JPH0514860B2 - - Google Patents

Info

Publication number
JPH0514860B2
JPH0514860B2 JP59082003A JP8200384A JPH0514860B2 JP H0514860 B2 JPH0514860 B2 JP H0514860B2 JP 59082003 A JP59082003 A JP 59082003A JP 8200384 A JP8200384 A JP 8200384A JP H0514860 B2 JPH0514860 B2 JP H0514860B2
Authority
JP
Japan
Prior art keywords
sensitivity
gas
gas sensor
semiconductor
thorium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59082003A
Other languages
Japanese (ja)
Other versions
JPS60227160A (en
Inventor
Kyoshi Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP8200384A priority Critical patent/JPS60227160A/en
Publication of JPS60227160A publication Critical patent/JPS60227160A/en
Publication of JPH0514860B2 publication Critical patent/JPH0514860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 〔発明の概要〕 この発明は、NOxが存在しても一酸化炭素の
検知感度が低下しないようにした一酸化炭素検知
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Summary of the Invention] The present invention relates to a carbon monoxide detection element whose carbon monoxide detection sensitivity does not decrease even in the presence of NOx .

〔従来技術〕[Prior art]

一酸化炭素(CO)選択性のガス検知素子(以
下ガスセンサという)は、工業用としては早くか
ら広く使用されてきた。最近、一般家庭において
瞬間湯沸器、ガスストーブ、石油ストーブ等の燃
焼器具の室内での長時間使用に伴うCOガス中毒
が大きな社会問題としてクローズアツプされ、中
毒防止用の種々の装置が要求されるようになつて
きた。中でも信頼性の高いCO選択性のガスセン
サの開発は重要な課題になつていた。
Carbon monoxide (CO) selective gas detection elements (hereinafter referred to as gas sensors) have been widely used for industrial purposes from an early stage. Recently, CO gas poisoning caused by the long-term use of combustion appliances such as instantaneous water heaters, gas stoves, and kerosene stoves indoors has been highlighted as a major social problem, and various devices to prevent poisoning have been required. It's starting to feel like this. Among these, the development of a highly reliable CO-selective gas sensor had become an important issue.

これまで、家庭用のCO選択性のガスセンサと
してSnO2等の金属酸化物半導体を主体としたガ
スセンサが開発されてきたが、これには大きな欠
点があつた。すなわち、微量(例えば50ppm)の
NOx(主にNOとNO2)が共存すると、そのCO感
度が低下するということである。これは、測定結
果によれば、上記燃焼器具からの燃焼排ガス中に
はNOxが含まれ、例えばCO中毒の危険を招くよ
うな最悪の状態では室内中に最大50ppm程度の
NOxが存在するようになると考えられる。この
ような微量のNOx共存下でも、従来のガスセン
サにおいてはそのCO感度に対する影響は大きく、
COの真の濃度より低い濃度を指示したり、ある
いは警報器にあつてはCOの警報設定濃度より高
い濃度でないと警報を発しないという重大な事態
になる。これを避けるため活性炭等の吸着剤でガ
スセンサを覆い、NOxを選択的に除去し、ガス
センサに到達しないようにしている。
Until now, gas sensors based on metal oxide semiconductors such as SnO 2 have been developed as CO-selective gas sensors for home use, but these have had major drawbacks. That is, trace amounts (e.g. 50 ppm)
This means that when NO x (mainly NO and NO 2 ) coexist, the CO sensitivity decreases. This is because, according to measurement results, the combustion exhaust gas from the above-mentioned combustion appliances contains NO
It is thought that NO x comes to exist. Even in the presence of such a small amount of NO x , the effect on the CO sensitivity of conventional gas sensors is large.
This can lead to serious situations where the CO concentration is lower than the true concentration or, in the case of an alarm device, the alarm will not be issued unless the CO concentration is higher than the CO alarm setting concentration. To avoid this, the gas sensor is covered with an adsorbent such as activated carbon to selectively remove NO x and prevent it from reaching the gas sensor.

