JPH05141961A - Interatomic force microscope - Google Patents

Interatomic force microscope

Info

Publication number
JPH05141961A
JPH05141961A JP3305998A JP30599891A JPH05141961A JP H05141961 A JPH05141961 A JP H05141961A JP 3305998 A JP3305998 A JP 3305998A JP 30599891 A JP30599891 A JP 30599891A JP H05141961 A JPH05141961 A JP H05141961A
Authority
JP
Japan
Prior art keywords
probe
cantilever
sample
light
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3305998A
Other languages
Japanese (ja)
Other versions
JP3021872B2 (en
Inventor
Tsugiko Takase
つぎ子 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3305998A priority Critical patent/JP3021872B2/en
Priority to US07/866,748 priority patent/US5289004A/en
Publication of JPH05141961A publication Critical patent/JPH05141961A/en
Application granted granted Critical
Publication of JP3021872B2 publication Critical patent/JP3021872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means

Abstract

PURPOSE:To provide an interatomic force microscope capable of radiating the excitation light to a sample without being shielded by a cantilever. CONSTITUTION:A probe 12 is provided at the free end of a cantilever 14, and both of them are made of an optically transparent material. The cantilever 14 is fitted to a disk-like glass plate 16 having an opening at the center so that the probe 12 is located at the center of the opening. An optically transparent conducting film 18 is provided below the probe 12, cantilever 14, and glass plate 16, and an interference reflecting film 20 is provided above the free end section of the cantilever 14 (the face on the opposite side to the probe 12). The interference reflecting film 20 reflects only the displacement detection light from an optical fiber interferometer within the light emitted from the optical fiber 34 and transmits the other light. The glass plate 16 is fitted to a support member 22 together with an objective lens 24, and it is supported by a cylindrical piezoelectric actuator 26.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、柔軟なカンチレバーの
自由端に設けた探針を試料表面に沿って走査して試料表
面を観察する原子間力顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic force microscope for observing a sample surface by scanning a probe provided at the free end of a flexible cantilever along the sample surface.

【0002】[0002]

【従来の技術】柔軟なカンチレバーの自由端に設けた鋭
く尖った探針を試料表面に非常に接近させると、探針先
端の原子と試料表面の原子との間に微弱な引力や斥力
(原子間力)が生じ、この力によりカンチレバーの自由
端が僅かに変位する。
2. Description of the Related Art When a sharp, pointed probe provided at the free end of a flexible cantilever is brought very close to the sample surface, a weak attractive force or repulsive force (atom) is generated between the atom at the tip of the probe and the atom on the sample surface. Force), which slightly displaces the free end of the cantilever.

【0003】原子間力顕微鏡(AFM)は、探針を試料
表面に沿って走査しながら、このカンチレバーの変位量
を検出して探針先端の原子と試料表面の原子の間に作用
する原子間力を測定し、試料表面を原子レベルで観測す
る装置である。
An atomic force microscope (AFM) detects the amount of displacement of the cantilever while scanning the probe along the sample surface and detects the amount of displacement between the atom at the probe tip and the atom on the sample surface. This device measures the force and observes the sample surface at the atomic level.

【0004】[0004]

【発明が解決しようとする課題】カンチレバーの変位量
を検出する方法としては、光干渉や光てこ等を用いる光
学的方法やトンネル顕微鏡を用いる方法・静電容量法な
どがある。光学的方法では、カンチレバーの背面(探針
の反対側の面)に反射膜を設け、この反射膜に光を照射
して得られる反射光を利用して変位を検出する。トンネ
ル顕微鏡を用いる方法では、カンチレバーの背面に導電
膜を設けるとともに、その上方にトンネルチップを配置
し、トンネルチップと導電膜との間に電圧を印加して両
者間に流れるトンネル電流の変化から変位を検出する。
静電容量法は、カンチレバーの背面に導電膜を設け、こ
の導電膜を一方の極板とする平板コンデンサを構成し、
静電容量の変化から変位を検出する。
As a method for detecting the displacement amount of the cantilever, there are an optical method using optical interference, an optical lever, etc., a method using a tunnel microscope, and a capacitance method. In the optical method, a reflective film is provided on the back surface of the cantilever (the surface opposite to the probe), and the displacement is detected by using the reflected light obtained by irradiating the reflective film with light. In the method using a tunnel microscope, a conductive film is provided on the back surface of the cantilever, and a tunnel tip is arranged above the cantilever, and a voltage is applied between the tunnel tip and the conductive film to displace the tunnel current from the change in the tunnel current. To detect.
In the capacitance method, a conductive film is provided on the back surface of the cantilever, and a flat plate capacitor having this conductive film as one of the polar plates is formed,
The displacement is detected from the change in capacitance.

