarizing plate from thermally deteriorating. CONSTITUTION:The light which is projected from a light source 1 and converged by a reflector 2, and also parallel to an optical axis is spectrally diffracted by a polarization beam splitting means 31 into transmitted linear polarized light (P wave) 33 and reflected linear polarized light (S wave) 34. The P wave 33 is converged by a converging lens 35 and reflected by a total reflecting mirror 36 to strike on the incidence surface 38 of an optical fiber 37. The S wave 34 is converged by a converging lens 39 and reflected by a total reflecting mirror 40 to strike on the incidence surface 41 of the optical fiber 37. The optical fiber 37 changes the traveling direction of the P wave 33 by 90 deg. through a vibration plane conversion part 45, rotates the plane of vibration of the S wave 34 by 90 deg. through a vibration plane conversion part 46, and multiplexes both those waves on the same optical axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤(R)、緑(G)、
青(B)別に設けた白黒液晶板の表示映像を加色混合し
て投射する液晶カラー投射型ディスプレイに適用して好
適な直線偏光変換装置に関するものである。
The present invention relates to red (R), green (G),
The present invention relates to a linear polarization conversion device suitable for application to a liquid crystal color projection type display that mixes and displays a display image of a black and white liquid crystal plate provided separately for blue (B).

【0002】[0002]

【従来の技術】近年、テレビジョンの大画面化指向が進
む中で、液晶テレビ・パネルの画像をスクリーンに拡大
投写する液晶方式の投射型ディスプレイが、小型、軽
量、取り扱いの容易さのために注目されている。しか
し、液晶投射型ディスプレイを、現在投射型ディスプレ
イの主流であり完成度が高いCRT(ブラウン管)画像
投写型ディスプレイと比較すると、解像度、明るさとも
未だ不満足で、改善の余地があった。
2. Description of the Related Art In recent years, with the trend toward larger screens of televisions, a liquid crystal projection display for enlarging and projecting an image of a liquid crystal television panel on a screen is required for its small size, light weight and easy handling. Attention has been paid. However, when comparing the liquid crystal projection display with the CRT (cathode ray tube) image projection display, which is currently the mainstream of projection displays and has a high degree of perfection, the resolution and brightness are still unsatisfactory, and there is room for improvement.

【0003】解像度に関しては、高精細液晶テレビ・パ
ネルの開発が進んでいる。明るさに関しては、画像形成
と光源を分離できる液晶投射型ディスプレイの方が有利
とされるが、標準的なCRT方式に比べて1/2〜1/
3程度で未だ及ばない。投射光束を増加させるための手
っ取り早い方法は高光出力ランプを使用することである
が、この場合は消費電力の増大、装置温度の上昇による
部品の劣化をもたらすため実用的でない。
Regarding resolution, development of high-definition liquid crystal television panels is in progress. Regarding brightness, a liquid crystal projection display that can separate the image formation and the light source is more advantageous, but it is 1/2 to 1/1 compared to the standard CRT method.
It is still around 3 A quick way to increase the projected light flux is to use a high light output lamp, but this is not practical because it results in increased power consumption and component degradation due to increased device temperature.

【0004】図5は光の色分離および混合にダイクロイ
ックミラーを用いたミラー方式と呼ばれる液晶カラー投
射型ディスプレイの従来例を示す模式図である。同図に
おいて、1はキセノンランプ等の光源であり、この光源
1から放射された光は、反射面が放物面で光源光を光軸
と平行な平行光にする反射鏡2で反射され、液晶板7、
12、15の直前に配置した不図示のコンデンサレンズ
によって投射光学系19に向けて収束される。この時、
収束された平行光線は、青色光のみを分離反射する青ダ
イクロイックミラー4に入射する。青ダイクロイックミ
ラー4で分離された青色光5はミラー6で光源光軸と平
行に反射されて、透過型液晶パネル7に入射する。液晶
パネル7には投射すべき任意の映像の構成画素に応じて
選択的に電圧が供給されており、該液晶パネル7を透過
した青色光5は映像信号を有する青色映像光5aとな
る。
FIG. 5 is a schematic view showing a conventional example of a liquid crystal color projection type display called a mirror system using a dichroic mirror for color separation and mixing of light. In the figure, reference numeral 1 denotes a light source such as a xenon lamp, and the light emitted from the light source 1 is reflected by a reflecting mirror 2 which has a reflecting surface having a parabolic surface and which makes the light source light parallel light parallel to the optical axis. Liquid crystal plate 7,
A condenser lens (not shown) arranged immediately before the lenses 12 and 15 converges the light toward the projection optical system 19. At this time,
The converged parallel rays enter the blue dichroic mirror 4 that separates and reflects only the blue light. The blue light 5 separated by the blue dichroic mirror 4 is reflected by the mirror 6 in parallel with the optical axis of the light source and enters the transmissive liquid crystal panel 7. A voltage is selectively supplied to the liquid crystal panel 7 according to constituent pixels of an arbitrary image to be projected, and the blue light 5 transmitted through the liquid crystal panel 7 becomes a blue image light 5a having a video signal.

【0005】青ダイクロイックミラー4で青色成分5を
失いそのミラー4を透過した光は黄色になる。その黄色
光8は赤ダイクロイックミラー9に入射し、赤色光10
が分離され、残る緑色光11はそのミラー9を透過す
る。分離された赤色光10は前記液晶パネル7と同一構
成からなる透過型液晶パネル12に入射し赤色映像光1
0aとなる。青色映像光5aと赤色映像光10aは混合
用ダイクロイックミラー13で混合されてマゼンタ色映
像光14となる。
The blue dichroic mirror 4 loses the blue component 5 and the light transmitted through the mirror 4 becomes yellow. The yellow light 8 is incident on the red dichroic mirror 9, and the red light 10
Is separated, and the remaining green light 11 passes through the mirror 9. The separated red light 10 is incident on a transmissive liquid crystal panel 12 having the same structure as the liquid crystal panel 7, and the red image light 1
It becomes 0a. The blue image light 5a and the red image light 10a are mixed by the mixing dichroic mirror 13 to become magenta image light 14.

【0006】一方、緑色光11はやはり前記液晶パネル
7と同一構成の透過型液晶パネル15に入射し、緑色映
像光11aとなり、ミラー16で反射されて混合用ダイ
クロイックミラー17に入射する。緑色映像光11aと
マゼンタ色映像光14は混合用ダイクロイックミラー1
7で混合されて、RGB加色混合映像光18となり、投
射光学系19を介して大型スクリーン20に拡大投射さ
れて、カラー映像が再生される。
On the other hand, the green light 11 also enters the transmission type liquid crystal panel 15 having the same structure as the liquid crystal panel 7, becomes green image light 11a, is reflected by the mirror 16 and enters the mixing dichroic mirror 17. The green image light 11a and the magenta color image light 14 are mixed with the dichroic mirror 1 for mixing.
7 is mixed and becomes the RGB additive color mixed image light 18, which is enlarged and projected onto the large screen 20 through the projection optical system 19 to reproduce a color image.

【0007】図6は透過型液晶パネル7(液晶パネル1
2、15も同様)の実際の構成(図4では省略)を示す
図で、両側に設けられた2枚の偏光板21A、21Bを
備えている。その理由は、液晶パネル7に使用される液
晶(ツイステッド・ネマティック液晶)は、電圧の印加
状態によって光を透過したり、遮断したりするのではな
く、入射した光の偏光面を回転させるからである。すな
わち、偏光方向の定まっていない自然光を入射させる
と、電圧の印加状態に関係なく、自然光として出てくる
ため、液晶パネルに画像が形成されていても、認識する
ことはできない。そこで、まず液晶パネル7の前に偏光
板21Aを置き、自然光のうち一定方向の偏光の光だけ
を透過させて、直線偏光の光に変える。つまり、自然光
が偏光板21Aを透過すると、互いに直交する2つの直
線偏光の光に分解され、このうち、偏光方向に平行な成
分は透過し、直交する成分は吸収される。そして、偏光
方向に平行な直線偏光光を液晶パネル7に入射させる
と、画像に応じて部分的に偏光方向が回転し、液晶パネ
ル7から出る。ここで再度偏光板21Bを用いて一定方
向の偏光の光だけを透過させると、初めて濃淡画像が得
られる。なお、偏光方向に直交する成分は偏光板21A
に吸収されると、熱に変換される。
FIG. 6 shows a transmissive liquid crystal panel 7 (liquid crystal panel 1
2 and 15 are the same) (actual configuration is omitted in FIG. 4), and two polarizing plates 21A and 21B are provided on both sides. The reason is that the liquid crystal used in the liquid crystal panel 7 (twisted nematic liquid crystal) does not transmit or block light depending on the voltage application state, but rotates the polarization plane of incident light. is there. That is, when natural light of which the polarization direction is not determined is incident, it is emitted as natural light regardless of the voltage application state, and therefore, even if an image is formed on the liquid crystal panel, it cannot be recognized. Therefore, first, a polarizing plate 21A is placed in front of the liquid crystal panel 7, and only natural polarized light of a certain direction is transmitted and converted into linear polarized light. That is, when natural light passes through the polarizing plate 21A, it is decomposed into two linearly polarized lights that are orthogonal to each other, and of these, the components parallel to the polarization direction are transmitted and the orthogonal components are absorbed. Then, when linearly polarized light parallel to the polarization direction is incident on the liquid crystal panel 7, the polarization direction is partially rotated according to the image and exits from the liquid crystal panel 7. Here, when the polarizing plate 21B is used again to transmit only light polarized in a certain direction, a grayscale image is obtained. The component orthogonal to the polarization direction is the polarizing plate 21A.
When absorbed by, it is converted into heat.

【0008】[0008]

【発明が解決しようとする課題】以上のことから明らか
なように、従来装置においては自然光から偏光板21A
で偏光した直線偏光光を取り出す段階で少なくとも半分
の光が偏光板21Aに吸収されるため、光の有効利用と
いう点で問題があった。また、吸収された光は熱に変換
され、偏光板21Aの温度を上昇させるため、偏光板2
1Aを劣化させるという付随的な問題もあった。したが
って、自然光から偏光板21Aで一定方向の偏光成分だ
けを取り出すのではなく、光源からの全ての光を一定方
向に偏光した光に変換することができ、光量の増大化
と、熱による偏光板劣化の問題を解消し得る装置の開発
が要望されている。なお、2枚目の偏光板21Bの劣化
の問題は、液晶パネル7の開口部分が全面積の40%程
度(開口率の増大も液晶カラー投射型ディスプレイの高
輝度化の重要なファクタである)であるため、1枚目の
偏光板21Aほど大きな問題にならない。
As is apparent from the above, in the conventional device, the polarizing plate 21A is changed from the natural light.
Since at least half of the light is absorbed by the polarizing plate 21A at the stage of extracting the linearly polarized light polarized in (2), there is a problem in that the light is effectively used. Further, the absorbed light is converted into heat and raises the temperature of the polarizing plate 21A.
There was also an incidental problem of degrading 1A. Therefore, not only the polarized component in a certain direction is extracted from the natural light by the polarizing plate 21A, but all the light from the light source can be converted into the polarized light in the certain direction, and the amount of light is increased and the polarizing plate by heat is generated. There is a demand for the development of a device that can solve the problem of deterioration. The problem of the deterioration of the second polarizing plate 21B is that the opening portion of the liquid crystal panel 7 is about 40% of the total area (the increase of the opening ratio is also an important factor for increasing the brightness of the liquid crystal color projection display). Therefore, the problem is not as large as that of the first polarizing plate 21A.

【0009】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、自然光から直線偏光を取り出す段階で偏光板を使
用せず全ての光を一定方向に偏光した光に変換すること
ができ、光量を2倍に増大するに留まらず、熱による偏
光板劣化の問題を解消し得るようにした直線偏光変換装
置を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to make all light constant without using a polarizing plate at the stage of extracting linearly polarized light from natural light. It is an object of the present invention to provide a linear polarization conversion device which can convert light into polarized light in a direction and can not only double the amount of light but also solve the problem of deterioration of a polarizing plate due to heat.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するため、回転放物体等のリフレクタを備えた光源手段
と、この光源手段からの略平行な収束光の光軸上に配設
され、その収束光を振動面が互いに直交する2つの直線
偏光光に分光する偏光ビームスプリット手段と、この偏
光ビームスプリット手段の前記両直線偏光光の射出面に
対向させてそれぞれ設けた収束手段と、前記各収束手段
の焦点位置にそれぞれ位置する2つの入射面を有し、前
記両直線偏光光を合成する光ファイバとを備え、この光
ファイバは一方の直線偏光光の振動面を他方の直線偏光
光の振動面に一致させる振動面変換部を備えているもの
である。
In order to achieve the above object, the present invention is provided with a light source means having a reflector such as a paraboloid of revolution, and a substantially parallel optical axis of convergent light from the light source means. A polarized beam splitting means for splitting the converged light into two linearly polarized light beams having oscillating planes orthogonal to each other, and a converging means provided so as to face the emission surfaces of the linearly polarized light beams of the polarized beam splitting means, respectively. An optical fiber having two incident surfaces respectively located at the focal positions of the respective converging means and combining the two linearly polarized lights is provided, and the optical fiber has a vibrating surface of one linearly polarized light and another linearly polarized light. It is provided with a vibration surface conversion unit that matches the vibration surface of light.

【0011】[0011]

