JPH05141801A - Heat pump type refrigerating plant - Google Patents

Heat pump type refrigerating plant

Info

Publication number
JPH05141801A
JPH05141801A JP30163691A JP30163691A JPH05141801A JP H05141801 A JPH05141801 A JP H05141801A JP 30163691 A JP30163691 A JP 30163691A JP 30163691 A JP30163691 A JP 30163691A JP H05141801 A JPH05141801 A JP H05141801A
Authority
JP
Japan
Prior art keywords
cooling
pressure liquid
heating
cycle operation
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30163691A
Other languages
Japanese (ja)
Inventor
Kiyoshi Masuda
潔 増田
Nobuyuki Shimizu
信行 清水
Toyokazu Nasu
豊和 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP30163691A priority Critical patent/JPH05141801A/en
Publication of JPH05141801A publication Critical patent/JPH05141801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To perform a positive operation for stopping an operation of a pump while preventing damage of a compressor by a method wherein a returning back of liquid toward the compressor is prohibited even if a certain leakage occurs at a check valve during a cooling or a heating cycle operation. CONSTITUTION:The first bypassing passage 15 having a check valve 14 bypassing a cooling or a heating expansion mechanism 4 is arranged between a high pressure liquid region where a high pressure liquid refrigerant flows during a heating operation and a gaseous region of a liquid receiver 5. The second bypassing passage 17 having a check valve 16 bypassing an expansion mechanism 6 for a heating operation is arranged between the high pressure liquid region where the high pressure liquid refrigerant flows during a cooling operation and the liquid receiver 5. Even if the refrigerant is leaked from the liquid receiver 5 to a utilization side heat exchanger 3 of a heating source side heat exchanger 7 through the check valves 14, 16 during the cooling or heating operation, the gaseous refrigerant stored in the gaseous region in the liquid receiver 5 is leaked, resulting in that the back-flow of the liquid toward the compressor 1 is prevented and an accident of breakage or lack of oil and poor lubrication are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷暖房サイクル運転を
可能としたヒートポンプ式冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type refrigerating apparatus capable of performing a heating / cooling cycle operation.

【0002】[0002]

【従来の技術】従来、この種ヒートポンプ式冷凍装置
は、例えば実公平2−36059号公報に記載され、か
つ、図3で示したように、圧縮機101に、冷暖房切換
機構102と、利用側熱交換器103、冷房用膨張機構
104、受液器105、暖房用膨張機構106、熱源側
熱交換器107及びアキュムレータ108をそれぞれ接
続して冷媒回路を形成している。また、前記冷房用膨張
機構104と暖房用膨張機構106には、これら各膨張
機構104,106を側路する逆止弁109,110を
並設している。更に、前記受液器105のガス域と前記
アキュムレータ108との間には、第1開閉弁111を
介装した第1均圧回路112を設け、また、前記受液器
105のガス域と前記暖房用膨張機構106及び熱源側
熱交換器107の中間部との間には、第2開閉弁113
を介装した第2均圧回路114を設けている。
2. Description of the Related Art Heretofore, a heat pump type refrigerating apparatus of this kind has been described in, for example, Japanese Utility Model Publication No. 2-36059, and as shown in FIG. 3, a compressor 101, a cooling / heating switching mechanism 102, and a user side. The heat exchanger 103, the cooling expansion mechanism 104, the liquid receiver 105, the heating expansion mechanism 106, the heat source side heat exchanger 107, and the accumulator 108 are connected to each other to form a refrigerant circuit. Further, the cooling expansion mechanism 104 and the heating expansion mechanism 106 are provided with check valves 109 and 110, which bypass the expansion mechanisms 104 and 106, respectively. Further, a first pressure equalizing circuit 112 with a first opening / closing valve 111 interposed is provided between the gas region of the liquid receiver 105 and the accumulator 108, and the gas region of the liquid receiver 105 and the The second on-off valve 113 is provided between the heating expansion mechanism 106 and the intermediate portion of the heat source side heat exchanger 107.
The second pressure equalizing circuit 114 is provided.

【0003】そして、暖房サイクル運転を行う場合は、
図3に点線矢印で示したように、前記冷暖房切換機構1
02の切換操作により前記圧縮機101から吐出される
冷媒を、切換機構102、利用側熱交換器103、逆止
弁109、受液器105、暖房用膨張機構106、熱源
側熱交換器107、切換機構102、アキュムレータ1
08、圧縮機101の経路で循環させ、前記利用側熱交
換器103での冷媒の凝縮熱を暖房に利用するのであっ
て、前記逆止弁110により受液器105の高圧液冷媒
が前記暖房用膨張機構106をバイパスして流れないよ
うにし、前記受液器105の高圧液冷媒を暖房用膨張機
構106で減圧して前記熱源側熱交換器107へ流して
いる。また、冷房サイクル運転を行う場合は、図3に実
線矢印で示したように、前記冷暖房切換機構102の切
換操作により前記圧縮機101から吐出される冷媒を、
切換機構102、熱源側熱交換器107、逆止弁11
0、受液器105、冷房用膨張機構104、利用側熱交
換器103、切換機構102、アキュムレータ108、
圧縮機101の経路で循環させ、前記利用側熱交換器1
03での蒸発熱を冷房に利用するのであって、前記逆止
弁109により受液器105の高圧液冷媒が前記冷房用
膨張機構104をバイパスして流れないようにし、前記
受液器105の高圧液冷媒を冷房用膨張機構104で減
圧して前記利用側熱交換器103へ流している。
When performing a heating cycle operation,
As shown by a dotted arrow in FIG. 3, the cooling / heating switching mechanism 1
The refrigerant discharged from the compressor 101 by the switching operation of 02 is switched mechanism 102, utilization side heat exchanger 103, check valve 109, liquid receiver 105, heating expansion mechanism 106, heat source side heat exchanger 107, Switching mechanism 102, accumulator 1
08, the heat of condensation of the refrigerant in the use side heat exchanger 103 is circulated in the path of the compressor 101 for heating, and the high-pressure liquid refrigerant in the liquid receiver 105 is heated by the check valve 110. The high-pressure liquid refrigerant in the liquid receiver 105 is decompressed by the heating expansion mechanism 106 and is allowed to flow to the heat source side heat exchanger 107 so as not to flow. Further, when the cooling cycle operation is performed, the refrigerant discharged from the compressor 101 by the switching operation of the cooling / heating switching mechanism 102, as indicated by the solid arrow in FIG.
Switching mechanism 102, heat source side heat exchanger 107, check valve 11
0, liquid receiver 105, cooling expansion mechanism 104, utilization side heat exchanger 103, switching mechanism 102, accumulator 108,
It is circulated in the path of the compressor 101, and the use side heat exchanger 1
The heat of vaporization in 03 is used for cooling, and the check valve 109 prevents the high-pressure liquid refrigerant in the liquid receiver 105 from flowing by bypassing the cooling expansion mechanism 104. The high-pressure liquid refrigerant is decompressed by the cooling expansion mechanism 104 and is flown to the use side heat exchanger 103.