【0005】ところで最近では、探針を走査して試料表
面の凹凸像を得ると同時に、試料に光を照射して試料表
面からの光励起や発光を検出したり試料表面を光学的に
観察したりするAFMが提案されている。この場合、光
励起や発光を効率よく検出したり、試料表面のより良い
光学像を得るには、光を探針の中心軸に沿って試料に入
射させる必要がある。しかし、上述の変位検出方法で
は、いずれもカンチレバーの背面に金属膜(反射膜や導
電膜)を設ける必要があるため、探針の中心軸上から観
察領域を光励起したり、カンチレバーに遮られることな
く試料表面を光学的に観察することはできない。
By the way, recently, at the same time as obtaining an uneven image of the sample surface by scanning the probe, the sample is irradiated with light to detect photoexcitation and light emission from the sample surface and to optically observe the sample surface. AFMs that do this have been proposed. In this case, in order to detect photoexcitation and light emission efficiently and obtain a better optical image of the sample surface, it is necessary to make the light incident on the sample along the central axis of the probe. However, in any of the above displacement detection methods, it is necessary to provide a metal film (reflection film or conductive film) on the back surface of the cantilever, so that the observation area is optically excited from the center axis of the probe or is blocked by the cantilever. Without this, the sample surface cannot be optically observed.

【0006】本発明は、カンチレバーに遮られることな
く探針の中心軸に沿って励起光を試料に照射できる原子
間力顕微鏡を提供することを目的とする。
An object of the present invention is to provide an atomic force microscope capable of irradiating a sample with excitation light along the central axis of a probe without being blocked by a cantilever.

【0007】[0007]

【課題を解決するための手段】本発明の原子間力顕微鏡
は、光学的に透明な探針と、この探針を自由端部に有す
る光学的に透明なカンチレバーと、探針と試料の間隔を
制御しながら探針を試料表面に沿って走査する走査手段
と、カンチレバーの自由端部の変位を検出する変位検出
光学系と、試料に光を照射して試料の諸特性を検出する
他の光学系とを備えている。変位検出光学系は、変位検
出光を射出する光源と、変位検出光を反射手段に照射す
る手段と、カンチレバーの自由端部に設けた変位検出光
のみを選択的に反射する反射手段と、反射手段からの反
射光を受光してカンチレバーの自由端部の変位を検出す
る手段とを備えている。
The atomic force microscope of the present invention comprises an optically transparent probe, an optically transparent cantilever having the probe at its free end, and a space between the probe and the sample. Scanning means for scanning the probe along the sample surface while controlling the, a displacement detection optical system for detecting the displacement of the free end of the cantilever, and other characteristics for detecting various characteristics of the sample by irradiating the sample with light. And an optical system. The displacement detecting optical system includes a light source for emitting displacement detecting light, a means for irradiating the reflecting means with the displacement detecting light, a reflecting means for selectively reflecting only the displacement detecting light provided at the free end of the cantilever, and a reflecting means. And means for detecting the displacement of the free end of the cantilever by receiving the reflected light from the means.

【0008】[0008]

【作用】変位検出光学系は、カンチレバーの自由端部に
設けた反射手段に変位検出光を照射し、その反射光を受
光して自由端部すなわち探針の変位を測定する。これと
同時に他の光学系は、励起光を試料に照射し、光励起や
発光を検出したり試料表面の光学像を得たりする。この
とき、探針とカンチレバーは光学的に透明であり、また
カンチレバーの自由端部に設けた反射手段たとえば干渉
反射膜は変位検出光だけを反射するので、励起光はカン
チレバーやその自由端部に設けた反射手段などにより遮
られることなく試料に照射される。
The displacement detecting optical system irradiates the reflecting means provided at the free end of the cantilever with the displacement detecting light and receives the reflected light to measure the displacement of the free end, that is, the probe. At the same time, another optical system irradiates the sample with excitation light to detect optical excitation or luminescence or obtain an optical image of the sample surface. At this time, the probe and the cantilever are optically transparent, and the reflection means such as the interference reflection film provided at the free end of the cantilever reflects only the displacement detection light, so that the excitation light is transmitted to the cantilever and its free end. The sample is irradiated without being blocked by the reflection means provided.