ところで、SnO2半導体を主体とするガスセン
サにおいては、COの対H2選択性を得るために適
当な触媒(例えばPd,Pt等)をそれに担持させ、
さらに低温(約90〜150℃程度)で動作させる必
要がある。しかし、このような低温状態のままで
は大気中の水分等が吸着することによる妨害によ
り安定したCO感度は得られない。このため、周
期的に一定時間高い温度(例えば350〜450℃)で
吸着水等の妨害物質を除去(パージ)することに
よつて安定したCO感度を得ている。このような
低温で働かせるガスセンサにおいて、従来では、
NOxはCOの場合とは反対の方向にガスセンサ出
力を変化させる。すなわち、COは半導体上での
諸反応の結果として半導体中の電導電子を増加さ
せるのに対して、NOxはSnO2半導体表面に吸着
する際、半導体中の電導電子を捕獲して負イオン
になる。これによつてNOxは半導体の抵抗値を
大きくする方向に作用する。NOxのこのような
特性は、NOx共存下でCO感度を低下させる原因
となる。従来のガスセンサのNOxに対するこの
ような特性はCO中毒防止の見地から大きな欠点
があつた。
By the way, in a gas sensor mainly based on SnO 2 semiconductor, in order to obtain selectivity of CO to H 2 , an appropriate catalyst (for example, Pd, Pt, etc.) is supported on it.
Furthermore, it must be operated at low temperatures (approximately 90 to 150 degrees Celsius). However, in such a low temperature state, stable CO sensitivity cannot be obtained due to interference caused by adsorption of moisture in the atmosphere. Therefore, stable CO sensitivity is obtained by periodically removing (purging) interfering substances such as adsorbed water at a high temperature (for example, 350 to 450°C) for a certain period of time. Conventionally, in gas sensors that operate at such low temperatures,
NO x changes the gas sensor output in the opposite direction than CO. In other words, CO increases the number of conduction electrons in the semiconductor as a result of various reactions on the semiconductor, while NO x captures the conduction electrons in the semiconductor and turns them into negative ions when adsorbed to the surface of the SnO2 semiconductor. Become. As a result, NO x acts in the direction of increasing the resistance value of the semiconductor. These characteristics of NO x cause a decrease in CO sensitivity in the coexistence of NO x . These characteristics of conventional gas sensors with respect to NO x had a major drawback from the viewpoint of preventing CO poisoning.

〔発明の概要〕[Summary of the invention]

この発明は、上記の欠点を解消するためになさ
れたもので、SnO2半導体の焼結体に酸化ルテニ
ウムを、その熱的安定性を得るためにチタン
(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、
セリウム(Ce)、ランタン(La)などの金属酸化
物とともに担持させ、CO感度および選択性の経
時的変化を最小限に抑えるとともに、NOxの存
在によつてCO感度の低下がないようにした一酸
化炭素検知素子を提供するものである。以下この
発明について説明する。
This invention was made to eliminate the above-mentioned drawbacks, and in order to obtain thermal stability, ruthenium oxide was added to the SnO 2 semiconductor sintered body, and titanium (Ti), zirconium (Zr), and hafnium ( Hf),
Supported with metal oxides such as cerium (Ce) and lanthanum (La) to minimize changes in CO sensitivity and selectivity over time, and to prevent decrease in CO sensitivity due to the presence of NO x A carbon monoxide sensing element is provided. This invention will be explained below.