【0004】[0004]

【発明が解決しようとする課題】所が、以上の如く構成
するヒートポンプ式冷凍装置において、逆止弁109,
110を介装するバイパス路は、冷房用膨張機構104
及び暖房用膨張機構106を介装した液管に、前記各膨
張機構を側路するように設けており、従って、前記バイ
パス路には、冷房及び暖房サイクルの何れの運転時で
も、高圧液冷媒が流入しているのであり、また、この高
圧液冷媒が逆止弁109,110で閉鎖されるようにな
っているのである。
However, in the heat pump type refrigerating apparatus configured as described above, the check valve 109,
The bypass path provided with 110 is the cooling expansion mechanism 104.
Further, the expansion pipes for heating and the heating expansion mechanism 106 are provided in the liquid pipe so as to bypass each of the expansion mechanisms. Therefore, the bypass passage is provided with a high-pressure liquid refrigerant in both cooling and heating cycles. Is flowing in, and the high-pressure liquid refrigerant is closed by the check valves 109 and 110.

【0005】また、前記逆止弁109,110の一方側
は前記高圧液冷媒が作用しているのに対し、他方側は、
前記各膨張機構104,106で減圧された低圧液冷媒
が作用しているため、一方側と他方側との間には圧力差
があり、また、逆止弁109,110における塵芥等の
かみ込みにより前記高圧液冷媒が低圧側にリークするこ
とになるのである。
The high-pressure liquid refrigerant acts on one side of the check valves 109 and 110, while the other side
Since the low-pressure liquid refrigerant decompressed by the expansion mechanisms 104 and 106 acts, there is a pressure difference between the one side and the other side, and dust such as dust is caught in the check valves 109 and 110. As a result, the high pressure liquid refrigerant leaks to the low pressure side.

【0006】一方、冷暖房サイクル運転において、蒸発
器となる利用側又は熱源側熱交換器103,107の出
口側における過熱度は前記各膨張機構104,106の
絞り調整により制御されている。所が、前記したように
逆止弁109,110にリークがある場合、前記各膨張
機構104,104による絞り調節範囲内のリークであ
れば特に問題はないが、その調整範囲を越えてリークが
ある場合、前記リークが液冷媒であることから、湿り運
転となり圧縮機に液バックが生じ、この液バックにより
前記圧縮機101の破損事故を起こしたり、湿り運転に
よる油上がり及び潤滑不良を発生したりする問題があっ
た。
On the other hand, in the cooling / heating cycle operation, the degree of superheat on the outlet side of the heat exchangers 103, 107 on the utilization side or the heat source side, which serves as an evaporator, is controlled by adjusting the throttles of the expansion mechanisms 104, 106. However, if there is a leak in the check valves 109 and 110 as described above, there is no particular problem as long as it is a leak within the throttle adjustment range by the expansion mechanisms 104 and 104, but there is a leak beyond the adjustment range. In some cases, since the leak is a liquid refrigerant, a wet operation is performed and a liquid back is generated in the compressor. This liquid back causes a damage accident of the compressor 101, and oil rise and poor lubrication due to the wet operation occur. There was a problem with.

【0007】更に、以上のような冷暖房サイクル運転時
に、ポンプダウン運転を行う場合には、前記冷暖房用膨
張機構104,106を閉鎖し、かつ、前記第1,第2
開閉弁111,113を開放させて、前記受液器105
のガス域に貯溜されるガス冷媒を前記第1,第2均圧回
路112,114へと流すのであるが、このとき、前記
各逆止弁109,110を介して前記受液器105内の
高圧液冷媒がリークすると、ポンプダウン運転が行えな
くなる問題もあった。
Further, when the pump-down operation is performed during the cooling / heating cycle operation as described above, the cooling / heating expansion mechanisms 104 and 106 are closed, and the first and second expansion mechanisms are closed.
The on-off valves 111 and 113 are opened and the liquid receiver 105 is opened.
The gas refrigerant stored in the gas region is flown to the first and second pressure equalizing circuits 112 and 114. At this time, the gas refrigerant in the liquid receiver 105 is passed through the check valves 109 and 110. If the high-pressure liquid refrigerant leaks, there is also a problem that the pump down operation cannot be performed.

【0008】本発明は以上のような問題に鑑みてなした
もので、その目的は、冷暖房サイクル運転時圧縮機側へ
の液バックを阻止して、該圧縮機の破損事故や湿り運転
による油上がり及び潤滑不良を防止することができ、し
かも、ポンプダウン運転を確実に行うことができるヒー
トポンプ式冷凍装置を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to prevent liquid back to the compressor side during the heating / cooling cycle operation, and to prevent oil from accidental damage or wet operation of the compressor. It is an object of the present invention to provide a heat pump type refrigerating apparatus which can prevent rising and poor lubrication and can reliably perform pump down operation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、圧縮機1、冷暖房切換機構2、利用側
熱交換器3、受液器5、冷房用膨張機構4、暖房用膨張
機構6及び熱源側熱交換器7を備え、冷暖房サイクル運
転を可能としたヒートポンプ式冷凍装置において、一端
側が暖房サイクル運転時高圧液冷媒が流れる高圧液域に
接続され、途中に暖房サイクル運転時の高圧液冷媒の流
れを許容する逆止弁14をもち、かつ、前記冷房用膨張
機構4を側路する第1バイパス路15と、一端側が冷房
サイクル運転時高圧液冷媒が流れる高圧液域に接続さ
れ、途中に冷房サイクル運転時の高圧液冷媒の流れを許
容する逆止弁16をもち、かつ、前記暖房用膨張機構6
を側路する第2バイパス路17との各他端側を、前記受
液器5のガス域に接続したものである。
In order to achieve the above object, in the present invention, a compressor 1, a cooling / heating switching mechanism 2, a use side heat exchanger 3, a liquid receiver 5, a cooling expansion mechanism 4, a heating expansion are provided. In a heat pump type refrigerating apparatus including a mechanism 6 and a heat source side heat exchanger 7, which enables a heating / cooling cycle operation, one end side is connected to a high pressure liquid region in which a high pressure liquid refrigerant flows during a heating cycle operation, A first bypass passage 15 having a check valve 14 for allowing the flow of the high-pressure liquid refrigerant and shunting the cooling expansion mechanism 4, and one end side thereof connected to a high-pressure liquid region through which the high-pressure liquid refrigerant flows during a cooling cycle operation. The heating expansion mechanism 6 has a check valve 16 for allowing the flow of the high-pressure liquid refrigerant during the cooling cycle operation in the middle thereof.
The other end side of each of the second bypass passages 17 that bypasses is connected to the gas region of the liquid receiver 5.