【0009】[0009]

【実施例】次に本発明の実施例について図面を参照しな
がら説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0010】図2に示すように、探針12はカンチレバ
ー14の自由端に設けられている。探針12とカンチレ
バー14は光学的に透明な材料たとえば二酸化珪素で作
られている。カンチレバー14は、中央に開口を有する
円盤状の光学的に透明なガラス板16に、開口の中心に
探針12が来るように取り付けられている。探針12と
カンチレバー14とガラス板16の下面には光学的に透
明な導電膜18が設けられていて、これは試料30にバ
イアス電圧を印加した際に流れるトンネル電流を検出す
るための電極として使用される。カンチレバー14の自
由端部の上面(探針12の反対側の面)には干渉反射膜
20が設けられている。この干渉反射膜20は、後述す
る光ファイバー干渉計からの変位検出光だけを反射し、
他の光は透過する。このガラス板16は対物レンズ24
と共に支持部材22に取り付けられ、円筒型圧電アクチ
ュエーター26により支持される。この対物レンズ24
は、図示していない機構によりカンチレバー14に対し
て上下に移動できるように設けられている。
As shown in FIG. 2, the probe 12 is provided at the free end of the cantilever 14. The probe 12 and the cantilever 14 are made of an optically transparent material such as silicon dioxide. The cantilever 14 is attached to a disk-shaped optically transparent glass plate 16 having an opening in the center such that the probe 12 comes to the center of the opening. An optically transparent conductive film 18 is provided on the lower surface of the probe 12, the cantilever 14, and the glass plate 16 and serves as an electrode for detecting a tunnel current flowing when a bias voltage is applied to the sample 30. used. An interference reflection film 20 is provided on the upper surface (the surface opposite to the probe 12) of the free end of the cantilever 14. The interference reflection film 20 reflects only displacement detection light from an optical fiber interferometer described later,
Other light is transmitted. The glass plate 16 is an objective lens 24.
It is also attached to the support member 22 and is supported by the cylindrical piezoelectric actuator 26. This objective lens 24
Are provided so as to be movable up and down with respect to the cantilever 14 by a mechanism (not shown).

【0011】圧電アクチュエーター26は図1に示すよ
うに固定部材28に支持されていて、XYステージ32
の上に載置した試料30の表面に沿って探針12を走査
する。対物レンズ24は中央に貫通孔を有している。光
ファイバー34は、この貫通孔の内側を通って、その一
端がカンチレバー14の自由端部の上方に導かれてい
る。位置するように配置されている。この光ファイバー
34には、他端から光ファイバー干渉計38からの変位
検出光と励起光源36からの励起光とが入射される。光
ファイバー干渉38から射出された変位検出光はハーフ
ミラー40を透過して光ファイバー34に入射し、その
先端から射出される。光ファイバー34の先端から射出
された変位検出光は干渉反射膜20で反射され、再び光
ファイバー34に入射して光ファイバー干渉計38に戻
る。光ファイバー干渉計38は、射出光と戻り光とを干
渉させて、カンチレバー14の変位を検出する。一方、
励起光源36から射出された励起光はハーフミラー40
で反射されて光ファイバー34に入射する。光ファイバ
ー34の先端から射出された励起光は、干渉反射膜20
とカンチレバー14と探針12と導電膜18を透過して
試料30に達する。励起光が試料30に照射されたと
き、表面で反射された光(観察光)や表面から放射され
る蛍光などの発光は対物レンズ24で集められ、反射ミ
ラー42で反射された後、カンチレバー14やガラス板
16などを透過し集光レンズ44で集光され、CCDを
含む光学像検出系46または光電子増倍管を含む発光検
出系48に入射する。光学像検出系46と発光検出系4
8は、その位置を替えることにより選択的に切り替えら
れる。
The piezoelectric actuator 26 is supported by a fixing member 28, as shown in FIG. 1, and has an XY stage 32.
The probe 12 is scanned along the surface of the sample 30 placed on the. The objective lens 24 has a through hole in the center. The optical fiber 34 passes through the inside of this through hole, and one end thereof is guided above the free end portion of the cantilever 14. It is arranged to be located. The displacement detection light from the optical fiber interferometer 38 and the excitation light from the excitation light source 36 are incident on the optical fiber 34 from the other end. The displacement detection light emitted from the optical fiber interference 38 passes through the half mirror 40, enters the optical fiber 34, and is emitted from the tip thereof. The displacement detection light emitted from the tip of the optical fiber 34 is reflected by the interference reflection film 20, enters the optical fiber 34 again, and returns to the optical fiber interferometer 38. The optical fiber interferometer 38 causes the emitted light and the returned light to interfere with each other to detect the displacement of the cantilever 14. on the other hand,
The excitation light emitted from the excitation light source 36 is a half mirror 40.
It is reflected by and is incident on the optical fiber 34. The excitation light emitted from the tip of the optical fiber 34 is the interference reflection film 20.
Then, the light reaches the sample 30 through the cantilever 14, the probe 12, and the conductive film 18. When the excitation light is applied to the sample 30, the light reflected by the surface (observation light) and the emitted light such as fluorescence emitted from the surface are collected by the objective lens 24, reflected by the reflection mirror 42, and then reflected by the cantilever 14. After passing through the glass plate 16 and the like, the light is condensed by the condenser lens 44 and is incident on the optical image detection system 46 including a CCD or the light emission detection system 48 including a photomultiplier tube. Optical image detection system 46 and emission detection system 4
8 can be selectively switched by changing its position.