【作用】本発明において、光源手段から出射する光源光
は自然光であり、円偏光の性質を有してリフレクタによ
り光軸と略平行な収束光となり、偏光ビームスプリット
手段に入射する。偏光ビームスプリット手段は、入射し
た自然光を振動面が互いに直交する反射直線偏光光(S
波)と、透過直線偏光光(P波)とに分離する。光ファ
イバは、収束手段によって収束されたS波と、P波が入
射する入射面を有し、且つ振動面変換部によって一方の
直線偏光光の振動面を90°回転させて他方の直線偏光
光の振動面と一致させることにより、入射面に入射する
全ての光を一定方向に偏光した直線偏光光に変換、合成
する。また、S波とP波の光路長を等しくすると、両波
の位相を同位相にして合成することができる。
In the present invention, the light source light emitted from the light source means is natural light, has a property of circularly polarized light, becomes convergent light substantially parallel to the optical axis by the reflector, and enters the polarized beam splitting means. The polarized beam splitting means reflects the incident natural light into reflected linearly polarized light (S
Wave) and transmitted linearly polarized light (P wave). The optical fiber has an incident surface on which the S wave and the P wave converged by the converging means are incident, and the vibrating surface conversion unit rotates the vibrating surface of one linearly polarized light by 90 ° to rotate the other linearly polarized light. By matching with the vibrating surface of, all light incident on the incident surface is converted into linearly polarized light polarized in a certain direction and combined. Further, if the optical path lengths of the S wave and the P wave are made equal, the phases of both waves can be made the same phase and combined.

【0012】[0012]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。図1は本発明に係る直線偏光変換装置
の一実施例を示す外観斜視図、図2は図1のA−A矢視
側面図である。これらの図において、本実施例は光源1
から出射した自然光29を内面が回転放物反射面からな
るリフレクタ2によって光軸と平行な収束光30とし、
この収束光30を偏光ビームスプリット手段31に入射
させることで、その誘電体多層膜32によって振動面が
互いに直交する透過直線偏光光(以下P波と略称する)
33と反射直線偏光光(以下S波と略称する)34に分
光し、P波33を集光レンズ(収束手段)35によって
収束し、全反射ミラー36によって光源光軸と直交する
方向に全反射させた後、光ファイバ37の一方の入射面
38に入射させる一方、S波34を集光レンズ39によ
って収束し、全反射ミラー40によって光源光軸と平行
な方向に全反射させ、前記光ファイバ37の他方の入射
面41に入射させて前記P波33とS波34を同一光軸
上に合成すると共に、P波33とS波34の振動面を一
致させて液晶パネル7に導くようにしたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. 1 is an external perspective view showing an embodiment of a linear polarization converter according to the present invention, and FIG. 2 is a side view taken along the line AA of FIG. In these figures, this embodiment shows the light source 1
The natural light 29 emitted from the light is converted into a convergent light 30 parallel to the optical axis by the reflector 2 whose inner surface is a rotating parabolic reflection surface,
By making the convergent light 30 enter the polarized beam splitting means 31, the transmitted linearly polarized light whose vibrating planes are orthogonal to each other due to the dielectric multilayer film 32 (hereinafter abbreviated as P wave).
33 and reflected linearly polarized light (hereinafter abbreviated as S wave) 34, and the P wave 33 is converged by a condenser lens (converging means) 35 and totally reflected by a total reflection mirror 36 in a direction orthogonal to the light source optical axis. Then, the S-wave 34 is converged by the condenser lens 39 and is totally reflected by the total reflection mirror 40 in the direction parallel to the optical axis of the light source while being incident on one incident surface 38 of the optical fiber 37. The P wave 33 and the S wave 34 are incident on the other incident surface 41 of 37 to be combined on the same optical axis, and the vibrating surfaces of the P wave 33 and the S wave 34 are made to coincide with each other and guided to the liquid crystal panel 7. It was done.

【0013】偏光ビームスプリット手段31は、2つの
直角プリズムのうちの一方の斜面に誘電体多層膜32を
蒸着し、斜面同士を接合したものであり、収束光30を
偏光方向が互いに直交する2つの直線偏光光に分離する
ことができ、その斜面を透過する光がP偏光の光33で
あり、斜面で反射された光がS偏光の光34である。な
お、分光直後のP波33は、図1において進行方向に対
して直交する方向に振動する成分を持ち振動面がY方向
と平行な直線偏光光、S波34は、図1においてZ方向
に振動する成分を持つ直線偏光光で、振動面がX方向と
平行でP波33の振動面と直交している。
The polarized beam splitting means 31 is one in which a dielectric multilayer film 32 is vapor-deposited on one slope of one of two right-angle prisms and the slopes are joined together, and the convergent light 30 has polarization directions orthogonal to each other. The light that can be separated into two linearly polarized lights is the P-polarized light 33 that is transmitted through the slope, and the S-polarized light 34 is the light that is reflected by the slope. It should be noted that the P wave 33 immediately after the spectroscopy has a component that vibrates in a direction orthogonal to the traveling direction in FIG. 1 and has linearly polarized light whose vibrating surface is parallel to the Y direction, and the S wave 34 in the Z direction in FIG. It is a linearly polarized light having a vibrating component, and its vibrating plane is parallel to the X direction and orthogonal to the vibrating plane of the P wave 33.

【0014】前記集光レンズ35と39は、前記偏光ビ
ームスプリット手段31のP波33とS波34の射出面
42、43に対してそれぞれ平行に対向配置されてい
る。第1の全反射ミラー36と40は、前記射出面4
2、43に対してそれぞれ45°傾斜し、且つ互いに正
対するよう、すなわち互いに反射面を平行に対向させて
配設されている。
The condenser lenses 35 and 39 are arranged in parallel and opposite to the exit surfaces 42 and 43 of the P-wave 33 and the S-wave 34 of the polarized beam splitting means 31, respectively. The first total reflection mirrors 36 and 40 are provided on the exit surface 4
They are inclined 45 ° with respect to 2 and 43, respectively, and are arranged so as to face each other, that is, the reflecting surfaces thereof face each other in parallel.

【0015】前記光ファイバ37は、軸線が光源光軸と
直交しY方向と平行に配設されて、光源側端部が分岐さ
れることにより2つの分枝部37A、37Bを有し、そ
の端面が前記入射面38、41とされ、液晶パネル側端
面が出射面44を形成している。また各分枝部37A、
37Bは互いに直角に交差し、分枝部37AがP波33
を入射させるべく全反射ミラー36方向に、分枝部37
BがS波34を入射させるべく全反射ミラー40方向に
それぞれ90°屈曲されており、入射面38、41が前
記集光レンズ35、39の焦点位置と一致している。こ
のため、各分枝部37A、37Bの屈曲部はそれぞれ振
動面変換部45、46をそれぞれ形成している。そし
て、光源1から各入射面38、41までの光路長は等し
く設定されている。このような光ファイバ37の断面形
状としては円形に限らず、矩形等用途に応じて種々変更
可能である。また多数の微細なファイバを束ねて1つの
光ファイバとしてもよい。なお、50、51はP波33
とS波34の波形を示す。
The optical fiber 37 has two branch portions 37A and 37B, whose axis is orthogonal to the optical axis of the light source and is parallel to the Y direction, and the light source side end portion is branched. The end faces are the incident faces 38 and 41, and the liquid crystal panel side end face forms the emission face 44. In addition, each branch 37A,
37B intersect each other at a right angle, and the branch portion 37A has a P wave 33.
In the direction of the total reflection mirror 36 so that the
B is bent by 90 ° in the direction of the total reflection mirror 40 so as to make the S wave 34 incident, and the incident surfaces 38 and 41 coincide with the focal positions of the condenser lenses 35 and 39. Therefore, the bent portions of the branched portions 37A and 37B form the vibration surface conversion portions 45 and 46, respectively. The optical path lengths from the light source 1 to the incident surfaces 38 and 41 are set to be equal. The cross-sectional shape of such an optical fiber 37 is not limited to a circular shape, but can be variously changed depending on the application such as a rectangular shape. Also, a large number of fine fibers may be bundled into one optical fiber. In addition, 50 and 51 are P waves 33
And the waveform of the S wave 34 are shown.

【0016】このような構成において、偏光ビームスプ
リット手段31を透過するP波33は、上記した通りY
方向と平行な振動面を有し、全反射ミラー36によって
光源光軸と直交する方向に反射すると、進行方向が90
°変換されてX方向となり、振動面が同じく90°回転
してZ方向と直交する直線偏光光となり、さらに光ファ
イバ37の入射面38に入射して振動面変換部45によ
り光源光軸と直交する面内にて進行方向が90°変換さ
れると、振動面は変わらず進行方向がY方向の直線偏光
光(S’波)となる。一方、偏光ビームスプリット手段
31の誘電体多層膜32によって反射したS波34は、
振動方向がZ方向でY方向と直交する振動面を有し、全
反射ミラー40によって光源光軸と平行な方向に反射す
ると、進行方向が90°変換されてZ方向となり振動面
は変わらず、さらに光ファイバ37の入射面41に入射
して振動面変換部46により光源光軸と直交する方向に
変換されると、進行方向が前記P波33と同方向(Y方
向)で、振動面がZ方向と直交する、つまりP波33と
同一の振動面を有する直線偏光光(S波)となり、P波
33と同じ光軸上に合成される。また、光源1から各入
射面38、41までの光路長は等しく設定されているの
で、P波33とS波34の位相も等しい。したがって、
光源1から出た全ての自然光29を、損失なく反射直線
偏光光(S波+S’波)として取り出すことができ、液
晶パネル7に入射する偏光光の光量を従来の2倍に増大
させることができる。また、従来装置と異なり偏光板を
必要としないので、熱による偏光板劣化の問題も解消す
ることができる。
In such a structure, the P wave 33 transmitted through the polarized beam splitting means 31 is Y as described above.
When it is reflected by the total reflection mirror 36 in a direction orthogonal to the light source optical axis, the traveling direction is 90 °.
Is converted into the X direction, the vibrating surface is also rotated by 90 ° into linearly polarized light orthogonal to the Z direction, and further enters the incident surface 38 of the optical fiber 37 and is orthogonal to the light source optical axis by the vibrating surface converting unit 45. When the traveling direction is converted by 90 ° in the plane, the vibrating surface remains unchanged and the traveling direction becomes linearly polarized light (S ′ wave) in the Y direction. On the other hand, the S wave 34 reflected by the dielectric multilayer film 32 of the polarized beam splitting means 31 is
When the total reflection mirror 40 has a vibration surface whose vibration direction is the Z direction and is orthogonal to the Y direction and is reflected in a direction parallel to the light source optical axis, the traveling direction is converted by 90 ° to become the Z direction, and the vibration surface does not change. Further, when the light enters the incident surface 41 of the optical fiber 37 and is converted into a direction orthogonal to the light source optical axis by the vibrating surface conversion unit 46, the traveling direction is the same direction as the P wave 33 (Y direction), and the vibrating surface is It becomes a linearly polarized light (S wave) that is orthogonal to the Z direction, that is, has the same vibration plane as the P wave 33, and is combined on the same optical axis as the P wave 33. Further, since the optical path lengths from the light source 1 to the incident surfaces 38 and 41 are set to be equal, the phases of the P wave 33 and the S wave 34 are also equal. Therefore,
All the natural light 29 emitted from the light source 1 can be extracted as reflected linearly polarized light (S wave + S ′ wave) without loss, and the amount of polarized light entering the liquid crystal panel 7 can be doubled as compared with the conventional one. it can. Further, unlike the conventional apparatus, since no polarizing plate is required, the problem of deterioration of the polarizing plate due to heat can be solved.

【0017】なお、上記実施例においては、分枝部37
Aの振動面変換部45によってP波33の振動面を同一
平面内にて90°回転させ、分枝部37Bの振動面変換
部46によってS波34の振動面を2つの直交する面間
で90°回転させたが、液晶パネル7を光ファイバ37
の図1において左側に配置し、光ファイバ37を反転さ
せば、上記したとは逆に、分枝部37Aの振動面変換部
45によってP波33の振動面を2つの直交する面間で
90°回転させ、分枝部37Bの振動面変換部46によ
ってS波34の振動面を同一平面内にて90°回転させ
ることができる。
In the above embodiment, the branch portion 37
The vibration surface conversion unit 45 of A rotates the vibration surface of the P wave 33 by 90 ° in the same plane, and the vibration surface conversion unit 46 of the branch unit 37B rotates the vibration surface of the S wave 34 between two orthogonal surfaces. The liquid crystal panel 7 was rotated by 90 °, but the optical fiber 37
1 is arranged on the left side and the optical fiber 37 is inverted, conversely to the above, the vibration surface conversion unit 45 of the branch portion 37A causes the vibration surface of the P wave 33 to move between two orthogonal surfaces by 90 degrees. The vibration surface of the S wave 34 can be rotated by 90 degrees in the same plane by the vibration surface conversion unit 46 of the branch portion 37B.

【0018】図3は本発明の他の実施例を示す概略構成
図、図4は光ファイバの要部斜視図である。この実施例
は上記した実施例において用いた全反射ミラー36、4
0を廃止し、光ファイバのみでP波33の振動面を回転
させ、S波34の振動面と一致させるようにしたもので
ある。偏光ビームスプリット手段31を透過するP波3
3は、振動方向がY方向で、Z方向と直交する振動面を
有し、S波34は振動方向がZ方向で振動面がX方向と
直交している。光ファイバ37の一方の分枝部37Aは
それぞれ2つの直交する第1、第2の振動面変換部6
0、61を有し、第1の振動面変換部60がX方向から
Z方向に90°屈曲し、第2の振動面変換部61がZ方
向からY方向に90°屈曲している。一方、他方の分枝
部37Aは振動面変換部を有していない。したがって、
入射面41から入射するS波34は振動面を変換される
ことなく光ファイバ37内を進行する。これに対して、
P波33は入射面38から分枝部37A内に入射する
と、第1の振動面変換部60によって進行方向がZ方向
に90°変換されることで、振動方向がY方向で変わら
ず、振動面が90°回転してX方向と直交する直線偏光
光となり、さらに第2の偏光面変換部61によって進行
方向がY方向に90°変換されることにより、振動方向
がZ方向で振動面が90°回転してX方向と直交する直
線偏光光(S’波)となる。つまり、P波33はS波3
4と同一の振動面を有する直線偏光光となり、光ファイ
バ37内でS波34と同じ光軸上に合成される。また、
光源1から各入射面38、41までの光路長は等しく設
定されているので、P波33とS波34の位相も等し
い。したがって、本実施例においても光源1から出た全
ての自然光29を、損失なく反射直線偏光光(S波+
S’波)として取り出すことができ、上記実施例と同様
な効果が得られるものである。
FIG. 3 is a schematic structural view showing another embodiment of the present invention, and FIG. 4 is a perspective view of an essential part of an optical fiber. In this embodiment, the total reflection mirrors 36 and 4 used in the above embodiments are used.
0 is abolished, and the vibration surface of the P wave 33 is rotated only by the optical fiber so as to match the vibration surface of the S wave 34. P wave 3 transmitted through the polarized beam splitting means 31
3 has a vibrating surface whose vibrating direction is the Y direction and is orthogonal to the Z direction, and the S wave 34 has a vibrating direction which is the Z direction and a vibrating surface which is orthogonal to the X direction. One branch portion 37A of the optical fiber 37 has two orthogonal first and second vibration surface conversion portions 6 respectively.
0, 61, the first vibration surface conversion portion 60 is bent 90 degrees from the X direction to the Z direction, and the second vibration surface conversion portion 61 is bent 90 degrees from the Z direction to the Y direction. On the other hand, the other branch portion 37A does not have a vibration surface conversion portion. Therefore,
The S wave 34 incident from the incident surface 41 travels in the optical fiber 37 without being converted on the vibration surface. On the contrary,
When the P wave 33 enters the branch portion 37A from the incident surface 38, the traveling direction of the P wave 33 is changed by 90 ° in the Z direction by the first vibrating surface conversion unit 60, so that the vibration direction does not change in the Y direction and vibrates. The plane is rotated by 90 ° to become linearly polarized light orthogonal to the X direction, and the second polarization plane conversion unit 61 further converts the traveling direction by 90 ° to the Y direction, whereby the vibration direction is the Z direction and the vibration surface is It is rotated by 90 ° and becomes linearly polarized light (S ′ wave) orthogonal to the X direction. That is, P wave 33 is S wave 3
4 becomes linearly polarized light having the same vibrating surface and is combined on the same optical axis as the S wave 34 in the optical fiber 37. Also,
Since the optical path lengths from the light source 1 to the incident surfaces 38 and 41 are set to be equal, the phases of the P wave 33 and the S wave 34 are also equal. Therefore, also in this embodiment, all the natural light 29 emitted from the light source 1 is reflected linearly polarized light (S wave +
S'wave) can be taken out, and the same effect as in the above embodiment can be obtained.

【0019】[0019]

【発明の効果】以上説明したように本発明に係る直線偏
光変換装置は、自然光から直線偏光光を取り出す段階
で、偏光ビームスプリット手段により振動面が互いに直
交する2つの直線偏光光に分光し、光ファイバによって
これら両偏光光を合成すると共に、該ファイバに設けた
振動面変換部によって一方の偏光光の振動面を回転させ
他方の偏光光の振動面と一致させるように構成したの
で、偏向板を使用せず全ての光を一定方向に偏光した光
に変換することができる。この結果、光の損失がなく光
量を増大させることができ、また、従来のごとく偏光板
を用いた際に生じる光吸収による温度上昇に伴って引き
起こす偏光板の劣化の問題も解消することができる。
As described above, the linearly polarized light conversion device according to the present invention splits linearly polarized light from natural light into two linearly polarized lights whose vibrating surfaces are orthogonal to each other by the polarization beam splitting means, The optical fiber is configured to combine these polarized lights, and the vibrating surface conversion unit provided in the fiber rotates the vibrating surface of one polarized light so as to match the vibrating surface of the other polarized light. It is possible to convert all light into light polarized in a fixed direction without using. As a result, it is possible to increase the amount of light without loss of light, and it is also possible to solve the problem of deterioration of the polarizing plate caused by temperature rise due to light absorption that occurs when a polarizing plate is used as in the past. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る直線偏光変換装置の一実施例を示
す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a linear polarization converter according to the present invention.

【図2】図1のA−A矢視側面図である。FIG. 2 is a side view taken along the line AA of FIG.

【図3】本発明の他の実施例を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing another embodiment of the present invention.

【図4】光ファイバの要部斜視図である。FIG. 4 is a perspective view of a main part of an optical fiber.

【図5】液晶カラー投射装置の従来例を示す模式図であ
る。
FIG. 5 is a schematic view showing a conventional example of a liquid crystal color projection device.

【図6】液晶パネルと偏光板の構成を示す図である。FIG. 6 is a diagram showing a configuration of a liquid crystal panel and a polarizing plate.

【符号の説明】[Explanation of symbols]

1 光源 2 リフレクタ 4、11 分光用ダイクロイックミラー 7、12、15 液晶パネル 13、17 合成用ダイクロイックミラー 30 収束光 31 偏光ビームスプリット手段 32 誘電体多層膜 33 P波 34 S波 35、39 集光レンズ 36、40 全反射ミラー 37 光ファイバ 38、41 入射面 44 出射面 45、46 振動面変換部 60 第1の振動面変換部 61 第2の振動面変換部 1 Light Source 2 Reflector 4, 11 Spectral Dichroic Mirror 7, 12, 15 Liquid Crystal Panel 13, 17 Synthetic Dichroic Mirror 30 Converged Light 31 Polarized Beam Splitting Means 32 Dielectric Multilayer Film 33 P Wave 34 S Wave 35, 39 Condenser Lens 36, 40 Total reflection mirror 37 Optical fiber 38, 41 Incident surface 44 Emission surface 45, 46 Vibration surface conversion unit 60 First vibration surface conversion unit 61 Second vibration surface conversion unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転放物体等のリフレクタを備えた光源
手段と、この光源手段からの略平行な収束光の光軸上に
配設され、その収束光を振動面が互いに直交する2つの
直線偏光光に分光する偏光ビームスプリット手段と、こ
の偏光ビームスプリット手段の前記両直線偏光光の射出
面に対向させてそれぞれ設けた収束手段と、前記各収束
手段の焦点位置にそれぞれ位置する2つの入射面を有
し、前記両直線偏光光を合成する光ファイバとを備え、
この光ファイバは一方の直線偏光光の振動面を他方の直
線偏光光の振動面に一致させる振動面変換部を備えてい
ることを特徴とする直線偏光変換装置。
1. A light source means provided with a reflector such as a paraboloid of revolution, and two straight lines arranged on the optical axis of the substantially parallel convergent light from the light source means and having their vibrating surfaces orthogonal to each other. Polarized beam splitting means for splitting into polarized light, converging means provided so as to face the exit surfaces of the linearly polarized light of the polarized beam splitting means, and two incident lights respectively located at focal points of the respective converging means. An optical fiber having a surface and combining the two linearly polarized lights,
This optical fiber is provided with a vibrating surface conversion unit that matches the vibrating surface of one linearly polarized light with the vibrating surface of the other linearly polarized light.
JP3341791A 1991-12-02 1991-12-02 Linear polarized light conversion device Pending JPH05150190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3341791A JPH05150190A (en) 1991-12-02 1991-12-02 Linear polarized light conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3341791A JPH05150190A (en) 1991-12-02 1991-12-02 Linear polarized light conversion device

Publications (1)

Publication Number Publication Date
JPH05150190A true JPH05150190A (en) 1993-06-18

Family

ID=18348791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3341791A Pending JPH05150190A (en) 1991-12-02 1991-12-02 Linear polarized light conversion device

Country Status (1)

Country Link
JP (1) JPH05150190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248270A (en) * 2002-02-01 2003-09-05 Samsung Electronics Co Ltd Illumination system and projection display device employing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264613A (en) * 1988-08-31 1990-03-05 Seiko Epson Corp Polarization light source
JPH03152523A (en) * 1989-11-09 1991-06-28 Sharp Corp Liquid crystal projector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264613A (en) * 1988-08-31 1990-03-05 Seiko Epson Corp Polarization light source
JPH03152523A (en) * 1989-11-09 1991-06-28 Sharp Corp Liquid crystal projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248270A (en) * 2002-02-01 2003-09-05 Samsung Electronics Co Ltd Illumination system and projection display device employing the same

Similar Documents

Publication Publication Date Title
KR100241641B1 (en) Efficient optical system for a high resolution projection display employing reflection light valves
KR100221376B1 (en) Image projection apparatus
JP2738331B2 (en) Projection type liquid crystal display
JPH0915529A (en) Image projection device
JPH08271855A (en) Device for display of image on screen
KR20030013931A (en) Optical illumination system for projector using optical device with function of homogenizing and color separation
JP2002207189A (en) Color separating/synthesizing apparatus
US5691785A (en) Color projection type display apparatus having three liquid displays of same structure
KR100833246B1 (en) Image projecting apparatus
JPH11281930A (en) Projection display device
KR960013807B1 (en) Apparatus to efficiently convert unpolarized light to linearly polarized light
KR20020050854A (en) Device for color separation and combination
US6992833B2 (en) Color combining optical system, projection-type display optical system, projection-type image display apparatus, and image display system
JPH05150190A (en) Linear polarized light conversion device
JP3849400B2 (en) projector
JPH11212026A (en) Light source unit for projector
JPH04177335A (en) Projection type liquid crystal display device
JPH0566503A (en) Projection type liquid crystal projection
JPH05100331A (en) Liquid crystal display device
JPH052150A (en) Polarized light source device
JPH06258600A (en) Polarized source device and image display device
JP3236873B2 (en) LCD projector
JPH03208013A (en) Polarized light illuminating system for liquid crystal video projector
KR100410944B1 (en) Projection system using polarizing beam splitter
KR100207728B1 (en) Reflection type projector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070803

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080803

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100803

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100803

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110803