【0010】また、前記利用側熱交換器3は、冷房サイ
クル運転時低圧液室となり暖房サイクル運転時高圧液室
となる出入口室36をもち、該出入口室36に熱交換チ
ューブ33を開口させると共に、前記出入口室36に冷
房サイクル運転時低圧液管となる冷媒配管91を、前記
出入口室36の底面に対し上方に突出状で、かつ、突出
先端部が前記熱交換チューブ33の開口側に向かって傾
斜状に開口させる一方、前記冷房用膨張機構4を側路す
る第1バイパス路15の一端側を前記出入口室36に、
該出入口室36に開口する最下段の熱交換チューブ33
より下方に開口させることが好ましい。
Further, the utilization side heat exchanger 3 has an inlet / outlet chamber 36 which serves as a low pressure liquid chamber during the cooling cycle operation and serves as a high pressure liquid chamber during the heating cycle operation, and the heat exchange tube 33 is opened in the inlet / outlet chamber 36. A refrigerant pipe 91 serving as a low-pressure liquid pipe during the cooling cycle operation is provided in the inlet / outlet chamber 36 so as to project upward with respect to the bottom surface of the inlet / outlet chamber 36, and the protruding tip end faces the opening side of the heat exchange tube 33. While opening in a tilted manner, one end side of the first bypass passage 15 that bypasses the cooling expansion mechanism 4 is provided in the inlet / outlet chamber 36,
The lowermost heat exchange tube 33 opening to the entrance / exit chamber 36
It is preferable to open it further downward.

【0011】[0011]

【作用】冷房サイクル運転時、熱源側熱交換器7で凝縮
した液冷媒は、前記第2バイパス路17及び逆止弁16
を介して暖房用膨張機構6を側路して受液器5に流れ、
該受液器5の液冷媒は冷房用膨張機構4を介して利用側
熱交換器3に流れるのであるが、このとき、前記冷房用
膨張機構4を側路する第1バイパス路15は、前記受液
器5のガス域に接続されているから、前記第1バイパス
路15には高圧ガス冷媒が導入され、この高圧ガス冷媒
の流れが前記第1バイパス路15に介装する逆止弁14
により閉鎖されることになるのであり、従って、この逆
止弁14から高低差圧によりリークするとしても、ガス
冷媒がリークすることになるのである。
In the cooling cycle operation, the liquid refrigerant condensed in the heat source side heat exchanger 7 is used as the second bypass passage 17 and the check valve 16.
Flow through the heating expansion mechanism 6 to the liquid receiver 5 via
The liquid refrigerant of the liquid receiver 5 flows to the utilization side heat exchanger 3 via the cooling expansion mechanism 4, and at this time, the first bypass passage 15 bypassing the cooling expansion mechanism 4 is Since it is connected to the gas region of the liquid receiver 5, high-pressure gas refrigerant is introduced into the first bypass passage 15, and the flow of this high-pressure gas refrigerant is inserted in the first bypass passage 15 to the check valve 14.
Therefore, even if the check valve 14 leaks due to the high and low differential pressure, the gas refrigerant will leak.

【0012】また、暖房サイクル運転時も同様、前記暖
房用膨張機構6を側路する第2バイパス路17には、高
圧ガス冷媒が導入され、この高圧ガス冷媒の流れが前記
第2バイパス路17に介装する逆止弁16により閉鎖さ
れることになるのであって、前記逆止弁16からリーク
があっても、ガス冷媒がリークすることになる。つま
り、前記第1,第2バイパス路15,17は前記受液器
5のガス域に接続されているため、前記受液器5の高圧
液冷媒ではなくガス域に貯溜されたガス冷媒が、前記利
用側熱交換器3又は熱源側熱交換器7側へリークするこ
とになる。従って、能力は多少低下するとしてもリーク
による前記圧縮機1側への液バックが阻止され、この結
果、該圧縮機1側への液バックによる破損事故や湿り運
転による油上がり及び潤滑不良が防止される。
Also during the heating cycle operation, similarly, the high-pressure gas refrigerant is introduced into the second bypass passage 17 that bypasses the heating expansion mechanism 6, and the flow of this high-pressure gas refrigerant is the second bypass passage 17. It is closed by the check valve 16 provided in the valve, and even if there is a leak from the check valve 16, the gas refrigerant will leak. That is, since the first and second bypass passages 15 and 17 are connected to the gas region of the liquid receiver 5, not the high-pressure liquid refrigerant of the liquid receiver 5, but the gas refrigerant stored in the gas region, It leaks to the use side heat exchanger 3 or the heat source side heat exchanger 7. Therefore, even if the capacity is slightly reduced, liquid back to the compressor 1 side due to leakage is prevented, and as a result, damage accidents due to liquid back to the compressor 1 side and oil rise and poor lubrication due to wet operation are prevented. To be done.

【0013】更に、以上の如く行う冷暖房サイクル運転
時においてポンプダウン運転を行う場合、前記逆止弁1
4,16を介して前記受液器5のガス域に貯溜されたガ
ス冷媒が前記利用側熱交換器3又は前記熱源側熱交換器
7側へリークしても、前記受液器5の高圧液冷媒は前記
逆止弁14,16を介してリークすることができないた
め、ポンプダウン運転を確実に行うことができる。
Further, when the pump down operation is performed during the cooling / heating cycle operation performed as described above, the check valve 1 is used.
Even if the gas refrigerant stored in the gas region of the liquid receiver 5 leaks to the use-side heat exchanger 3 or the heat-source-side heat exchanger 7 via 4 and 16, the high pressure of the liquid receiver 5 Since the liquid refrigerant cannot leak through the check valves 14 and 16, the pump down operation can be reliably performed.

【0014】また、前記利用側熱交換器3に、冷房サイ
クル運転時低圧液室となり暖房サイクル運転時高圧液室
となる出入口室36を設け、該出入口室36に熱交換チ
ューブ33を開口させると共に、前記出入口室36に冷
房サイクル運転時低圧液管となる冷媒配管91を、前記
出入口室36の底面に対し上方に突出させ、かつ、突出
先端部を前記熱交換チューブ33の開口側に向かって傾
斜状に開口させる一方、前記冷房用膨張機構4を側路す
る前記第1バイパス路15の一端側を前記出入口室36
に、該出入口室36に開口する最下段の熱交換チューブ
33より下方に開口させるときには、冷房サイクル運転
時に、前記冷媒配管91から前記出入口室36に導入さ
れる低圧液冷媒を前記各熱交換チューブ33に均一に分
配して、熱交換効率を高めることができ、また、暖房サ
イクル運転時には、前記出入口室36から高圧液冷媒の
全量を前記第1バイパス路15に速やかに流出させるこ
とができる。
Further, the use side heat exchanger 3 is provided with an inlet / outlet chamber 36 which serves as a low pressure liquid chamber during a cooling cycle operation and serves as a high pressure liquid chamber during a heating cycle operation, and the heat exchange tube 33 is opened in the inlet / outlet chamber 36. A refrigerant pipe 91, which is a low-pressure liquid pipe during a cooling cycle operation, is projected in the inlet / outlet chamber 36 upward with respect to the bottom surface of the inlet / outlet chamber 36, and a protruding tip portion is directed toward the opening side of the heat exchange tube 33. While opening in an inclined shape, one end side of the first bypass passage 15 that bypasses the cooling expansion mechanism 4 is connected to the inlet / outlet chamber 36.
In addition, when opening below the lowermost heat exchange tube 33 that opens into the inlet / outlet chamber 36, the low-pressure liquid refrigerant introduced from the refrigerant pipe 91 into the inlet / outlet chamber 36 during the cooling cycle operation is transferred to each of the heat exchange tubes. It is possible to evenly distribute the high-pressure liquid refrigerant to the first bypass passage 15 during the heating cycle operation.

【0015】[0015]

【実施例】図1に示したヒートポンプ式冷凍装置は、圧
縮機1に、4路切換弁から成る冷暖房切換機構2と、水
熱交換器から成る利用側熱交換器3、冷房用膨張機構
4、受液器5、暖房用膨張機構6、空気熱交換器から成
る熱源側熱交換器7及びアキュムレータ8をそれぞれ冷
媒配管9で接続することにより、冷媒回路を形成してい
る。また、前記受液器5のガス域と前記アキュムレータ
8との間には、第1開閉弁10を介装させた第1均圧回
路11を接続すると共に、前記受液器5のガス域と、前
記暖房用膨張機構6及び熱源側熱交換器7を結ぶ冷媒配
管中間との間には、第2開閉弁12を介装した第2均圧
回路13を接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the heat pump type refrigerating apparatus shown in FIG. 1, a compressor 1 is provided with a cooling / heating switching mechanism 2 consisting of a four-way switching valve, a utilization side heat exchanger 3 consisting of a water heat exchanger, and a cooling expansion mechanism 4. A refrigerant circuit is formed by connecting the liquid receiver 5, the heating expansion mechanism 6, the heat source side heat exchanger 7 including an air heat exchanger, and the accumulator 8 with a refrigerant pipe 9. Further, a first pressure equalizing circuit 11 having a first opening / closing valve 10 interposed is connected between the gas region of the liquid receiver 5 and the accumulator 8, and the gas region of the liquid receiver 5 is connected to the first pressure equalizing circuit 11. A second pressure equalizing circuit 13 having a second opening / closing valve 12 is connected between the heating expansion mechanism 6 and the refrigerant pipe intermediate connecting the heat source side heat exchanger 7.

【0016】更に、前記冷房用膨張機構4は、弁開度を
電気的に制御する電動弁から成り、制御器43からの出
力で電動弁の開度を調節できるようにしているのであっ
て、前記制御器43は、前記利用側熱交換器3における
冷房サイクル運転時の出口側に介装した温度検出器41
及び圧力検出器42の検出結果に基づき動作するのであ
る。また、前記暖房用膨張機構6も、弁開度を電気的に
制御する電動弁から成り、制御器63からの出力で電動
弁の開度を調節できるようにしているのであって、前記
制御器63は、前記熱源側熱交換器7における暖房サイ
クル運転時の出口側に介装した温度検出器61及び圧力
検出器62の検出結果に基づき動作するのである。
Further, the cooling expansion mechanism 4 is composed of an electric valve for electrically controlling the valve opening, and the opening of the electric valve can be adjusted by the output from the controller 43. The controller 43 is a temperature detector 41 provided on the outlet side of the utilization side heat exchanger 3 during the cooling cycle operation.
And, it operates based on the detection result of the pressure detector 42. Further, the heating expansion mechanism 6 is also composed of a motor-operated valve that electrically controls the valve opening, and the output of the controller 63 allows the opening of the motor-operated valve to be adjusted. 63 operates based on the detection results of the temperature detector 61 and the pressure detector 62 which are provided on the outlet side of the heat source side heat exchanger 7 during the heating cycle operation.

【0017】また、前記利用側熱交換器3はシェルアン
ドチューブ式熱交換器を用い、その胴体には冷温水管
(図示せず)を接続しており、また、前記熱源側熱交換
器7は、ファンコイル熱交換器を用い、その一側にはモ
ータ71を備えたファン72を付設している。更に、前
記アキュムレータ8は、筒状の密閉容器81を備え、該
容器81の内方上部側に短寸の冷媒流入管82と、油戻
し孔83及びガス吸入孔84をもつU字管から成る冷媒
流出管85とを設けている。
A shell-and-tube heat exchanger is used as the utilization side heat exchanger 3, a cold / hot water pipe (not shown) is connected to its body, and the heat source side heat exchanger 7 is A fan coil heat exchanger is used, and a fan 72 equipped with a motor 71 is attached to one side thereof. Further, the accumulator 8 is provided with a cylindrical hermetic container 81, and is composed of a U-shaped pipe having a short refrigerant inflow pipe 82, an oil return hole 83 and a gas suction hole 84 on the upper inner side of the container 81. A refrigerant outflow pipe 85 is provided.

【0018】しかして以上のようなヒートポンプ式冷凍
装置において、暖房サイクル運転時に高圧液冷媒が流れ
る高圧液域と前記受液器5のガス域との間に、前記冷房
用膨張機構4を側路するように、途中に暖房サイクル運
転時の高圧液冷媒の流れを許容する逆止弁14が介装さ
れた第1バイパス路15を設けると共に、冷房サイクル
運転時に高圧液冷媒が流れる高圧液域と前記受液器5の
ガス域との間に、前記暖房用膨張機構6を側路するよう
に、途中に冷房サイクル運転時の高圧液冷媒の流れを許
容する逆止弁16が介装された第2バイパス路17を設
ける。
In the heat pump type refrigerating apparatus as described above, the cooling expansion mechanism 4 is bypassed between the high pressure liquid region in which the high pressure liquid refrigerant flows and the gas region of the liquid receiver 5 during the heating cycle operation. As described above, the first bypass passage 15 in which the check valve 14 that allows the flow of the high-pressure liquid refrigerant during the heating cycle operation is interposed is provided in the middle, and a high-pressure liquid region in which the high-pressure liquid refrigerant flows during the cooling cycle operation is provided. A check valve 16 that allows the flow of the high-pressure liquid refrigerant during the cooling cycle operation is provided in the middle of the space between the gas region of the liquid receiver 5 and the expansion mechanism 6 for heating. A second bypass path 17 is provided.

【0019】具体的には、前記第1バイパス路15の長
さ方向一端を、後で詳述する前記利用側熱交換器3の出
入口室31に、また、前記第2バイパス路17の長さ方
向一端を、前記熱源側熱交換器7における冷房サイクル
運転時の冷媒出口側にそれぞれ接続して、これら第1及
び第2バイパス路15,17の長さ方向他端を前記受液
器5のガス域に接続させる。
Specifically, one end in the length direction of the first bypass passage 15 is provided in the inlet / outlet chamber 31 of the utilization side heat exchanger 3 which will be described in detail later, and the length of the second bypass passage 17 is also provided. One end in the direction is connected to the refrigerant outlet side in the cooling cycle operation of the heat source side heat exchanger 7, and the other lengthwise ends of the first and second bypass passages 15 and 17 are connected to the receiver 5. Connect to gas area.

【0020】次に、以上の構成としたヒートポンプ式冷
凍装置の作用について説明する。先ず、暖房サイクル運
転を行う場合には、図1に点線矢印で示したように、前
記冷暖房切換機構2の切換操作により前記圧縮機1から
吐出される冷媒が、切換機構2、利用側熱交換器3、逆
止弁14を介装した第1バイパス路15、受液器5、暖
房用膨張機構6、熱源側熱交換器7、切換機構2、アキ
ュムレータ8及び圧縮機1の経路で循環するのであっ
て、前記受液器5の高圧液冷媒を前記暖房用膨張機構6
で減圧し、減圧した液冷媒を前記熱源側熱交換器7で蒸
発させ、この蒸発により熱を吸収し、この吸収熱を前記
利用側熱交換器3から凝縮熱として取り出し暖房に利用
される。また、冷房サイクル運転時には、前記冷暖房切
換機構2の切換操作により前記圧縮機1から吐出される
冷媒が、図1に実線矢印で示したように、切換機構2、
熱源側熱交換器7、逆止弁16を介装した第2バイパス
路17、受液器5、冷房用膨張機構4、利用側熱交換器
3、切換機構2、アキュムレータ8及び圧縮機1の経路
で循環するのであって、前記受液器5の高圧液冷媒を前
記冷房用膨張機構4で減圧し、減圧した液冷媒を前記利
用側熱交換器3で蒸発させ、この蒸発熱が冷房に利用さ
れる。
Next, the operation of the heat pump type refrigerating apparatus having the above structure will be described. First, when the heating cycle operation is performed, the refrigerant discharged from the compressor 1 by the switching operation of the cooling / heating switching mechanism 2 is the switching mechanism 2 and the heat exchange on the use side, as shown by the dotted arrow in FIG. It circulates through the path of the device 3, the first bypass passage 15 with the check valve 14 interposed, the liquid receiver 5, the heating expansion mechanism 6, the heat source side heat exchanger 7, the switching mechanism 2, the accumulator 8 and the compressor 1. Therefore, the high pressure liquid refrigerant in the liquid receiver 5 is transferred to the heating expansion mechanism 6
The heat source-side heat exchanger 7 evaporates the depressurized liquid refrigerant, absorbs heat by this evaporation, and the absorbed heat is taken out from the use-side heat exchanger 3 as condensation heat and used for heating. Further, during the cooling cycle operation, the refrigerant discharged from the compressor 1 by the switching operation of the cooling / heating switching mechanism 2 is switched by the switching mechanism 2, as indicated by a solid arrow in FIG.
Of the heat source side heat exchanger 7, the second bypass passage 17 with the check valve 16 interposed, the liquid receiver 5, the cooling expansion mechanism 4, the utilization side heat exchanger 3, the switching mechanism 2, the accumulator 8 and the compressor 1. The high-pressure liquid refrigerant in the liquid receiver 5 is depressurized by the cooling expansion mechanism 4, and the depressurized liquid refrigerant is evaporated by the use side heat exchanger 3, and the heat of evaporation is cooled. Used.

【0021】そして、以上の暖房サイクル運転時に、前
記受液器5から冷媒が前記第2バイパス路17に介装し
た前記逆止弁16を介して前記熱源側熱交換器7側へリ
ークしたり、また、冷房サイクル運転時に、前記受液器
5から冷媒が前記第1バイパス路15に介装した前記逆
止弁14を介して前記利用側熱交換器3側へリークした
りする場合、前記第1,第2バイパス路15,17は前
記受液器5のガス域に接続されているため、前記受液器
5の高圧液冷媒ではなくガス域に貯溜されたガス冷媒
が、前記利用側熱交換器3又は熱源側熱交換器7側へリ
ークすることになる。従って、冷暖房サイクル運転時リ
ークがあっても、能力が多少低下するだけであって前記
圧縮機1側への液バックが阻止され湿り運転も阻止され
る。この結果、前記圧縮機1側への液バックによる圧縮
機1の破損事故を防止することができるし、又湿り運転
も防止でき、例えば圧縮機1内における冷媒のフォーミ
ングをなくして油上がりや潤滑不良の発生を防止するこ
とができる。
During the above heating cycle operation, the refrigerant leaks from the liquid receiver 5 to the heat source side heat exchanger 7 side through the check valve 16 provided in the second bypass passage 17. In the cooling cycle operation, when the refrigerant leaks from the liquid receiver 5 to the utilization side heat exchanger 3 side through the check valve 14 provided in the first bypass passage 15, Since the first and second bypass passages 15 and 17 are connected to the gas region of the liquid receiver 5, not the high-pressure liquid refrigerant of the liquid receiver 5 but the gas refrigerant stored in the gas region is the use side. It will leak to the heat exchanger 3 or the heat source side heat exchanger 7. Therefore, even if there is a leak during the heating / cooling cycle operation, the capacity is only slightly decreased, the liquid back to the compressor 1 side is blocked, and the wet operation is also blocked. As a result, it is possible to prevent the accident of damage to the compressor 1 due to the liquid back to the compressor 1 side, and also to prevent the wet operation. It is possible to prevent the occurrence of defects.

【0022】また、各逆止弁14,16を介して前記受
液器5のガス域に貯溜されたガス冷媒が前記利用側熱交
換器3又は熱源側熱交換器7側へリークするときには、
そのリーク発生を前記圧縮機1側への液バックによる機
械故障ではなく、前記利用側熱交換器3又は熱源側熱交
換器7の能力ダウンで検出することができ、従って、前
記圧縮機1の破損事故が発生してから逆止弁14,16
を修理したり取り替えたりするようなことなく、能力ダ
ウンをもとに保守を行うことができる。
Further, when the gas refrigerant stored in the gas region of the liquid receiver 5 leaks to the utilization side heat exchanger 3 or the heat source side heat exchanger 7 side via the check valves 14 and 16,
The occurrence of the leak can be detected not by a mechanical failure due to liquid back to the compressor 1 side but by a reduction in the capacity of the use side heat exchanger 3 or the heat source side heat exchanger 7, and therefore, the compressor 1 Check valves 14 and 16 after the damage accident
It is possible to perform maintenance based on a reduction in capacity without repairing or replacing.

【0023】更に、前記各逆止弁14,16を介して前
記受液器5のガス域に貯溜されたガス冷媒が前記利用側
熱交換器3又は熱源側熱交換器7側へリークする場合、
高圧液冷媒がリークする場合に比較して前記アキュムレ
ータ8側への液戻り量を少なくでき、該アキュムレータ
8の小形化も可能となる。
Further, when the gas refrigerant stored in the gas region of the liquid receiver 5 leaks to the use side heat exchanger 3 or the heat source side heat exchanger 7 side via the check valves 14 and 16 respectively. ,
The amount of liquid returned to the accumulator 8 side can be reduced as compared with the case where the high-pressure liquid refrigerant leaks, and the accumulator 8 can be downsized.

【0024】また、以上のような冷暖房サイクル運転時
に、ポンプダウン運転を行う場合には、前記冷暖房用膨
張機構4,6を閉鎖し、かつ、前記第1及び第2均圧回
路11,13に介装させた各開閉弁10,12を開放さ
せて、前記受液器5のガス域に貯溜されるガス冷媒を前
記第1,第2均圧回路11,13へと流すことにより行
うのであるが、このとき、前記逆止弁14,16を介し
て前記受液器5のガス域に貯溜されたガス冷媒が前記利
用側熱交換器3又は前記熱源側熱交換器7側へリークし
ても、前記受液器5から高圧液冷媒が前記逆止弁14,
16を介してリークできないため、高圧液冷媒がリーク
する場合に比較してポンプダウン運転に大きく悪影響を
与えることがなく、このポンプダウン運転を確実に行う
ことができる。
When the pump down operation is performed during the cooling / heating cycle operation as described above, the cooling / heating expansion mechanisms 4 and 6 are closed, and the first and second pressure equalizing circuits 11 and 13 are connected. This is done by opening the on-off valves 10 and 12 that have been interposed, and flowing the gas refrigerant stored in the gas region of the liquid receiver 5 to the first and second pressure equalizing circuits 11 and 13. However, at this time, the gas refrigerant stored in the gas region of the liquid receiver 5 leaks to the use side heat exchanger 3 or the heat source side heat exchanger 7 side via the check valves 14 and 16. Also, the high-pressure liquid refrigerant from the liquid receiver 5 is transferred to the check valve 14,
Since the leak cannot occur via 16, the pump down operation can be reliably performed without significantly affecting the pump down operation as compared with the case where the high pressure liquid refrigerant leaks.

【0025】尚、図1に示した実施例では、前記第1バ
イパス路15の長さ方向一端を、前記利用側熱交換器3
の前記出入口室31に接続したが、暖房サイクル運転時
高圧液冷媒が流れる高圧液域となる前記利用側熱交換器
3と前記冷房用膨張機構4との中間部位に接続してもよ
い。
In the embodiment shown in FIG. 1, one end in the lengthwise direction of the first bypass passage 15 is connected to the use side heat exchanger 3
Although it is connected to the inlet / outlet chamber 31 of the above, it may be connected to an intermediate portion between the use side heat exchanger 3 and the cooling expansion mechanism 4 which is a high pressure liquid region in which the high pressure liquid refrigerant flows during the heating cycle operation.

【0026】更に、前記利用側熱交換器3は、図2に示
したように、両側が開放された中空筒部31と、該筒部
31の開放部に取付けられる蓋部32とを備え、これら
筒部31と蓋部32との間に複数の熱交換チューブ33
を支持する管板34を介装させて、該管板34で前記蓋
部32を筒部31に対し気密状に画成すると共に、前記
蓋部32内に仕切板35を設けて、この仕切板35で前
記蓋部32の内部を上下に画成し、その下部側に冷房サ
イクル運転時に低圧ガス室となり、かつ、暖房サイクル
運転時に高圧ガス室となる第1出入口室36を形成する
一方、前記蓋部32の内方上部側に、暖房サイクル運転
時に高圧ガス室となり、かつ、冷房サイクル運転時に低
圧ガス室となる第2出入口室37を形成して、これら各
出入口室36,37に前記各熱交換チューブ33の一端
を開口させている。
Further, as shown in FIG. 2, the utilization side heat exchanger 3 is provided with a hollow cylindrical portion 31 whose both sides are open, and a lid portion 32 attached to the open portion of the cylindrical portion 31, A plurality of heat exchange tubes 33 are provided between the tubular portion 31 and the lid portion 32.
A tube plate 34 for supporting the above is interposed, the tube portion 34 defines the lid portion 32 in an airtight manner with respect to the tubular portion 31, and a partition plate 35 is provided in the lid portion 32 to form a partition plate. A plate 35 vertically defines the inside of the lid portion 32, and forms a first inlet / outlet chamber 36 on the lower side thereof, which serves as a low-pressure gas chamber during a cooling cycle operation and serves as a high-pressure gas chamber during a heating cycle operation. A second inlet / outlet chamber 37, which serves as a high-pressure gas chamber during the heating cycle operation and serves as a low-pressure gas chamber during the cooling cycle operation, is formed on the inner upper side of the lid portion 32, and the inlet / outlet chambers 36, 37 are provided with One end of each heat exchange tube 33 is opened.

【0027】また、前記蓋部32に形成する第1出入口
室36には、前記冷房用膨張機構4から延び冷房サイク
ル運転時に低圧液管となる冷媒配管91と、前記冷房用
膨張機構4を側路し前記逆止弁14が介装された前記第
1バイパス路15とのそれぞれ長さ方向一端側を接続さ
せると共に、前記蓋部32の第2出入口室37には、前
記冷暖房切換機構2側に至り冷房サイクル運転時に低圧
ガス管となる冷媒配管92の長さ方向一端側を接続させ
ている。
The first inlet / outlet chamber 36 formed in the lid 32 is provided with a refrigerant pipe 91 extending from the cooling expansion mechanism 4 and serving as a low pressure liquid pipe during a cooling cycle operation, and the cooling expansion mechanism 4 side. The first bypass passage 15 in which the check valve 14 is interposed is connected to one end side in the length direction, and the second inlet / outlet chamber 37 of the lid portion 32 is provided with the cooling / heating switching mechanism 2 side. Thus, one end side in the length direction of the refrigerant pipe 92 that serves as a low pressure gas pipe during the cooling cycle operation is connected.

【0028】そして、前記第1出入口室36に前記冷媒
配管91と第1バイパス路15とを接続するに際して、
前記冷媒配管91を、前記出入口室36の底壁面に対し
上方側に突出させ、かつ、突出先端部を前記熱交換チュ
ーブ33の開口側に向かって傾斜状に開口させ、また、
前記第1バイパス路15を、前記出入口室36に開口さ
れる最下段の熱交換チューブ33よりも下方位置に開口
させるのである。
When connecting the refrigerant pipe 91 and the first bypass passage 15 to the first inlet / outlet chamber 36,
The refrigerant pipe 91 is projected upward with respect to the bottom wall surface of the inlet / outlet chamber 36, and the protruding tip portion is opened in an inclined shape toward the opening side of the heat exchange tube 33.
The first bypass passage 15 is opened at a position lower than the lowermost heat exchange tube 33 opened in the inlet / outlet chamber 36.

【0029】以上の配管構成とすることにより、冷房サ
イクル運転時には、前記冷媒配管91から前記出入口室
36に導入される低圧液冷媒が、図2で示したように、
該出入口室36に開口される前記各熱交換チューブ33
の上部側から下部側にかけ均一に分配されて、熱交換効
率が高められ、また、暖房サイクル運転時には、前記出
入口室36から高圧液冷媒の全量が前記第1バイパス路
15側に速やかに流出することができる。
With the above piping configuration, the low-pressure liquid refrigerant introduced from the refrigerant piping 91 into the inlet / outlet chamber 36 during the cooling cycle operation is as shown in FIG.
Each heat exchange tube 33 opened to the inlet / outlet chamber 36
Is evenly distributed from the upper side to the lower side, the heat exchange efficiency is enhanced, and during the heating cycle operation, the entire amount of the high-pressure liquid refrigerant quickly flows out to the first bypass passage 15 side from the inlet / outlet chamber 36. be able to.

【0030】[0030]

【発明の効果】以上説明したように、本発明のヒートポ
ンプ式冷凍装置では、一端側が暖房サイクル運転時に高
圧液冷媒が流れる高圧液域に接続され、途中に暖房サイ
クル運転時の高圧液冷媒の流れを許容する逆止弁14を
もち、かつ、冷房用膨張機構4を側路する第1バイパス
路15と、一端側が冷房サイクル運転時に高圧液冷媒が
流れる高圧液域に接続され、途中に冷房サイクル運転時
の高圧液冷媒の流れを許容する逆止弁16をもち、か
つ、暖房用膨張機構6を側路する第2バイパス路17と
の各他端側を、受液器5のガス域に接続させたから、暖
房サイクル運転時に、前記第2バイパス路17に介装し
た前記逆止弁16を介して前記熱源側熱交換器7側へリ
ークしたり、また、冷房サイクル運転時に、前記受液器
5から冷媒が前記第1バイパス路15に介装した前記逆
止弁14を介して前記利用側熱交換器3側へリークした
りする場合、前記第1,第2バイパス路15,17は何
れも前記受液器5のガス域に接続されているため、前記
受液器5の高圧液冷媒ではなくガス域に貯溜されたガス
冷媒が、前記利用側熱交換器3又は熱源側熱交換器7側
へリークすることになる。従って、冷暖房サイクル運転
時たとえリークがあっても圧縮機1側への液バックを阻
止できて、該圧縮機1の破損事故や湿り運転による油上
がり及び潤滑不良を防止することができ、しかも、ポン
プダウン運転も確実に行うことができる。
As described above, in the heat pump type refrigerating apparatus of the present invention, one end side is connected to the high pressure liquid region through which the high pressure liquid refrigerant flows during the heating cycle operation, and the flow of the high pressure liquid refrigerant during the heating cycle operation is midway. And a first bypass passage 15 that has a check valve 14 that allows the high-pressure liquid refrigerant flowing during the cooling cycle operation, and a first bypass passage 15 that bypasses the expansion mechanism 4 for cooling. The check valve 16 that allows the flow of the high-pressure liquid refrigerant during operation is provided on the other end side of the second bypass passage 17 that bypasses the heating expansion mechanism 6 to the gas region of the liquid receiver 5. Since they are connected to each other, during the heating cycle operation, they leak to the heat source side heat exchanger 7 side through the check valve 16 provided in the second bypass passage 17, or during the cooling cycle operation, the received liquid. Refrigerant from the container 5 When leaking to the utilization side heat exchanger 3 side through the check valve 14 provided in the bypass passage 15, both the first and second bypass passages 15 and 17 are provided in the liquid receiver 5. Since it is connected to the gas area, not the high-pressure liquid refrigerant of the receiver 5 but the gas refrigerant stored in the gas area leaks to the use side heat exchanger 3 or the heat source side heat exchanger 7 side. Become. Therefore, during the heating / cooling cycle operation, even if there is a leak, liquid back to the compressor 1 side can be prevented, and it is possible to prevent a damage accident of the compressor 1 and oil rising and lubrication failure due to wet operation, and The pump down operation can be performed reliably.

【0031】また、前記利用側熱交換器3に、冷房サイ
クル運転時低圧液室となり暖房サイクル運転時高圧液室
となる出入口室36を設け、該出入口室36に熱交換チ
ューブ33を開口すると共に、前記出入口室36に冷房
サイクル運転時低圧液管となる冷媒配管91を、前記出
入口室36の底面に対し上方に突出させ、かつ、突出先
端部を前記熱交換チューブ33の開口側に向かって傾斜
状に開口させる一方、前記冷房用膨張機構4を側路する
前記第1バイパス路15の一端側を前記出入口室36
に、該出入口室36に開口する最下段の熱交換チューブ
33よりも下方に開口させることにより、冷房サイクル
運転時に、前記冷媒配管91から前記出入口室36に導
入される低圧液冷媒を前記各熱交換チューブ33に均一
に分配できて、前記利用側熱交換器3の熱交換効率を高
めることができ、また、暖房サイクル運転時には、前記
出入口室36から高圧液冷媒の全量を前記第1バイパス
路15に速やかに流出させることができる。
Further, the utilization side heat exchanger 3 is provided with an inlet / outlet chamber 36 which serves as a low pressure liquid chamber during the cooling cycle operation and serves as a high pressure liquid chamber during the heating cycle operation, and the heat exchange tube 33 is opened in the inlet / outlet chamber 36. A refrigerant pipe 91, which is a low-pressure liquid pipe during a cooling cycle operation, is projected in the inlet / outlet chamber 36 upward with respect to the bottom surface of the inlet / outlet chamber 36, and a protruding tip portion is directed toward the opening side of the heat exchange tube 33. While opening in an inclined shape, one end side of the first bypass passage 15 that bypasses the cooling expansion mechanism 4 is connected to the inlet / outlet chamber 36.
The low-pressure liquid refrigerant introduced from the refrigerant pipe 91 into the inlet / outlet chamber 36 during the cooling cycle operation is opened below the lowermost heat exchange tube 33 opening in the inlet / outlet chamber 36. It can be uniformly distributed to the exchange tubes 33, and the heat exchange efficiency of the use side heat exchanger 3 can be improved. Further, during the heating cycle operation, the entire amount of the high pressure liquid refrigerant is discharged from the inlet / outlet chamber 36 to the first bypass passage. It can be quickly drained to 15.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるヒートポンプ式冷凍装置の冷媒
回路図である。
FIG. 1 is a refrigerant circuit diagram of a heat pump type refrigerating apparatus according to the present invention.

【図2】利用側熱交換器を拡大して示す一部省略断面図
である。
FIG. 2 is a partially omitted cross-sectional view showing an enlarged use side heat exchanger.

【図3】従来例を示す冷媒回路図である。FIG. 3 is a refrigerant circuit diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 冷暖房切換機構 3 利用側熱交換器 33 熱交換チューブ 36 出入口室 4 冷房用膨張機構 5 受液器 6 暖房用膨張機構 7 熱源側熱交換器 14 逆止弁 15 第1バイパス路 16 逆止弁 17 第2バイパス路 91 冷媒配管 DESCRIPTION OF SYMBOLS 1 Compressor 2 Air conditioning switching mechanism 3 Utilization side heat exchanger 33 Heat exchange tube 36 Entrance / exit chamber 4 Cooling expansion mechanism 5 Liquid receiver 6 Heating expansion mechanism 7 Heat source side heat exchanger 14 Check valve 15 First bypass passage 16 Check valve 17 Second bypass passage 91 Refrigerant piping

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機1、冷暖房切換機構2、利用側熱
交換器3、受液器5、冷房用膨張機構4、暖房用膨張機
構6及び熱源側熱交換器7を備え、冷暖房サイクル運転
を可能としたヒートポンプ式冷凍装置において、一端側
が暖房サイクル運転時高圧液冷媒が流れる高圧液域に接
続され、途中に暖房サイクル運転時の高圧液冷媒の流れ
を許容する逆止弁14をもち、かつ、前記冷房用膨張機
構4を側路する第1バイパス路15と、一端側が冷房サ
イクル運転時高圧液冷媒が流れる高圧液域に接続され、
途中に冷房サイクル運転時の高圧液冷媒の流れを許容す
る逆止弁16をもち、かつ、前記暖房用膨張機構6を側
路する第2バイパス路17との各他端側を、前記受液器
5のガス域に接続していることを特徴とするヒートポン
プ式冷凍装置。
1. A cooling / heating cycle operation, comprising a compressor 1, a cooling / heating switching mechanism 2, a use side heat exchanger 3, a liquid receiver 5, a cooling expansion mechanism 4, a heating expansion mechanism 6 and a heat source side heat exchanger 7. In the heat pump type refrigerating device capable of, one end side is connected to a high-pressure liquid region in which the high-pressure liquid refrigerant flows during the heating cycle operation, and has a check valve 14 that allows the flow of the high-pressure liquid refrigerant during the heating cycle operation, Further, the first bypass passage 15 for bypassing the cooling expansion mechanism 4 and one end side thereof are connected to the high pressure liquid region in which the high pressure liquid refrigerant flows during the cooling cycle operation,
The check valve 16 that allows the flow of the high-pressure liquid refrigerant during the cooling cycle operation is provided on the way, and each of the other end sides of the second bypass passage 17 that bypasses the heating expansion mechanism 6 is connected to the liquid receiving portion. A heat pump type refrigerating apparatus, which is connected to the gas region of the container 5.
【請求項2】 利用側熱交換器3は、冷房サイクル運転
時低圧液室となり暖房サイクル運転時高圧液室となる出
入口室36をもち、該出入口室36に熱交換チューブ3
3を開口させると共に、前記出入口室36に冷房サイク
ル運転時低圧液管となる冷媒配管91を、前記出入口室
36の底面に対し上方に突出状で、かつ、突出先端部が
前記熱交換チューブ33の開口側に向かって傾斜状に開
口させる一方、冷房用膨張機構4を側路する第1バイパ
ス路15の一端側を前記出入口室36に、該出入口室3
6に開口する最下段の熱交換チューブ33より下方に開
口させていることを特徴とする請求項1記載のヒートポ
ンプ式冷凍装置。
2. The heat exchanger 3 on the use side has an inlet / outlet chamber 36 which serves as a low pressure liquid chamber during a cooling cycle operation and serves as a high pressure liquid chamber during a heating cycle operation, and the heat exchange tube 3 is provided in the inlet / outlet chamber 36.
3 is opened, and a refrigerant pipe 91 that serves as a low-pressure liquid pipe during the cooling cycle operation is provided in the inlet / outlet chamber 36 so as to project upward with respect to the bottom surface of the inlet / outlet chamber 36, and the protruding tip portion is the heat exchange tube 33. Of the first bypass passage 15 which bypasses the expansion mechanism 4 for cooling, is provided in the inlet / outlet chamber 36, and the inlet / outlet chamber 3 is opened.
The heat pump type refrigerating apparatus according to claim 1, wherein the heat exchange tube 33 is opened below the lowermost heat exchange tube 33 that opens at 6.
JP30163691A 1991-11-18 1991-11-18 Heat pump type refrigerating plant Pending JPH05141801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30163691A JPH05141801A (en) 1991-11-18 1991-11-18 Heat pump type refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30163691A JPH05141801A (en) 1991-11-18 1991-11-18 Heat pump type refrigerating plant

Publications (1)

Publication Number Publication Date
JPH05141801A true JPH05141801A (en) 1993-06-08

Family

ID=17899330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30163691A Pending JPH05141801A (en) 1991-11-18 1991-11-18 Heat pump type refrigerating plant

Country Status (1)

Country Link
JP (1) JPH05141801A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112628115A (en) * 2020-12-31 2021-04-09 中盐华能储能科技有限公司 Multi-section series compressor system capable of emergently stopping under pipe explosion working condition and stopping method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195712A (en) * 1975-02-05 1976-08-21
JPS51111177A (en) * 1975-03-20 1976-10-01 Tokyo Electric Co Ltd Absorbing device
JPS5480687A (en) * 1977-12-09 1979-06-27 Toyo Electric Mfg Co Ltd Semiconductor controlled rectifier
JPS62125264A (en) * 1985-11-26 1987-06-06 株式会社デンソー Refrigeration cycle device
JPS62210362A (en) * 1986-03-11 1987-09-16 株式会社デンソー Heat pump type air conditioner for car
JPS63306364A (en) * 1987-06-05 1988-12-14 株式会社デンソー Air-conditioning changeover type air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195712A (en) * 1975-02-05 1976-08-21
JPS51111177A (en) * 1975-03-20 1976-10-01 Tokyo Electric Co Ltd Absorbing device
JPS5480687A (en) * 1977-12-09 1979-06-27 Toyo Electric Mfg Co Ltd Semiconductor controlled rectifier
JPS62125264A (en) * 1985-11-26 1987-06-06 株式会社デンソー Refrigeration cycle device
JPS62210362A (en) * 1986-03-11 1987-09-16 株式会社デンソー Heat pump type air conditioner for car
JPS63306364A (en) * 1987-06-05 1988-12-14 株式会社デンソー Air-conditioning changeover type air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112628115A (en) * 2020-12-31 2021-04-09 中盐华能储能科技有限公司 Multi-section series compressor system capable of emergently stopping under pipe explosion working condition and stopping method
CN112628115B (en) * 2020-12-31 2023-02-24 中盐华能储能科技有限公司 Multi-section series compressor system capable of emergently stopping under pipe explosion working condition and stopping method

Similar Documents

Publication Publication Date Title
CN108139120B (en) Air conditioner
JP2825432B2 (en) Cooling and heating air conditioner
KR19990064122A (en) Air conditioner
JP2007503565A (en) Defrosting method for heat pump hot water system
KR101737365B1 (en) Air conditioner
US4516408A (en) Refrigeration system for refrigerant heating type air conditioning apparatus
JP2017161182A (en) Heat pump device
JP6057871B2 (en) Heat pump system and heat pump type water heater
US20160252290A1 (en) Heat-source-side unit and air-conditioning apparatus
JP6267952B2 (en) Refrigeration cycle equipment
JP4084915B2 (en) Refrigeration system
JPH05141801A (en) Heat pump type refrigerating plant
JP6886701B2 (en) Dehumidifying blower
KR100666057B1 (en) A system for warm or cool water-production of heat-pump type
JP2021124235A (en) Refrigeration cycle device
JP4012892B2 (en) Air conditioner
JP3879301B2 (en) Refrigeration cycle equipment
JP2674376B2 (en) Refrigeration equipment
JPH10259959A (en) Heating device using refrigeration cycle
JPH03164661A (en) Air conditioner
KR0177709B1 (en) Cooling apparatus for a refrigerator
US20240027077A1 (en) Hybrid multi-air conditioning system and method for controlling a hybrid multi-air conditioning system
JPH10141798A (en) Heat pump apparatus
JPH0331662A (en) Space cooler/heater
JP2737543B2 (en) Heat pump water heater