【0012】次に観察手順について説明する。まず、対
物レンズ24のZ方向(試料表面に垂直な方向)の位置
を調整して焦点を試料30の表面に合わせる。この状態
で励起光を試料表面に照射し光学像検出系を用いて試料
表面の光学像を観察しながら、XYステージ32を操作
して試料30を動かして観察領域を決める。このとき探
針12は、試料30を移動させたときに衝突しないよう
に、試料30から十分に離しておく。その後、光ファイ
バー干渉計38を用いてカンチレバー14の変位をモニ
ターしながら図示しないステッピングモーターを用いて
探針12を試料30に近づけ、カンチレバー14の変位
が検出された時点でステッピングモーターを停止して探
針12の接近を停止させる。このとき光ファイバー34
は、その先端から射出される変位検出光が干渉反射膜2
0上に焦点を結ぶようにZ方向位置を随時調整する。
Next, the observation procedure will be described. First, the position of the objective lens 24 in the Z direction (direction perpendicular to the sample surface) is adjusted to focus on the surface of the sample 30. In this state, while irradiating the sample surface with the excitation light and observing the optical image of the sample surface using the optical image detection system, the XY stage 32 is operated to move the sample 30 to determine the observation region. At this time, the probe 12 is sufficiently separated from the sample 30 so as not to collide when the sample 30 is moved. After that, while monitoring the displacement of the cantilever 14 using the optical fiber interferometer 38, the probe 12 is brought close to the sample 30 by using a stepping motor (not shown), and when the displacement of the cantilever 14 is detected, the stepping motor is stopped and the probe is stopped. The approach of the needle 12 is stopped. At this time, the optical fiber 34
The displacement detection light emitted from the tip of the interference reflection film 2
The Z-direction position is adjusted at any time so that the focal point is focused on 0.

【0013】その後、圧電アクチュエーター26を用い
て、カンチレバー14の変位量を一定に保つように探針
12のZ方向位置のサーボ制御を行ないながら、探針1
2をXY方向に走査して、試料表面の凹凸形状の測定を
行なう(AFM測定モード)。この間の制御は、図3に
示すように、光ファイバー干渉計38から出力されるカ
ンチレバー14の変位の情報がAFM−STMコントロ
ールボックス50に入力され、AFM−STMコントロ
ールボックス50がこれを打ち消すように圧電アクチュ
エーター26を駆動させる制御信号を圧電アクチュエー
ター26に供給して行なわれる。
Thereafter, the piezoelectric actuator 26 is used to perform servo control of the position of the probe 12 in the Z direction so as to keep the displacement amount of the cantilever 14 constant, and the probe 1
2 is scanned in the XY directions to measure the uneven shape of the sample surface (AFM measurement mode). In the control during this period, as shown in FIG. 3, the displacement information of the cantilever 14 output from the optical fiber interferometer 38 is input to the AFM-STM control box 50, and the AFM-STM control box 50 cancels the piezoelectric information. This is performed by supplying a control signal for driving the actuator 26 to the piezoelectric actuator 26.

【0014】このように探針12を走査する間すなわち
探針試料間距離を一定に保った状態で探針12を走査す
る間、トンネルバイアス電圧発生装置52を用いて探針
12と試料30との間にバイアス電圧を印加し、両者間
に流れるトンネル電流をトンネル電流検出用プリアンプ
54を用いて検出することにより、トンネル電流のXY
面内変化を測定することができる(トンネル電流像測定
モード)。
As described above, while the probe 12 is being scanned, that is, while the probe 12 is being scanned while the probe-sample distance is kept constant, the tunnel bias voltage generator 52 is used to connect the probe 12 and the sample 30. XY of the tunnel current by applying a bias voltage between the two and detecting the tunnel current flowing between the two using the tunnel current detection preamplifier 54.
In-plane changes can be measured (tunnel current image measurement mode).

【0015】また、探針試料間距離を一定に保った状態
で、トンネルパイアス電圧に対するトンネル電流の依存
性や微分コンダクタンスの測定を行なうこともできる
(トンネルスペクトル測定モード)。
Further, the dependence of the tunnel current on the tunnel bias voltage and the differential conductance can be measured with the distance between the probe samples kept constant (tunnel spectrum measurement mode).

【0016】上述したように、探針試料間距離を一定に
保った状態で探針12と試料30の間に流れるトンネル
電流を検出するとき、励起光を断続的に試料に照射し、
光電導性のXY面内分布、光励起トンネル電流のバイア
ス電圧依存性、光励起トンネル電流の励起スペクトル
(アクションスペクトル)の測定を行なう。
As described above, when the tunnel current flowing between the probe 12 and the sample 30 is detected while the distance between the probe and the sample is kept constant, the sample is intermittently irradiated with excitation light,
The XY plane distribution of photoconductivity, the bias voltage dependence of the photoexcitation tunnel current, and the excitation spectrum (action spectrum) of the photoexcitation tunnel current are measured.

【0017】探針試料間距離を一定に保った状態で探針
12と試料30の間に流れるトンネル電流を検出しなが
ら、試料30からのトンネル発光の面内分布や発光の波
長依存性、バイアス電圧と発光強度の関係などの測定を
行なう。
While detecting the tunnel current flowing between the probe 12 and the sample 30 while keeping the distance between the probes constant, the in-plane distribution of the tunnel emission from the sample 30, the wavelength dependence of the emission, and the bias. Measure the relationship between voltage and emission intensity.

【0018】本実施例の変形例を図4に示す。図中、上
述の実施例と同じ部材は同一の符号で示し、その説明は
省略する。この例では、先端を除く探針表面に光学的に
黒い膜60が設けてある。試料を光励起した際に試料表
面から放射される蛍光などの発光を観察する場合、励起
光のまわりこみを除去する必要がある。本例の光学的に
黒い膜60は、励起光が探針12の表面で散乱され、試
料観察光学系にまわり込むのを防いでいる。なお、光フ
ァイバー端部の屈折率分布をイオン交換法による処理に
よって変化させることにより、ファイバー34の先端を
凸レンズ形状にするのと同じ効果が得られる。このよう
にすればカンチレバーの幅(20μm)以上の径の光フ
ァイバーが使用でき、ファイバー支持部より下方の共振
周波数が向上する。
A modified example of this embodiment is shown in FIG. In the figure, the same members as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted. In this example, an optically black film 60 is provided on the surface of the probe except the tip. When observing luminescence such as fluorescence emitted from the sample surface when the sample is optically excited, it is necessary to remove the wraparound of the excitation light. The optically black film 60 of this example prevents the excitation light from being scattered on the surface of the probe 12 and entering the optical system for observing the sample. By changing the refractive index distribution at the end of the optical fiber by a process by the ion exchange method, the same effect as that of forming the tip of the fiber 34 into a convex lens shape can be obtained. By doing so, an optical fiber having a diameter equal to or larger than the width of the cantilever (20 μm) can be used, and the resonance frequency below the fiber supporting portion is improved.

【0019】本実施例の別の変形例を図5に示す。図
中、上述の実施例と同じ部材は同一の符号で示し、その
説明は省略する。この例では、探針12の先端が丸めて
あり、光学的に凸レンズと同等の機能を有するようにな
っている。これにより励起光が試料30によく集束され
る。また、探針12の先端を丸める代わりに、前述した
ように先端部に屈折率分布を変化させ、形状を変更する
ことなくレンズ効果を持たせることもできる。
Another modification of this embodiment is shown in FIG. In the figure, the same members as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted. In this example, the tip of the probe 12 is rounded so as to optically have a function equivalent to that of a convex lens. As a result, the excitation light is well focused on the sample 30. Further, instead of rounding the tip of the probe 12, the refractive index distribution may be changed at the tip as described above, and the lens effect may be provided without changing the shape.

【0020】本発明の別の実施例について図6と図7を
参照して説明する。図6は試料表面を光学的に観察する
場合の装置構成を示し、図7は試料表面からの発光を検
出する場合の装置構成を示している。図中、上述の実施
例と同じ部材は同一の符号で示し、その説明は省略す
る。本実施例では、上述した実施例と同様に光ファイバ
ー34を介して変位検出光がカンチレバー14に照射さ
れ、探針12の変位が検出される。また、励起光源84
から射出された励起光は励起光用フィルター82を介し
てレンズ80に入射し、ダイクロイックハーフミラー7
8で反射された後に対物レンズ24により集光され、カ
ンチレバー14やガラス板16を透過して試料30に照
射される。試料30からの反射光すなわち試料表面の光
学情報を含んでいる観察光は、図6に示すように、ダイ
クロイックハーフミラー78を透過し、レンズ86によ
りCCD88に集光され、試料表面の光学像が観察され
る。一方、試料表面からの発光を検出する際には、図6
のレンズ86とCCD88に替えて、図7に示すように
フィルター90とレンズ90と光電子増倍管94とを配
置する。試料表面からの発光は対物レンズ24で集めら
れ、ダイクロイックハーフミラー78を透過し、フィル
ター90を介してレンズ92に入射し、光電子増倍管9
4に集光され発光が検出される。本実施例の構成では、
励起光の位置分解能は低下するが、上述の実施例に比べ
て、励起光強度を大きくすることができる。
Another embodiment of the present invention will be described with reference to FIGS. 6 and 7. FIG. 6 shows an apparatus configuration for optically observing the sample surface, and FIG. 7 shows an apparatus configuration for detecting light emission from the sample surface. In the figure, the same members as those in the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted. In this embodiment, similarly to the above-described embodiments, the displacement detection light is applied to the cantilever 14 via the optical fiber 34, and the displacement of the probe 12 is detected. Also, the excitation light source 84
The excitation light emitted from the laser enters the lens 80 through the excitation light filter 82, and the dichroic half mirror 7
After being reflected by 8, the light is condensed by the objective lens 24, transmitted through the cantilever 14 and the glass plate 16, and irradiated onto the sample 30. As shown in FIG. 6, the reflected light from the sample 30, that is, the observation light including the optical information on the sample surface, passes through the dichroic half mirror 78 and is condensed on the CCD 88 by the lens 86 to form an optical image of the sample surface. To be observed. On the other hand, when detecting the light emission from the sample surface, FIG.
In place of the lens 86 and the CCD 88, a filter 90, a lens 90 and a photomultiplier tube 94 are arranged as shown in FIG. The light emitted from the sample surface is collected by the objective lens 24, transmitted through the dichroic half mirror 78, and incident on the lens 92 through the filter 90, and the photomultiplier tube 9
The light is focused on 4 and the emitted light is detected. In the configuration of this embodiment,
Although the positional resolution of the excitation light is reduced, the intensity of the excitation light can be increased as compared with the above-mentioned embodiment.

【0021】この実施例の変形例を図8に示す。この例
では、カンチレバー14の自由端部に設けた干渉反射膜
が励起光を吸収する性質を利用して、反射膜内に励起光
の光強度をモニターするためのボロメーター96を設け
た。このボロメーター96をガラス板16と共に上方か
ら見た図を(A)に、その側断面図を(B)に示してあ
る。ボロメーター96の出力に基づいて励起光源の駆動
回路をフィードバック制御することにより、励起光強度
を一定に保つことができる。
A modification of this embodiment is shown in FIG. In this example, a bolometer 96 for monitoring the light intensity of the excitation light is provided in the reflection film by utilizing the property that the interference reflection film provided on the free end of the cantilever 14 absorbs the excitation light. A view of the bolometer 96 viewed from above together with the glass plate 16 is shown in (A), and a side sectional view thereof is shown in (B). By performing feedback control of the drive circuit of the excitation light source based on the output of the bolometer 96, the excitation light intensity can be kept constant.

【0022】本発明によれば、励起光と変位検出光を同
一の光ファイバーを用いて導いているので、観察領域を
局所的に光励起できるとともに、変位検出光がまわり込
んだり、変位検出系の光学部材が観察光学系の視野を遮
ったりするといった影響が軽減される。
According to the present invention, since the excitation light and the displacement detection light are guided by using the same optical fiber, the observation region can be locally photoexcited, and the displacement detection light wraps around or the optics of the displacement detection system. The influence of the member blocking the field of view of the observation optical system is reduced.

【0023】[0023]

【発明の効果】本発明よれば、カンチレバーで遮られる
ことなく探針の中心軸に沿って励起光が試料に照射され
るので、試料表面からの光励起や発光を効率よく検出で
きるようになり、また試料表面のより良い光学像が得ら
れるようになる。
According to the present invention, the sample is irradiated with the excitation light along the central axis of the probe without being blocked by the cantilever, so that it becomes possible to efficiently detect the optical excitation and the light emission from the sample surface. Also, a better optical image of the sample surface can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の原子間力顕微鏡の構成を示
す。
FIG. 1 shows the configuration of an atomic force microscope according to an embodiment of the present invention.

【図2】図1の探針付近を拡大して示す図である。FIG. 2 is an enlarged view showing the vicinity of the probe shown in FIG.

【図3】図1の構成に制御系を加えて示した図である。FIG. 3 is a diagram showing the configuration of FIG. 1 with a control system added.

【図4】図1に示した装置の変形例を示す。FIG. 4 shows a modification of the device shown in FIG.

【図5】図1に示した装置の別の変形例を示す。5 shows another variation of the device shown in FIG.

【図6】本発明の別の実施例であって、試料表面の光学
像を観察するときの構成を示す。
FIG. 6 is another embodiment of the present invention, showing a configuration when observing an optical image of a sample surface.

【図7】本発明の別の実施例であって、試料表面からの
発光を検出するときの構成を示す。
FIG. 7 is another embodiment of the present invention, showing a configuration for detecting light emission from the sample surface.

【図8】図6と図7に示した装置の変形例を示す。FIG. 8 shows a modification of the device shown in FIGS. 6 and 7.

【符号の説明】[Explanation of symbols]

12…探針、14…カンチレバー、20…干渉反射膜、
26…圧電アクチュエーター、36…励起光源、38…
光ファイバー干渉計、46…光学像検出系、48…発光
検出系。
12 ... probe, 14 ... cantilever, 20 ... interference reflection film,
26 ... Piezoelectric actuator, 36 ... Excitation light source, 38 ...
Optical fiber interferometer, 46 ... Optical image detection system, 48 ... Emission detection system.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学的に透明な探針と、 この探針を自由端部に有する光学的に透明なカンチレバ
ーと、 探針と試料の間隔を制御しながら、探針を試料表面に沿
って走査する走査手段と、 カンチレバーの自由端部の変位を検出する変位検出光学
系であって、変位検出光を射出する光源と、変位検出光
を反射手段に照射する手段と、カンチレバーの自由端部
に設けた変位検出光のみを選択的に反射する反射手段
と、反射手段からの反射光を受光してカンチレバーの自
由端部の変位を検出する手段とを有している変位検出光
学系と、 試料に光を照射して試料の諸特性を検出する他の光学系
とを備えている原子間力顕微鏡。
1. An optically transparent probe, an optically transparent cantilever having this probe at its free end, and a probe along the surface of the sample while controlling the distance between the probe and the sample. A scanning means for scanning, a displacement detection optical system for detecting the displacement of the free end of the cantilever, a light source for emitting displacement detection light, a means for irradiating the reflection means with the displacement detection light, and a free end for the cantilever. A displacement detecting optical system having a reflecting means selectively reflecting only the displacement detecting light provided in the above, and a means for receiving the reflected light from the reflecting means and detecting the displacement of the free end portion of the cantilever, An atomic force microscope equipped with another optical system for irradiating a sample with light to detect various characteristics of the sample.
【請求項2】 探針を覆う光学的に透明な導電膜と、 導電膜と試料との間に電圧を印加し両者間に流れるトン
ネル電流を検出する手段とを更に備えている請求項1記
載の原子間力顕微鏡。
2. The method according to claim 1, further comprising an optically transparent conductive film that covers the probe, and means for applying a voltage between the conductive film and the sample to detect a tunnel current flowing between the conductive film and the sample. Atomic force microscope.
JP3305998A 1990-03-27 1991-11-21 Cantilever, atomic force microscope Expired - Fee Related JP3021872B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3305998A JP3021872B2 (en) 1991-11-21 1991-11-21 Cantilever, atomic force microscope
US07/866,748 US5289004A (en) 1990-03-27 1992-04-10 Scanning probe microscope having cantilever and detecting sample characteristics by means of reflected sample examination light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3305998A JP3021872B2 (en) 1991-11-21 1991-11-21 Cantilever, atomic force microscope

Publications (2)

Publication Number Publication Date
JPH05141961A true JPH05141961A (en) 1993-06-08
JP3021872B2 JP3021872B2 (en) 2000-03-15

Family

ID=17951841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3305998A Expired - Fee Related JP3021872B2 (en) 1990-03-27 1991-11-21 Cantilever, atomic force microscope

Country Status (1)

Country Link
JP (1) JP3021872B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995013518A1 (en) * 1993-11-12 1995-05-18 Forschungszentrum Jülich GmbH Mounting for a probe tip in a scanning force or scanning tunneling microscope
JPH07174542A (en) * 1993-04-12 1995-07-14 Seiko Instr Inc Scanning-type near-field interatomic force microscope, probe used in the microscope, and manufacture of the probe
US5559330A (en) * 1993-12-20 1996-09-24 Nippon Telegraph And Telephone Corporation Scanning tunneling microscope
JP2005530125A (en) * 2001-08-27 2005-10-06 ナノニクス・イメージング・リミテッド Reproducible scanning probe microscope that scans multiple plate tips or samples with a transparent interface of a remote optical microscope
JP2009517656A (en) * 2005-11-28 2009-04-30 ベレナギング ヴォー クリスタラク ホガー オンダーヴェイル ヴェーテンザパーリク オンダージーク エン パシェンテンゾーク Optical device with cantilever and method for making and using the same
JP2010503861A (en) * 2006-09-14 2010-02-04 バイオ−ラッド ラボラトリーズ,インコーポレイティド Biochemical assay detection using fiber optic excitons
JP2021074765A (en) * 2019-11-13 2021-05-20 株式会社ディスコ Imaging device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174542A (en) * 1993-04-12 1995-07-14 Seiko Instr Inc Scanning-type near-field interatomic force microscope, probe used in the microscope, and manufacture of the probe
WO1995013518A1 (en) * 1993-11-12 1995-05-18 Forschungszentrum Jülich GmbH Mounting for a probe tip in a scanning force or scanning tunneling microscope
US5701381A (en) * 1993-11-12 1997-12-23 Forschungszentrum Julich Gmbh Mounting arrangement for a probe tip of a scanning force or tunneling microscope
US5559330A (en) * 1993-12-20 1996-09-24 Nippon Telegraph And Telephone Corporation Scanning tunneling microscope
JP2005530125A (en) * 2001-08-27 2005-10-06 ナノニクス・イメージング・リミテッド Reproducible scanning probe microscope that scans multiple plate tips or samples with a transparent interface of a remote optical microscope
JP2009517656A (en) * 2005-11-28 2009-04-30 ベレナギング ヴォー クリスタラク ホガー オンダーヴェイル ヴェーテンザパーリク オンダージーク エン パシェンテンゾーク Optical device with cantilever and method for making and using the same
JP2010503861A (en) * 2006-09-14 2010-02-04 バイオ−ラッド ラボラトリーズ,インコーポレイティド Biochemical assay detection using fiber optic excitons
JP2021074765A (en) * 2019-11-13 2021-05-20 株式会社ディスコ Imaging device

Also Published As

Publication number Publication date
JP3021872B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
JP3425615B2 (en) Scanning near-field atomic force microscope
US7091476B2 (en) Scanning probe microscope assembly
EP0884617B1 (en) Scanning near-field optic/atomic-force microscope, probe for use in same, and method of fabricating said probe
US8418538B2 (en) High frequency deflection measurement of IR absorption
US8904561B2 (en) Mechanical detection of Raman resonance
US6265711B1 (en) Scanning probe microscope assembly and method for making spectrophotometric near-field optical and scanning measurements
WO1996003641A1 (en) Scanning probe microscope assembly
JPH0477605A (en) Scanning type tunnel microscope and probe used therein
JPH10293133A (en) Scanning proximity field optical microscope
JP3021872B2 (en) Cantilever, atomic force microscope
EP0652414B1 (en) Scanning near-field optic/atomic force microscope
JP4585053B2 (en) Scattering near-field microscope
JP3825568B2 (en) PROBE FOR NEAR FIELD LIGHT MICROSCOPE, ITS MANUFACTURING METHOD, AND SCANNER NEAR FIELD LIGHT MICROSCOPE
JPH10267945A (en) Scanning optical microscope
JP3523754B2 (en) Scanning probe microscope
JP4361221B2 (en) Measurement method of illumination reflection mode in scanning near-field microscope
JP2002310881A (en) Scanning near field microscope
JP3910309B2 (en) Scanning near-field microscope
JP3205455B2 (en) Atomic force detection mechanism and atomic force detection scanning near-field microscope
WO2023150264A1 (en) Scanning probe microscope and method of alignment, focusing, and measurement
JPH08146015A (en) Cantilever of scanning type probe microscope
JPH08220114A (en) Displacement detector for scanning force microscope
JPH07174768A (en) Scanning type probe microscope
JPH11316241A (en) Probe for scanning near-field optical microscope and scanning near-field optical microscope
JPH07198732A (en) Near-field microscope

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees