JPH05147922A - Method for purification of chlorosilane - Google Patents

Method for purification of chlorosilane

Info

Publication number
JPH05147922A
JPH05147922A JP34018191A JP34018191A JPH05147922A JP H05147922 A JPH05147922 A JP H05147922A JP 34018191 A JP34018191 A JP 34018191A JP 34018191 A JP34018191 A JP 34018191A JP H05147922 A JPH05147922 A JP H05147922A
Authority
JP
Japan
Prior art keywords
chlorosilanes
tetrachloride
silicon
boron
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34018191A
Other languages
Japanese (ja)
Other versions
JP2536360B2 (en
Inventor
Takaaki Shimizu
孝明 清水
Nobuyuki Kidokoro
伸行 城所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3340181A priority Critical patent/JP2536360B2/en
Publication of JPH05147922A publication Critical patent/JPH05147922A/en
Application granted granted Critical
Publication of JP2536360B2 publication Critical patent/JP2536360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10778Purification

Abstract

PURPOSE:To obtain high-purity chlorosilane suitable as a source material to produce high-quality silicon single crystal which can be used for high integration of semiconductor devices. CONSTITUTION:Chlorosilanes containing diboron tetrachloride as an impurity are refined by effecting the reaction with chlorine under irradiation of a mercury lamp or in the presence of a radical generating agent to exchange boron tetrachloride into boron trichloride, and then separating the boron trichloride from the chlorosilanes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスの高集
積化に対応し得る高品質のシリコン単結晶を製造するた
めの原料として好適な高純度のクロルシラン類を得るこ
とができるクロルシラン類の精製方法に関する。
FIELD OF THE INVENTION The present invention relates to purification of chlorosilanes capable of obtaining high-purity chlorosilanes suitable as a raw material for producing high-quality silicon single crystals capable of accommodating high integration of semiconductor devices. Regarding the method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】現在、
半導体デバイスの原料となるシリコンインゴットの製造
法の主流は所謂ジーメンス法であり、この方法では原料
のトリクロルシラン等のクロルシラン類を水素と共に高
温下で還元分解することにより、棒状種結晶にシリコン
を析出させてインゴットを得るものである。また、デバ
イス工程中でシリコンウェハ上にエピタキシャル層を形
成する際にはジクロルシラン又はトリクロルシランや四
塩化ケイ素を原料として用い、これら原料を水素と共に
高温下でウェハ上にCVD成長させるものである。
2. Prior Art and Problems to be Solved by the Invention
The mainstream method for producing silicon ingots, which are the raw materials for semiconductor devices, is the so-called Siemens method.In this method, chlorosilanes such as trichlorosilane, which is the raw material, are reduced and decomposed with hydrogen at high temperatures to deposit silicon on rod-shaped seed crystals. Let's get an ingot. Further, when an epitaxial layer is formed on a silicon wafer in the device process, dichlorosilane or trichlorosilane or silicon tetrachloride is used as a raw material, and these raw materials are subjected to CVD growth on a wafer together with hydrogen at a high temperature.

【0003】しかし、半導体デバイスの高集積化が進む
につれて原料シリコンウェハ、シリコンインゴットの高
品質化に対する要求が益々強くなっており、このためシ
リコン単結晶原料として使用されるクロルシラン類にも
やはり高純度化の要求が高まっている。
However, as the degree of integration of semiconductor devices has increased, the demand for higher quality raw material silicon wafers and silicon ingots has become more and more intense. Therefore, chlorosilanes used as raw materials for silicon single crystals also have high purity. There is an increasing demand for conversion.

【0004】この場合、シリコン結晶中に不純物として
存在してデバイス特性上支障をきたす物質は、主に電気
特性上P型アクセプターとなる周期律表3族化合物(硼
素、アルミニウム)、N型ドナーとなる周期律表5族化
合物(リン、砒素)である。これらはいずれも原料クロ
ルシラン類に含まれ、製造過程のシリコン結晶析出時に
結晶中に固定化されるものである。
In this case, the substances present in the silicon crystal as impurities and impairing the device characteristics are mainly Group 3 compounds (boron, aluminum) of the periodic table, which are P-type acceptors in terms of electrical characteristics, and N-type donors. It is a group 5 compound (phosphorus, arsenic) of the periodic table. All of these are contained in the raw material chlorosilanes and are immobilized in the crystal during the precipitation of silicon crystals during the manufacturing process.