〔発明の実施例〕[Embodiments of the invention]

この発明の一酸化炭素検知素子(以下COガス
センサという)は白金・ロジウム線(線径20μm)
をコイル(コイル径0.2mmで10コイル)にして、
そのコイル部分にSnO2半導体を球状(直径約0.6
mm)に焼結させ、さらに、酸化ルテニウムとトリ
ウムの酸化物(トリア)を担持した。このように
して形成されたCOガスセンサは、第1図に示す
ように、周知のブリツジ回路に組み込まれる。こ
の図において、RSはこの発明のCOガスセンサ、
R0,R1,R2は抵抗器、Eは電源、Vは電圧計で
ある。COガスセンサRSの抵抗変化に伴い、回路
の電位差が変化するが、この電位差を電圧計Vで
測定し、その読みをCOガスセンサRSの出力とす
る。電源Eは第2図bに示すように、一定の周期
で測定電圧EBとパージ電圧EPとに交互に変動さ
せ、これに応じたCOガスセンサRSの出力は第2
図aのように変化する。第2図aにおいて、Va
は前記COガスセンサRSの空気中の出力、Vgは同
じく検知ガスと共存したときのCOガスセンサRS
の出力である。また、t1はガス注入の時刻、t2
ガス開放の時刻であり、○印はCOガスセンサRS
の測定点を示し、この発明においては、 ガス感度=Vg−Va として定義する。
The carbon monoxide detection element (hereinafter referred to as CO gas sensor) of this invention is a platinum-rhodium wire (wire diameter 20 μm).
into a coil (10 coils with a coil diameter of 0.2 mm),
A spherical SnO 2 semiconductor (about 0.6 in diameter) is placed in the coil part.
mm), and further supported on oxides of ruthenium oxide and thorium (thorium). The CO gas sensor thus formed is incorporated into a well-known bridge circuit, as shown in FIG. In this figure, R S is the CO gas sensor of this invention,
R 0 , R 1 , R 2 are resistors, E is a power supply, and V is a voltmeter. As the resistance of the CO gas sensor R S changes, the potential difference in the circuit changes. This potential difference is measured with a voltmeter V, and the reading is taken as the output of the CO gas sensor R S. As shown in Fig. 2b, the power supply E alternately changes the measurement voltage E B and the purge voltage E P at a constant cycle, and the output of the CO gas sensor R S corresponding to this changes to the second voltage.
It changes as shown in figure a. In Figure 2 a, Va
is the output of the CO gas sensor R S in the air, and Vg is the output of the CO gas sensor R S when it coexists with the detection gas.
This is the output of Also, t 1 is the time of gas injection, t 2 is the time of gas release, and the circle mark indicates the CO gas sensor R S
In this invention, gas sensitivity is defined as Vg-Va.

第3図は燃焼器具を使用した場合の測定結果に
従つてCO感度に対する代表的な干渉ガスとして
のH2とNOの影響を示したものである。この図に
おいて、曲線はCOガスのみの場合の感度を示
し、曲線はCO:H2=2:1の場合の感度を示
し、また、曲線はNO(50ppm)の共存下にお
いて、CO:H2=2:1(この濃度比は実際の燃
焼排ガス中の代表例である)の雰囲気の場合の
CO濃度を横軸にとつたガス感度曲線を示してい
る。この結果、この発明のCOガスセンサRSにお
いては、NO(50ppm)はCO感度をCO300ppmま
では見かけ上、少し高い方向に変化させるのみで
あり、NOが存在していてもCO感度の変化がほ
とんどなく、むしろ少し高めになつていることが
わかる。しかも、CO感度は高い方に移動するた
め、フエイルセーフとなり、この点からも特性が
改善されたといえる。
Figure 3 shows the influence of H 2 and NO as typical interfering gases on CO sensitivity according to the measurement results when using a combustion appliance. In this figure, the curve shows the sensitivity in the case of CO gas only, the curve shows the sensitivity in the case of CO:H 2 = 2:1, and the curve shows the sensitivity in the case of CO:H 2 = 2: 1 in the coexistence of NO (50 ppm). = 2:1 (this concentration ratio is a typical example of actual combustion exhaust gas)
It shows a gas sensitivity curve with CO concentration on the horizontal axis. As a result, in the CO gas sensor R S of this invention, NO (50 ppm) only apparently changes the CO sensitivity in a slightly higher direction up to CO 300 ppm, and even in the presence of NO, there is almost no change in the CO sensitivity. In fact, you can see that it is slightly higher. Furthermore, since the CO sensitivity shifts to a higher side, it becomes a fail-safe, and from this point of view it can be said that the characteristics have been improved.

なお、上記実施例では、金属酸化物半導体の焼
結体に酸化ルテニウムとトリウムの酸化物を担持
させた場合を示したが、この発明は、トリウムの
酸化物に代えてチタン、ジルコニウム、ハフニウ
ム、セリウム、ランタンのいずれか1種または2
種以上の金属酸化物を用いても同様の結果が得ら
れる。
In addition, in the above example, a case was shown in which oxides of ruthenium oxide and thorium were supported on a sintered body of a metal oxide semiconductor, but in this invention, instead of oxide of thorium, titanium, zirconium, hafnium, Either one or two of cerium and lanthanum
Similar results can be obtained using more than one metal oxide.

例えば、上記実施例と同一の手法で酸化ルテニ
ウムとともに、トリアおよび酸化ランタンを担持
して得られたCOガスセンサは対水素選択性に関
して前記実施例(第3図)に比較し僅かに改善さ
れた。一方、NOxの影響については同程度であ
つた。
For example, a CO gas sensor obtained by supporting thorium and lanthanum oxide along with ruthenium oxide using the same method as in the above example showed a slight improvement in hydrogen selectivity compared to the above example (FIG. 3). On the other hand, the effects of NO x were at the same level.

なお、金属酸化物半導体としてSnO2を用いた
場合を示したが、この発明はこれに限らずZnO,
Fe2O3等の他のものを使用することもできる。
Although the case where SnO 2 is used as the metal oxide semiconductor is shown, this invention is not limited to this.
Others such as Fe 2 O 3 can also be used.

また、上記の実施例では、白金、ロジウム合金
線からなるコイルを電極とヒータに用いた例を示
したが、この発明はこれに限定されるものではな
いことは明らかなことである。また、ルテニウム
とトリウムの混合比も上記実施例に限定されな
い。
Further, in the above embodiment, an example was shown in which coils made of platinum and rhodium alloy wire were used for the electrodes and the heater, but it is clear that the present invention is not limited to this. Further, the mixing ratio of ruthenium and thorium is not limited to the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、金属酸化物半
導体の焼結体に酸化ルテニウムとチタン、ジルコ
ニウム、ハフニウム、トリウム、セリウム、ラン
タンのいずれか1種または2種以上の金属酸化物
を担持させてCOガスセンサとしたのでNOxの存
在によつてもCOガスセンサに対する感度がほと
んど変動せず、むしろ少し高くなり信頼性の高い
COガスセンサが得られる。すなわち、NOxにも
人体に有毒ガス(NOの許容濃度は25ppm,NO2
の許容濃度は3ppmである)であるため、CO感度
がNOx共存下で少し高めに出ることはフエイル
セーフとなり、実用面から見えて好都合である。
As explained above, the present invention allows a sintered body of a metal oxide semiconductor to support ruthenium oxide and one or more metal oxides of titanium, zirconium, hafnium, thorium, cerium, and lanthanum. Since it is a gas sensor, the sensitivity to the CO gas sensor does not change much due to the presence of NO x , but rather increases slightly, making it highly reliable.
A CO gas sensor is obtained. In other words, NO x is also a toxic gas to the human body (the permissible concentration of NO is 25 ppm, NO 2
(The permissible concentration of NO x is 3 ppm), so a slightly higher CO sensitivity in the coexistence of NO x is a fail-safe, which is advantageous from a practical standpoint.

また、酸化ルテニウムは本来熱的に不安定であ
るが、これにチタン、ジルコニウム、ハフニウ
ム、セリウム、ランタンのいずれか1種の金属酸
化物を共存させると、酸化ルテニウムの触媒作用
を安定化させることができ、CO感度の経時安定
性を得ることができる。また、同時に、COの対
H2選択性も高めることができる利点がある。
Furthermore, although ruthenium oxide is inherently thermally unstable, when one of the metal oxides of titanium, zirconium, hafnium, cerium, and lanthanum coexists with it, the catalytic action of ruthenium oxide can be stabilized. It is possible to obtain stable CO sensitivity over time. At the same time, CO
It has the advantage of increasing H 2 selectivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のCOガスセンサを使用した
検知装置の回路図、第2図a,bは第1図の動作
を説明する波形図、第3図は第1図の検知装置に
よる測定結果の一例を示す特性図である。 図中、RSはCOガスセンサ、R0,R1,R2は抵抗
器、Eは電源、Vは電圧計、EBは測定電圧、EP
はパージ電圧、Vaは通常大気中でのCOガスセン
サの出力、Vgは検知ガスと共存したときのCOガ
スセンサの出力である。
Fig. 1 is a circuit diagram of a detection device using the CO gas sensor of the present invention, Fig. 2 a and b are waveform diagrams explaining the operation of Fig. 1, and Fig. 3 shows the measurement results by the detection device of Fig. 1. FIG. 3 is a characteristic diagram showing an example. In the figure, R S is a CO gas sensor, R 0 , R 1 , R 2 are resistors, E is a power supply, V is a voltmeter, E B is a measured voltage, and E P
is the purge voltage, Va is the output of the CO gas sensor in normal atmosphere, and Vg is the output of the CO gas sensor when it coexists with the detection gas.

Claims (1)

【特許請求の範囲】[Claims] 1 金属酸化物半導体の焼結体に、酸化ルテニウ
ムとチタン、ジルコニウム、ハフニウム、トリウ
ム、セリウム、ランタンのいずれか1種または2
種以上の金属酸化物との混合物を担持させたこと
を特徴とする一酸化炭素検知素子。
1 Ruthenium oxide and one or two of titanium, zirconium, hafnium, thorium, cerium, and lanthanum in a sintered body of a metal oxide semiconductor.
A carbon monoxide sensing element characterized by supporting a mixture of more than one metal oxide.
JP8200384A 1984-04-25 1984-04-25 Carbon monoxide detecting element Granted JPS60227160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8200384A JPS60227160A (en) 1984-04-25 1984-04-25 Carbon monoxide detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8200384A JPS60227160A (en) 1984-04-25 1984-04-25 Carbon monoxide detecting element

Publications (2)

Publication Number Publication Date
JPS60227160A JPS60227160A (en) 1985-11-12
JPH0514860B2 true JPH0514860B2 (en) 1993-02-26

Family

ID=13762335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8200384A Granted JPS60227160A (en) 1984-04-25 1984-04-25 Carbon monoxide detecting element

Country Status (1)

Country Link
JP (1) JPS60227160A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432395A (en) * 1977-08-17 1979-03-09 Toshiba Corp Gas sensitive element
JPS5439197A (en) * 1977-09-02 1979-03-26 Shibaura Denshi Seisakushiyo K Method of making gas detector
JPS5698646A (en) * 1980-01-09 1981-08-08 Matsushita Electric Works Ltd Flamable-gas detecting element
JPS56109866A (en) * 1980-01-29 1981-08-31 Nippon Electric Co Carbon monoxide gas sensor element and its manufacture
JPS56114751A (en) * 1980-02-15 1981-09-09 Matsushita Electric Works Ltd Detecting element for combustible gas
JPS56118660A (en) * 1980-02-23 1981-09-17 Matsushita Electric Works Ltd Combustible gas detecting element
JPS56164947A (en) * 1980-05-24 1981-12-18 Matsushita Electric Works Ltd Inflammable gas detecting element
JPS5873853A (en) * 1981-10-28 1983-05-04 Hitachi Ltd Gas sensor composition
JPS58168952A (en) * 1982-03-30 1983-10-05 Mitsubishi Electric Corp Gas sensitive element
JPS58180939A (en) * 1982-04-17 1983-10-22 Fuigaro Giken Kk Element for detecting combustion state
JPS58180940A (en) * 1982-04-17 1983-10-22 Fuigaro Giken Kk Addition of reaction promotor to combustion state detecting element
JPS5957154A (en) * 1982-09-27 1984-04-02 Matsushita Electric Ind Co Ltd Gas detecting element
JPS60202345A (en) * 1984-03-28 1985-10-12 Hitachi Ltd Gas detecting element

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432395A (en) * 1977-08-17 1979-03-09 Toshiba Corp Gas sensitive element
JPS5439197A (en) * 1977-09-02 1979-03-26 Shibaura Denshi Seisakushiyo K Method of making gas detector
JPS5698646A (en) * 1980-01-09 1981-08-08 Matsushita Electric Works Ltd Flamable-gas detecting element
JPS56109866A (en) * 1980-01-29 1981-08-31 Nippon Electric Co Carbon monoxide gas sensor element and its manufacture
JPS56114751A (en) * 1980-02-15 1981-09-09 Matsushita Electric Works Ltd Detecting element for combustible gas
JPS56118660A (en) * 1980-02-23 1981-09-17 Matsushita Electric Works Ltd Combustible gas detecting element
JPS56164947A (en) * 1980-05-24 1981-12-18 Matsushita Electric Works Ltd Inflammable gas detecting element
JPS5873853A (en) * 1981-10-28 1983-05-04 Hitachi Ltd Gas sensor composition
JPS58168952A (en) * 1982-03-30 1983-10-05 Mitsubishi Electric Corp Gas sensitive element
JPS58180939A (en) * 1982-04-17 1983-10-22 Fuigaro Giken Kk Element for detecting combustion state
JPS58180940A (en) * 1982-04-17 1983-10-22 Fuigaro Giken Kk Addition of reaction promotor to combustion state detecting element
JPS5957154A (en) * 1982-09-27 1984-04-02 Matsushita Electric Ind Co Ltd Gas detecting element
JPS60202345A (en) * 1984-03-28 1985-10-12 Hitachi Ltd Gas detecting element

Also Published As

Publication number Publication date
JPS60227160A (en) 1985-11-12

Similar Documents

Publication Publication Date Title
JP3606874B2 (en) Sensor for detecting nitrogen oxides
JP3146111B2 (en) Gas detection method and gas detection device
EP0197629B1 (en) Alcohol selective gas sensor
EP1370855A2 (en) Catalytic adsorption and oxidation based carbon monoxide sensor and detection method
US4242302A (en) Method of making a catalytic combustion type gas detector
Tanaka et al. Combustion monitoring sensor using tin dioxide semiconductor
WO1985004859A1 (en) Composition
JPH0514860B2 (en)
KR20210038552A (en) Gas detection device
JP3171734B2 (en) Carbon monoxide gas sensing element
JP4615788B2 (en) Cleaning method for variable resistance gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPS5840695B2 (en) gas sensing element
JP3647492B2 (en) Gas sensor
TW202011020A (en) Gas detection device having exceptional humidity resistance and exceptional sensitivity
JPS6146455Y2 (en)
JPH0225456B2 (en)
JP3171774B2 (en) Gas detection element
JP3976883B2 (en) Gas detection element
JPS60205343A (en) Air-fuel ratio detector for lean burn
JPH11271255A (en) Semiconductor gas sensor
JPH0980019A (en) Method for measuring total nox content
JP3669807B2 (en) Carbon monoxide detection sensor
JP2000304720A (en) Carbon monoxide sensor
JPS61155945A (en) Oxygen sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term