【0005】ここで、クロルシラン類は、従来、下記反
応式に示すように金属ケイ素と塩化水素又は塩素とから
製造されいる。
Here, chlorosilanes are conventionally produced from metallic silicon and hydrogen chloride or chlorine as shown in the following reaction formula.

【0006】Si+2HCl → SiH2Cl2 (または2SiHCl3 → SiH2Cl2+SiC
4) Si+3HCl → SiHCl3+H2 Si+4HCl → SiCl4+2H2 (またはSi+2Cl2→ SiCl4
Si + 2HCl → SiH 2 Cl 2 (or 2SiHCl 3 → SiH 2 Cl 2 + SiC
l 4 ) Si + 3HCl → SiHCl 3 + H 2 Si + 4HCl → SiCl 4 + 2H 2 (or Si + 2Cl 2 → SiCl 4 ).

【0007】クロルシラン類に含まれる上記金属不純物
はその製造原料である金属ケイ素に由来するものであ
り、金属ケイ素中に数百ppb〜数百ppmの割合で含
まれる。この不純物は上記クロルシラン類の製造に際
し、金属ケイ素と同様に塩化水素又は塩素と反応し、塩
素化物としてクロルシラン類に同伴混入されるものであ
る。
The above-mentioned metallic impurities contained in chlorosilanes are derived from metallic silicon, which is a raw material for producing the same, and are contained in metallic silicon at a ratio of several hundred ppb to several hundred ppm. When producing the above-mentioned chlorosilanes, these impurities react with hydrogen chloride or chlorine in the same manner as metal silicon, and are mixed with the chlorosilanes as a chlorinated product.

【0008】従って、上記のようにして得られるクロル
シラン類から不純物金属(金属塩素化物)を除去するこ
とが必要であるが、これら不純物金属元素の中でも硼素
化合物はシリコン結晶中で偏析係数が1に近く、しかも
その塩素化物の沸点がクロルシラン類と比較的近いこと
から、いったん結晶中に取り込まれた後では経済的に有
効な手段で除去精製することが非常に難しい。しかも、
半導体デバイスのベースとなるシリコン単結晶インゴッ
ト、ノンドープエピタキシャルシリコン単結晶層におい
ては、硼素含有量が1/10〜1/100ppb原子レ
ベルの高品質が要求されるため、このような極限低濃度
領域では通常化学薬品の純度向上に用いられる蒸留精製
という手段ではクロルシラン類から不純物としての硼素
を両物質に多少の沸点差があろうとも除去することは困
難であり、それ故高純度化が難しいという問題がある。
Therefore, it is necessary to remove the impurity metal (metal chlorinated compound) from the chlorosilanes obtained as described above. Among these impurity metal elements, the boron compound has a segregation coefficient of 1 in the silicon crystal. Since the chlorinated compounds are close to each other and the boiling point thereof is relatively close to that of chlorosilanes, it is very difficult to remove and purify it by an economically effective means once it is taken into the crystal. Moreover,
In the silicon single crystal ingot and the non-doped epitaxial silicon single crystal layer which are the bases of semiconductor devices, high quality with a boron content of 1/10 to 1/100 ppb atomic level is required. It is difficult to remove boron as an impurity from chlorosilanes by a means such as distillation purification, which is usually used for improving the purity of chemicals, even if there is a slight difference in boiling point between the two substances, and therefore it is difficult to achieve high purification. There is.

【0009】従来、クロルシラン類の純化手段として、
例えばシリカゲルによる吸着精製(ドイツ特許2546
957)、N,S含有複素環化合物との付加物生成によ
る精製(英国特許1241108)、窒素含有ルイス塩
基有機ポリマーとの付加物生成による精製(米国特許4
224040)等の方法は提案されている。
Conventionally, as means for purifying chlorosilanes,
For example, adsorption purification by silica gel (German Patent 2546
957), purification by adduct formation with an N, S-containing heterocyclic compound (UK patent 1241108), purification by adduct formation with a nitrogen-containing Lewis base organic polymer (US Pat. No. 4).
224040) and the like have been proposed.

【0010】しかしながら、これらの方法は、三塩化硼
素をクロルシラン類から除去する方法としては有効に使
用し得るが、四塩化二硼素を除去するという点では満足
し得るものではない。従って、クロルシラン類から四塩
化二硼素を効果的に除去することができる方法が要望さ
れており、今後の一層の高純度化要求に対して満足に対
応できるクロルシラン類の精製方法の開発が望まれる。
However, these methods can be effectively used as a method for removing boron trichloride from chlorosilanes, but they are not satisfactory in terms of removing diboron tetrachloride. Therefore, there is a demand for a method capable of effectively removing diboron tetrachloride from chlorosilanes, and it is desired to develop a purification method for chlorosilanes that can satisfactorily meet the demand for higher purification in the future. ..

【0011】[0011]

【課題を解決するための手段及び作用】本発明者は上記
事情に鑑み鋭意検討を重ねた結果、クロルシラン類を水
銀灯の照射下で又はラジカル発生剤の存在下で塩素と反
応させることにより、四塩化硼素が簡単に効率よく三塩
化硼素に変換され、このため上記反応後は通常の純化方
法で三塩化硼素を分離し、クロルシラン類を精製し得る
ことを見い出した。
Means and Actions for Solving the Problems The present inventor has conducted extensive studies in view of the above circumstances, and as a result, by reacting chlorosilanes with chlorine under irradiation of a mercury lamp or in the presence of a radical generator, It has been found that boron chloride can be easily and efficiently converted to boron trichloride, so that after the above reaction, boron trichloride can be separated by a conventional purification method to purify chlorosilanes.

【0012】即ち、クロルシラン類と硼素の塩素化物の
沸点は下記の通りである。 ジクロルシラン 8.3℃ トリクロルシラン 31.8℃ テトラクロルシラン 57.6℃ 三塩化硼素(BCl3) 12.5℃ 四塩化硼素(B2Cl4) 55℃
That is, the boiling points of chlorsilanes and chlorinated products of boron are as follows. Dichlorosilane 8.3 ° C Trichlorosilane 31.8 ° C Tetrachlorosilane 57.6 ° C Boron trichloride (BCl 3 ) 12.5 ° C Boron tetrachloride (B 2 Cl 4 ) 55 ° C

【0013】上記沸点から明らかなように、B2Cl4
テトラクロルシランと沸点が近く、蒸留によっては分離
し難い。また、ジクロルシラン−B2Cl4、トリクロル
シラン−B2Cl4は沸点差が多少あるとはいえ、蒸留操
作では1/10〜1/100ppbレベルにまでの除
去、高純度化が難しい。
As is clear from the above boiling point, B 2 Cl 4 has a boiling point close to that of tetrachlorosilane and is difficult to separate by distillation. Further, although dichlorosilane-B 2 Cl 4 and trichlorosilane-B 2 Cl 4 have a slight difference in boiling points, it is difficult to remove them to a level of 1/10 to 1/100 ppb and highly purify them by a distillation operation.

【0014】しかし、上述したように、B2Cl4を含む
クロルシラン類に水銀灯の照射下に又はラジカル発生剤
の存在下で塩素と反応させた場合、 B2Cl4 + 2Cl2 → 2BCl3 の反応が効率よく進行し、B2Cl4を容易にBCl3
変換し得ること、従ってその後は従来法に従ったBCl
3除去法が有効に採用し得、それ故本発明の方法によれ
ば、四塩化二硼素の完全な除去が可能となり、クロルシ
ラン類中に不純物として含有する硼素化合物を効率良く
満足に除去し得ること、従ってこの方法は四塩化二硼素
含有のジクロルシラン、トリクロルシラン又はテトラク
ロルシラン、中でも四塩化二硼素含有テトラクロルシラ
ンの精製に非常に有効であること、しかもこの精製方法
で得られるクロルシラン類は半導体デバイスの高集積化
に対応し得る高品質のシリコン単結晶を製造するための
原料として好適であることを知見したものである。
However, as mentioned above, when chlorosilanes containing B 2 Cl 4 are reacted with chlorine under irradiation of a mercury lamp or in the presence of a radical generator, B 2 Cl 4 + 2Cl 2 → 2BCl 3 The reaction proceeds efficiently and B 2 Cl 4 can be easily converted into BCl 3 , and therefore, BCl 2 according to the conventional method is used thereafter.
3 removal method can be effectively adopted, therefore, according to the method of the present invention, it is possible to completely remove diboron tetrachloride, it is possible to efficiently and satisfactorily remove boron compounds contained as impurities in chlorosilanes. Therefore, this method is very effective in the purification of diboron tetrachloride-containing dichlorosilane, trichlorosilane or tetrachlorosilane, especially dichlorotetrachloride-containing tetrachlorosilane, and the chlorosilanes obtained by this purification method are The inventors have found that it is suitable as a raw material for producing a high-quality silicon single crystal that can be used for high integration of semiconductor devices.

【0015】従って、本発明は、不純物として四塩化二
硼素を含むクロルシラン類を水銀灯の照射下で又はラジ
カル発生剤の存在下で塩素と反応させ、四塩化二硼素を
三塩化硼素に変換させた後、クロルシラン類をこの三塩
化硼素と分離することを特徴とするクロルシラン類の精
製方法を提供する。
Therefore, according to the present invention, chlorosilanes containing diboron tetrachloride as an impurity are reacted with chlorine under irradiation of a mercury lamp or in the presence of a radical generator to convert diboron tetrachloride to boron trichloride. Then, a method for purifying chlorosilanes is provided, which comprises separating chlorosilanes from the boron trichloride.

【0016】以下、本発明につき更に詳しく説明する
と、本発明の精製方法において対象となるクロルシラン
類は、四塩化硼素を不純物として含むジクロルシラン,
トリクロルシラン,テトラクロルシランなど、及びそれ
らの混合物である。
The present invention will be described in more detail below. The chlorosilanes targeted in the purification method of the present invention are dichlorosilane containing boron tetrachloride as an impurity,
Trichlorosilane, tetrachlorosilane, etc., and mixtures thereof.

【0017】本発明の精製方法にあっては、上記クロル
シラン類を水銀灯の照射下に又はラジカル発生剤の存在
下で塩素と反応させるものであるが、この場合クロルシ
ラン類に反応させる塩素の使用量は、クロルシラン類に
不純物として含まれる四塩化二硼素含有量が低濃度であ
るので、実用的処理速度を得るために理論当量の5倍当
量以上であることが好ましい。
In the purification method of the present invention, the above chlorosilanes are reacted with chlorine under irradiation of a mercury lamp or in the presence of a radical generator. In this case, the amount of chlorine used to react with chlorosilanes is used. Since the content of diboron tetrachloride contained as an impurity in chlorosilanes is low, it is preferably at least 5 times the theoretical equivalent in order to obtain a practical processing speed.

【0018】特に四塩化二硼素を含むジクロルシラン、
トリクロルシランを精製する場合には、これらクロルシ
ラン自身も同条件で塩素化され、高次塩素化体となるの
で塩素の使用量は理論当量の50倍当量以上であること
が好ましいが、いたずらに大きくすることは目的クロル
シランの高次塩素化体へのロスが増加する場合がある。
Dichlorosilane, especially containing diboron tetrachloride,
In the case of purifying trichlorosilane, these chlorosilanes themselves are also chlorinated under the same conditions and become a higher chlorinated product, so the amount of chlorine used is preferably 50 times the theoretical equivalent or more, but it is unnecessarily large. Doing so may increase the loss of the target chlorosilane to the higher chlorinated form.

【0019】従って、金属ケイ素と塩化水素又は塩素と
から製造されるクロルシラン類には四塩化二硼素が数十
ppb〜数十ppmの濃度で含まれているので、回分操
作を行う場合には塩素の使用量は最大でも塩素をクロル
シランへ飽和溶解させ得る量で十分であり、連続操作の
場合には飽和溶解分相当の塩素をクロルシランと同時に
フィードすればよい。
Therefore, since chlorosilanes produced from metallic silicon and hydrogen chloride or chlorine contain diboron tetrachloride in a concentration of several tens of ppb to several tens of ppm, chlorine is not used in a batch operation. It is sufficient to use a maximum amount of chlorine that can be dissolved in chlorosilane in a saturated manner. In the case of continuous operation, chlorine corresponding to a saturated dissolved content may be fed simultaneously with chlorosilane.

【0020】また、ラジカル発生剤としては、通常ラジ
カル反応の開始剤として用いられるベンゾイルパーオキ
サイド等のパーオキサイド化合物、アゾビスイソブチロ
ニトリル等のアゾ化合物などが使用可能である。しか
し、このようなラジカル発生剤は、その分解物が混入す
るおそれがあるため、水銀灯を用いることが好ましく、
特に2W/リットル以上の反応容積に対する光強度をも
つ高圧水銀灯が好適である。
Further, as the radical generator, a peroxide compound such as benzoyl peroxide and an azo compound such as azobisisobutyronitrile which are usually used as an initiator of a radical reaction can be used. However, since such a radical generator may contain a decomposition product thereof, it is preferable to use a mercury lamp,
Particularly, a high pressure mercury lamp having a light intensity for a reaction volume of 2 W / liter or more is suitable.

【0021】クロルシラン類と塩素との反応条件は、常
圧下では各クロルシランの沸点以下の温度で、また加圧
下では各クロルシランの沸点以上の温度で行うことが好
ましい。これは不純物である四塩化二硼素と塩素との反
応がラジカル反応で進行し、気相ではラジカルの寿命が
短いことから液相で行うことが望ましいためである。
The reaction conditions of chlorosilanes and chlorine are preferably carried out at a temperature not higher than the boiling point of each chlorosilane under normal pressure and at a temperature not lower than the boiling point of each chlorosilane under pressure. This is because the reaction between diboron tetrachloride, which is an impurity, and chlorine proceeds as a radical reaction, and the life of radicals is short in the gas phase, so that it is desirable to carry out the reaction in the liquid phase.

【0022】なお、この反応は水銀灯の照射又はラジカ
ル発生剤を使用したラジカル反応なので室温付近でも十
分な速度で反応は進行するため、上記条件内であれば温
度的制約はない。更に反応時間は30分以上2時間以下
とすることが好ましく、反応時間が30分に満たないと
一部四塩化二硼素が残存する場合があり、2時間を越え
ても反応上の支障はないが設備が過大となり、経済性に
劣る場合がある。
Since this reaction is a radical reaction using irradiation with a mercury lamp or a radical generator, the reaction proceeds at a sufficient rate even at around room temperature, so that there is no temperature limitation within the above conditions. Further, the reaction time is preferably 30 minutes or more and 2 hours or less, and if the reaction time is less than 30 minutes, some diboron tetrachloride may remain, and there is no problem in the reaction even if it exceeds 2 hours. However, there are cases where the facilities are too large and the economy is poor.

【0023】クロルシラン類に塩素を反応させた後は、
公知の方法で分離精製することができる。この場合、ク
ロルシラン類が四塩化ケイ素である場合には生成物であ
る三塩化硼素と四塩化ケイ素の沸点差が45℃と他のク
ロルシランに比べて大きいので、通常の蒸留操作により
実用レベルの高純度化が可能である。また、ジクロルシ
ラン、トリクロルシランの場合には三塩化硼素との沸点
差が小さいので蒸留操作では高純度化が不十分であり、
前述の公知技術(ドイツ特許2546957、英国特許
1241108、米国特許4224040等)を採用し
て分離除去することが好ましい。なお、四塩化ケイ素の
場合にも勿論同様の技術を組み合わせると蒸留操作によ
るものよりも一層の高純度化を達成することができる。
After reacting chlorine with chlorosilanes,
It can be separated and purified by a known method. In this case, when the chlorosilanes are silicon tetrachloride, the boiling point difference between the product boron trichloride and silicon tetrachloride is 45 ° C., which is larger than that of other chlorosilanes. Purification is possible. Further, in the case of dichlorosilane, trichlorosilane, since the boiling point difference with boron trichloride is small, high purification is not sufficient in the distillation operation,
It is preferable to employ the above-mentioned known technique (German Patent 2546957, British Patent 1241108, US Patent 42204040, etc.) for separation and removal. In the case of silicon tetrachloride, of course, by combining the same techniques, it is possible to achieve a higher degree of purification than that obtained by the distillation operation.

【0024】[0024]

【発明の効果】本発明のクロルシラン類の精製方法によ
れば、クロルシラン類から四塩化硼素を満足に除去し
得、半導体デバイスの高集積化に対応し得る高品質のシ
リコン単結晶を製造するための原料として好適な高純度
のクロルシラン類を得ることができる。
EFFECTS OF THE INVENTION According to the method for purifying chlorosilanes of the present invention, boron tetrachloride can be satisfactorily removed from chlorosilanes to produce a high-quality silicon single crystal that can be used for high integration of semiconductor devices. It is possible to obtain high-purity chlorosilanes suitable as a raw material of.

【0025】[0025]

【実施例】以下、実施例及び比較例を示して本発明を具
体的に説明するが、本発明は下記実施例に制限されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0026】〔実施例1〕50ppmの四塩化二硼素を
含んだトリクロルシラン500gに塩素ガスを導入し、
塩素を飽和状態で溶解させた。この液に100W高圧水
銀灯を1時間照射した後、ガスクロマトグラフで分析し
たところ、四塩化二硼素のピークは消失し、代わりに三
塩化硼素のピークが70ppm検出された。
Example 1 Chlorine gas was introduced into 500 g of trichlorosilane containing 50 ppm of diboron tetrachloride,
Chlorine was dissolved in saturation. When this solution was irradiated with a 100 W high-pressure mercury lamp for 1 hour and analyzed by gas chromatography, the diboron tetrachloride peak disappeared, and instead, the boron trichloride peak was detected at 70 ppm.

【0027】〔比較例1〕50ppmの四塩化二硼素を
含んだトリクロルシラン500gにドイツ特許第256
957号に従い50gの水分含有シリカゲルを加え、5
時間放置した後、ガスクロマトグラフで分析したとこ
ろ、46ppmの四塩化二硼素が検出され、三塩化硼素
は検出されなかった。
Comparative Example 1 German Patent No. 256 was added to 500 g of trichlorosilane containing 50 ppm of diboron tetrachloride.
According to No. 957, add 50 g of water-containing silica gel and
After leaving for a time, when analyzed by gas chromatography, 46 ppm of diboron tetrachloride was detected and boron trichloride was not detected.

【0028】〔比較例2〕50ppmの四塩化二硼素を
含んだトリクロルシラン500gに米国特許第4224
040号に従い50gの10%ポリビニルピリジンコポ
リマーを加えて5時間放置した後、ガスクロマトグラフ
で分析したところ、47ppmの四塩化二硼素が検出さ
れ、三塩化硼素は検出されなかった。
Comparative Example 2 US Pat. No. 4,224,500 was added to 500 g of trichlorosilane containing 50 ppm of diboron tetrachloride.
According to No. 040, 50 g of 10% polyvinyl pyridine copolymer was added, and the mixture was allowed to stand for 5 hours and then analyzed by gas chromatography. As a result, 47 ppm of diboron tetrachloride was detected and boron trichloride was not detected.

【0029】〔実施例2〕金属ケイ素と塩化水素を反応
させ、トリクロルシランと四塩化炭素の混合物を得た。
この混合物を蒸留分離し、純度99.9%の四塩化ケイ
素を得た。ガスクロマクグラフ分析で検出された不純物
は0.1%のトリクロルシランであり、不純物としてB
Cl3、B2Cl4はガスクロ検出限界以下の含有量のた
め検出されなかった。
Example 2 Metallic silicon was reacted with hydrogen chloride to obtain a mixture of trichlorosilane and carbon tetrachloride.
This mixture was separated by distillation to obtain silicon tetrachloride having a purity of 99.9%. Impurities detected by gas chromatograph analysis were 0.1% trichlorosilane, and B was used as an impurity.
Cl 3 and B 2 Cl 4 were not detected because the contents were below the gas chromatographic detection limit.

【0030】次に、この純度99.9%の四塩化ケイ素
に塩素ガスを導入し、塩素を飽和状態に溶解させた後、
100W高圧水銀灯を1時間照射した。この液を蒸留塔
にかけ、初留分3kgを留去した後、6kgの主留分を
得、残りは釜残渣として留出させなかった。
Next, chlorine gas was introduced into this silicon tetrachloride having a purity of 99.9% to dissolve chlorine in a saturated state,
Irradiation with a 100 W high pressure mercury lamp for 1 hour. This liquid was put into a distillation column, after distilling off 3 kg of the initial fraction, a main fraction of 6 kg was obtained, and the rest was not distilled as a pot residue.

【0031】上記6kgの主留分を原料に水素ガスキャ
リアー中、石英製ベルジャー内で1150℃に加熱した
シリコ−ン単結晶種棒上にシリコン多結晶を析出させ
た。得られたシリコン多結晶ロッドを6回の真空フロー
ティングゾーン精製にかけた後、抵抗測定でP型700
0Ω−cmの値を得た。この抵抗値から換算される硼素
含有量は0.04ppb原子であり、十分実用に供し得
る純度であった。
Using the above 6 kg main fraction as a raw material, silicon polycrystals were deposited on a silicon single crystal seed rod heated to 1150 ° C. in a quartz bell jar in a hydrogen gas carrier. The obtained polycrystalline silicon rod was subjected to 6 times of vacuum floating zone refining, and then a P-type 700 was measured by resistance measurement.
A value of 0 Ω-cm was obtained. The boron content calculated from this resistance value was 0.04 ppb atom, and the purity was sufficient for practical use.

【0032】〔比較例3〕金属ケイ素と塩化水素から得
られた実施例2と同様の99.9%純度の四塩化ケイ素
10kgを塩素ガス処理及び光照射をせずに蒸留塔にか
け、3kgを留去した後、6kgの主留分と釜残渣を得
た。
[Comparative Example 3] 10 kg of 99.9% pure silicon tetrachloride obtained from metallic silicon and hydrogen chloride similar to that of Example 2 was put into a distillation column without chlorine gas treatment and light irradiation, and 3 kg was added. After distilling off, 6 kg of a main fraction and a kettle residue were obtained.

【0033】この主留分6kgを原料に実施例2と同様
に多結晶析出、6回の真空フローティングゾーン精製、
抵抗値測定を行い、P型600Ω−cmの値を得た。こ
れによる換算硼素含有量は0.45ppb原子であっ
た。
Using 6 kg of this main fraction as a raw material, polycrystalline precipitation was carried out in the same manner as in Example 2, purification was carried out 6 times in a vacuum floating zone,
The resistance value was measured to obtain a P-type value of 600 Ω-cm. As a result, the converted boron content was 0.45 ppb atom.

【0034】〔比較例4〕金属ケイ素と塩化水素から得
られた実施例2と同様の99.9%純度の四塩化ケイ素
10kgを10%ポリビニルピリジンコポリマーが10
0g充填されたカラムに通した後、実施例2と同様の蒸
留精製、多結晶析出、6回の真空フローティングゾーン
精製、抵抗値測定を行い、P型2000Ω−cmの値を
得た。換算硼素含有量は0.14ppb原子であった。
[Comparative Example 4] 10 kg of 10% polyvinyl pyridine copolymer was prepared from 10 kg of silicon tetrachloride having a purity of 99.9% and obtained from metallic silicon and hydrogen chloride as in Example 2.
After passing through a column packed with 0 g, the same distillation purification as in Example 2, polycrystal precipitation, vacuum floating zone purification six times, and resistance measurement were carried out to obtain a P-type 2000 Ω-cm value. The converted boron content was 0.14 ppb atom.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 不純物として四塩化二硼素を含むクロル
シラン類を水銀灯の照射下で又はラジカル発生剤の存在
下で塩素と反応させ、四塩化二硼素を三塩化硼素に変換
させた後、クロルシラン類をこの三塩化硼素と分離する
ことを特徴とするクロルシラン類の精製方法。
1. A chlorosilane containing diboron tetrachloride as an impurity is reacted with chlorine under irradiation of a mercury lamp or in the presence of a radical generator to convert diboron tetrachloride into boron trichloride, and then chlorosilanes. A method for purifying chlorosilanes, characterized in that silane is separated from this boron trichloride.
JP3340181A 1991-11-29 1991-11-29 Purification method of chlorosilanes Expired - Fee Related JP2536360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3340181A JP2536360B2 (en) 1991-11-29 1991-11-29 Purification method of chlorosilanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340181A JP2536360B2 (en) 1991-11-29 1991-11-29 Purification method of chlorosilanes

Publications (2)

Publication Number Publication Date
JPH05147922A true JPH05147922A (en) 1993-06-15
JP2536360B2 JP2536360B2 (en) 1996-09-18

Family

ID=18334500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340181A Expired - Fee Related JP2536360B2 (en) 1991-11-29 1991-11-29 Purification method of chlorosilanes

Country Status (1)

Country Link
JP (1) JP2536360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220073358A1 (en) * 2019-01-22 2022-03-10 Tokuyama Corporation Method for Producing Refined Chlorosilane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220073358A1 (en) * 2019-01-22 2022-03-10 Tokuyama Corporation Method for Producing Refined Chlorosilane

Also Published As

Publication number Publication date
JP2536360B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US6846473B2 (en) Process for producing hexachlorodisilane
RU2368568C2 (en) Method of obtaining silicon
JP5337749B2 (en) Method for producing trichlorosilane
EP2634142B1 (en) Method for purifying chlorosilanes
JP2008520535A (en) Method and plant for purifying trichlorosilane and silicon tetrachloride
KR20130086318A (en) Low-dopant polycrystalline silicon chunk
JP2012158515A (en) Refining method by distillation of chlorosilane
CA2756474C (en) Method for the determination of impurities in silicon
KR20150119084A (en) Method for producing trichlorosilane
EP0294047A1 (en) Minimizing carbon content of semiconductor materials
JP3878278B2 (en) Method for producing polycrystalline silicon with low phosphorus content
CN107867695A (en) The purification system of trichlorosilane and the manufacture method of polysilicon
JP2536360B2 (en) Purification method of chlorosilanes
US5723644A (en) Phosphorous removal from chlorosilane
WO2011024257A1 (en) Purification of chlorosilane using amine compound
KR20170027824A (en) Method for purifying chlorosilane
JP2006169012A (en) Hexachlorodisilane and method of producing the same
KR102439298B1 (en) Methods for increasing the purity of oligosilanes and oligosilane compounds
TWI773121B (en) Process for obtaining hexachlorodisilane
KR102618387B1 (en) Method for reducing the content of boron compounds in a halosilane-containing composition
JP7313270B2 (en) Method for purifying high-purity trichlorosilane
WO2023243466A1 (en) Method for producing purified trichlorosilane
JPS61275125A (en) Stabilizing method for hexachlorodisilane
KR100795693B1 (en) Method for the purification of monosilane
JP2018140927A (en) Purification system of trichlorosilane, and silicon crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees