JPH05139895A - Production of oxide ferroelectric thin film - Google Patents

Production of oxide ferroelectric thin film

Info

Publication number
JPH05139895A
JPH05139895A JP3305126A JP30512691A JPH05139895A JP H05139895 A JPH05139895 A JP H05139895A JP 3305126 A JP3305126 A JP 3305126A JP 30512691 A JP30512691 A JP 30512691A JP H05139895 A JPH05139895 A JP H05139895A
Authority
JP
Japan
Prior art keywords
thin film
buffer layer
oxide
oxide ferroelectric
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3305126A
Other languages
Japanese (ja)
Inventor
Shunji Watanabe
俊二 渡辺
Akira Tanaka
彰 田中
Tetsuo Hattori
徹夫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3305126A priority Critical patent/JPH05139895A/en
Publication of JPH05139895A publication Critical patent/JPH05139895A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To form a good oxide ferroelectric thin film by forming a magnesium oxide thin film as a buffer layer on a silicon single crystal substrate and subsequently growing an oxide ferroelectric thin film on the surface of the buffer layer. CONSTITUTION:A magnesium oxide thin film as a buffer layer is epitaxially grown on the surface (100) of a silicon single crystal substrate, and a Perovskite type lead composite oxide thin film is further epitaxially grown on the buffer layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化物強誘電薄膜の
製造方法に関するものである。さらに詳しくは、この発
明は、光導波路素子、圧電素子、電気光学素子、赤外線
検出素子等に用いられる酸化物強誘電薄膜の製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide ferroelectric thin film. More specifically, the present invention relates to a method for manufacturing an oxide ferroelectric thin film used for an optical waveguide element, a piezoelectric element, an electro-optical element, an infrared detecting element, or the like.

【0002】[0002]

【従来の技術】エレクトロニクス、オプトエレクトロニ
クス技術の急速な発展にともなって、これら技術の基盤
としての電子材料の機能高度化への要請が強まってい
る。このような状況において各種の材料の微細結晶構
造、精密組織制御等の検討が精力的に進められており、
酸化物強誘電材料についても高度機能化のための工夫が
なされてきている。
2. Description of the Related Art With the rapid development of electronics and optoelectronics, there is an increasing demand for functional enhancement of electronic materials as the basis of these technologies. Under such circumstances, studies on fine crystal structures of various materials, precise structure control, etc. are being actively pursued.
The oxide ferroelectric materials are also being devised for higher functionality.

【0003】このような検討にとって、酸化物強誘電材
料のエレクトロニクス分野への応用のためにその薄膜化
が重要な課題になっている。特に、シリコン単結晶基板
上にこの酸化物強誘電薄膜をエピタキシャル成長させる
ことが肝要である。しかしながら、これまでは、酸化物
強誘電材料をシリコン単結晶基板表面上に直接形成しよ
うとすると酸化物強誘電材料内にシリコンが拡散した
り、酸化物強誘電材料の構成原子がシリコン中に拡散す
るなどの不都合が生じ、良質の酸化物強誘電薄膜を得る
ことができなかった。そこで、白金等の金属材料や、熱
処理によって生成することのできる二酸化珪素膜を原子
拡散の障壁としてシリコン単結晶表面上に形成すること
が試みられているが、いずれの場合にも障壁としての機
能が十分でなく、良質の酸化物強誘電薄膜を得ることは
できない。さらにエピタキシャル成長という点でもこれ
らの緩衝層は最適な材料と言いがたいのが実情である。
For such studies, thinning the oxide ferroelectric material is an important subject for application to the electronics field. In particular, it is important to epitaxially grow this oxide ferroelectric thin film on a silicon single crystal substrate. However, until now, when an oxide ferroelectric material was directly formed on the surface of a silicon single crystal substrate, silicon was diffused into the oxide ferroelectric material, or constituent atoms of the oxide ferroelectric material were diffused into the silicon. However, it was impossible to obtain a good quality oxide ferroelectric thin film. Therefore, it has been attempted to form a metal material such as platinum or a silicon dioxide film that can be generated by heat treatment on the surface of a silicon single crystal as a barrier for atomic diffusion. In any case, it functions as a barrier. Is not sufficient, and a good quality oxide ferroelectric thin film cannot be obtained. Further, it is hard to say that these buffer layers are optimum materials in terms of epitaxial growth.

【0004】[0004]

【発明が解決しようとする課題】以上の通り、従来の技
術においては、シリコン単結晶基板上への良質な酸化物
強誘電薄膜の形成は極めて困難であり、その原因とし
て、エピタキシャル成長用緩衝層の原子拡散抑制の能力
が実用的レベルにないという問題があった。そこでこの
発明はこのような従来技術の欠点を解消し、酸化物強誘
電薄膜をシリコン単結晶基板上に形成するに際し、優れ
た原子拡散抑制の能力とともに、酸化物強誘電材料をエ
ピタキシャル成長させるのに適した格子定数を持つ緩衝
層を介在させることにより、良質な酸化物強誘電薄膜の
製造を可能とする新しい方法を提供することを目的とし
ている。
As described above, according to the prior art, it is extremely difficult to form a good quality oxide ferroelectric thin film on a silicon single crystal substrate. The cause is that the epitaxial growth buffer layer is formed. There was a problem that the ability to suppress atomic diffusion was not at a practical level. Therefore, the present invention solves the above-mentioned drawbacks of the prior art, and when forming an oxide ferroelectric thin film on a silicon single crystal substrate, it is possible to epitaxially grow an oxide ferroelectric material with excellent ability to suppress atomic diffusion. It is an object of the present invention to provide a new method that enables the production of a good oxide ferroelectric thin film by interposing a buffer layer having a suitable lattice constant.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、シリコン単結晶基板上に緩衝層
として酸化マグネシウム薄膜を形成後、酸化物強誘電薄
膜を緩衝層表面上に成長させることを特徴とする酸化物
強誘電薄膜の製造方法を提供する。すなわち、この発明
は、酸化マグネシウムがシリコンおよび酸化物強誘電材
料の構成原子との反応性が著しく低いこと、また格子定
数が酸化物強誘電材料の格子定数に近いことに着目し、
これを酸化物強誘電薄膜の成膜のための緩衝層としてい
る。またこの酸化マグネシウム薄膜をエピタキシャル成
長させるために、これをシリコン単結晶(100)面上
に形成することも態様としている。
In order to solve the above problems, the present invention forms a magnesium oxide thin film as a buffer layer on a silicon single crystal substrate and then grows an oxide ferroelectric thin film on the surface of the buffer layer. There is provided a method for manufacturing an oxide ferroelectric thin film, which comprises: That is, the present invention focuses on that the reactivity of magnesium oxide with silicon and the constituent atoms of the oxide ferroelectric material is extremely low, and that the lattice constant is close to the lattice constant of the oxide ferroelectric material,
This serves as a buffer layer for forming the oxide ferroelectric thin film. Further, in order to epitaxially grow the magnesium oxide thin film, it is also formed on the silicon single crystal (100) plane.

【0006】[0006]

【作用】酸化物強誘電材料を直接シリコン単結晶基板、
あるいは表面が酸化されたシリコン単結晶基板、もしく
は白金等の金属薄膜を形成したシリコン単結晶基板上に
形成すると酸化物強誘電材料の構成原子である鉛等が緩
衝層中を拡散してシリコン基板まで達してしまうことか
多い。この場合には酸化物強誘電材料の組成が変化し強
誘電性のないパイロクロア結晶相が生成する。これに対
して、酸化マグネシウム薄膜を酸化物強誘電薄膜とシリ
コン単結晶基板の緩衝材として使用する場合には拡散に
よる酸化物強誘電材料の組成変化は起こらず、適切な処
理温度により強誘電性を持つペロブスカイト結晶相が生
成する。形成された酸化物薄膜がほぼ100%ペロブス
カイト結晶構造を持つことにより強誘電材料としての特
性は十分に引き出される。
[Function] Oxide ferroelectric material directly on silicon single crystal substrate,
Alternatively, when it is formed on a silicon single crystal substrate whose surface is oxidized or a silicon single crystal substrate on which a metal thin film such as platinum is formed, lead, which is a constituent atom of the oxide ferroelectric material, diffuses in the buffer layer to form a silicon substrate. It often happens that In this case, the composition of the oxide ferroelectric material changes and a pyrochlore crystal phase having no ferroelectricity is generated. On the other hand, when the magnesium oxide thin film is used as a buffer material for the oxide ferroelectric thin film and the silicon single crystal substrate, the composition change of the oxide ferroelectric material does not occur due to diffusion, and the ferroelectric property is maintained at an appropriate processing temperature. A perovskite crystal phase with is generated. Since the formed oxide thin film has a perovskite crystal structure of almost 100%, the characteristics as a ferroelectric material can be sufficiently obtained.

【0007】また、酸化マグネシウムが4.21Åの格子定
数を持つため、シリコン単結晶(格子定数/2=3.84
Å)(100)面上に9%の格子不整合で酸化マグネシ
ウム薄膜をエピタキシャル成長させることができる。さ
らに、酸化物強誘電材料の多くが4Å程度の格子定数を
持つことから、シリコン単結晶(面方位(100)面)
上に形成した酸化マグネシウムエピタキシャル薄膜に5
%程度の格子不整合で多くの酸化物強誘電材料がエピタ
キシャル成長することが可能となる。
Further, since magnesium oxide has a lattice constant of 4.21Å, silicon single crystal (lattice constant / 2 = 3.84)
Å) A magnesium oxide thin film can be epitaxially grown on the (100) plane with a lattice mismatch of 9%. Furthermore, since many oxide ferroelectric materials have a lattice constant of about 4Å, silicon single crystal (plane orientation (100) plane)
5 on the magnesium oxide epitaxial thin film formed above
With a lattice mismatch of about%, many oxide ferroelectric materials can be epitaxially grown.

【0008】もちろん、この発明においてシリコン単結
晶基板上に緩衝層である酸化マグネシウムを成膜する方
法としては各種のものが採用でき、たとえばスパッタ
法、真空蒸着法、MO−CVD法、レーザーアブレーシ
ョン法、ゾルゲル法等のいかなる方法でもよく、緩衝層
上に形成する強誘電薄膜の成膜方法もスパッタ法、真空
蒸着法、MO−CVD法、レーザーアブレーション法、
ゾルゲル法等の任意の方法を採用することができる。緩
衝層としての酸化マグネシウムは、任意の厚さとするこ
とができるが、一般的には、0.05〜0.5 μm程度とする
ことができる。
Of course, in the present invention, various methods can be adopted as a method for forming a magnesium oxide film as a buffer layer on a silicon single crystal substrate, for example, a sputtering method, a vacuum evaporation method, an MO-CVD method, a laser ablation method. , A sol-gel method, etc., and a method of forming a ferroelectric thin film formed on a buffer layer is also a sputtering method, a vacuum deposition method, a MO-CVD method, a laser ablation method,
Any method such as a sol-gel method can be adopted. Magnesium oxide as the buffer layer may have an arbitrary thickness, but generally it may be about 0.05 to 0.5 μm.

【0009】この緩衝層の上には、PZT,PLZT,
ニオブ酸鉛、チタン酸バリウム等の強誘電薄膜を、0.2
〜5.0 μm程度のエピタキシャル膜を形成することがで
きる。もちろん、これらは特に限定されたものではな
い。以下、実施例を示し、さらに詳しくこの発明の製造
法について説明する。
On the buffer layer, PZT, PLZT,
Ferroelectric thin films such as lead niobate and barium titanate are
An epitaxial film of about 5.0 μm can be formed. Of course, these are not particularly limited. Examples will be shown below to describe the production method of the present invention in more detail.

【0010】[0010]

【実施例】実施例1 真空槽中において酸素ガス圧力1×10-4Torr下におい
て、酸化マグネシウム単結晶をターゲットとするスパッ
タ法により、シリコン単結晶基板上に基板温度700℃
で、酸化マグネシウム緩衝層を厚さ0.1 μmエピタキシ
ャル成長させた。その上に、同様に酸素ガス圧力1×1
-4Torr下において、PZT焼結体をターゲットとする
スパッタ法により酸化マグネシウム緩衝層上にエピタキ
シャル成長させた。この方法を用いて0.5 μm,1.0 μ
m,2.0 μmの厚さのPZTエピタキシャル膜を得た。
x線解析法により得られた薄膜がc軸配向していること
を確認した。実施例2 酸素ガス圧力1×10-4Torr下において、基板温度65
0℃にて実施例1と同様にしてシリコン単結晶基板上に
酸化マグネシウム緩衝層を厚さ0.2 μmにエピタキシャ
ル成長させた。
Example 1 A substrate temperature of 700 ° C. was formed on a silicon single crystal substrate by a sputtering method using a magnesium oxide single crystal as a target in a vacuum chamber under an oxygen gas pressure of 1 × 10 −4 Torr.
Then, a magnesium oxide buffer layer was epitaxially grown to a thickness of 0.1 μm. On top of that, similarly, oxygen gas pressure of 1 × 1
Epitaxial growth was performed on the magnesium oxide buffer layer by a sputtering method using a PZT sintered body as a target under 0 −4 Torr. 0.5 μm, 1.0 μ using this method
A PZT epitaxial film having a thickness of 2.0 μm was obtained.
It was confirmed that the thin film obtained by the x-ray analysis method was c-axis oriented. Example 2 Under an oxygen gas pressure of 1 × 10 −4 Torr, a substrate temperature of 65
A magnesium oxide buffer layer was epitaxially grown to a thickness of 0.2 μm on a silicon single crystal substrate at 0 ° C. in the same manner as in Example 1.

【0011】その上に、実施例1と同様にしてPZTエ
ピタキシャル成長膜を成膜した。x線回析法により、得
られた薄膜がc軸配向していることを確認した。実施例3 真空蒸着法により、シリコン単結晶基板上に酸化マグネ
シウム緩衝層を厚さ0.15μmエピタキシャル成長させ
た。その上に、酸素ガス圧力1×10-4Torr下において
PLZTエピタキシャル膜を成膜した。
A PZT epitaxial growth film was formed thereon in the same manner as in Example 1. It was confirmed by x-ray diffraction method that the obtained thin film was c-axis oriented. Example 3 A magnesium oxide buffer layer was epitaxially grown to a thickness of 0.15 μm on a silicon single crystal substrate by a vacuum evaporation method. A PLZT epitaxial film was formed thereon under an oxygen gas pressure of 1 × 10 −4 Torr.

【0012】実施例1および2と同様にc軸配向してい
ることを確認した。
It was confirmed that they were c-axis oriented as in Examples 1 and 2.

【0013】[0013]

【発明の効果】以上詳しく説明した通り、この発明によ
り、従来実現することのできなかった良質の酸化物強誘
電薄膜をシリコン単結晶基板上に製造することができ
る。シリコンと酸化物強誘電材料との相互反応を抑制
し、かつ、酸化物強誘電薄膜をエピタキシャル成長させ
ることができる。
As described in detail above, according to the present invention, it is possible to manufacture a high-quality oxide ferroelectric thin film, which could not be realized conventionally, on a silicon single crystal substrate. It is possible to suppress the interaction between silicon and the oxide ferroelectric material and to epitaxially grow the oxide ferroelectric thin film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 3/12 301 9059−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01B 3/12 301 9059-5G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン単結晶基板上に緩衝層として酸
化マグネシウム薄膜を形成後、酸化物強誘電薄膜を緩衝
層表面上に成長させることを特徴とする酸化物強誘電薄
膜の製造方法。
1. A method of manufacturing an oxide ferroelectric thin film, which comprises forming a magnesium oxide thin film as a buffer layer on a silicon single crystal substrate and then growing the oxide ferroelectric thin film on the surface of the buffer layer.
【請求項2】 シリコン単結晶基板の(100)面上に
緩衝層として酸化マグネシウム薄膜をエピタキシャル成
長させた後、ペロブスカイト型鉛系複合酸化物薄膜をそ
の緩衝層表面上にエピタキシャル成長させることを特徴
とする請求項1の酸化物強誘電薄膜の製造方法。
2. A magnesium oxide thin film as a buffer layer is epitaxially grown on the (100) plane of a silicon single crystal substrate, and then a perovskite-type lead-based complex oxide thin film is epitaxially grown on the surface of the buffer layer. A method of manufacturing an oxide ferroelectric thin film according to claim 1.
【請求項3】 請求項1または2の方法で製造してなる
酸化物強誘電薄膜。
3. An oxide ferroelectric thin film produced by the method according to claim 1.
JP3305126A 1991-11-20 1991-11-20 Production of oxide ferroelectric thin film Withdrawn JPH05139895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3305126A JPH05139895A (en) 1991-11-20 1991-11-20 Production of oxide ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3305126A JPH05139895A (en) 1991-11-20 1991-11-20 Production of oxide ferroelectric thin film

Publications (1)

Publication Number Publication Date
JPH05139895A true JPH05139895A (en) 1993-06-08

Family

ID=17941410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3305126A Withdrawn JPH05139895A (en) 1991-11-20 1991-11-20 Production of oxide ferroelectric thin film

Country Status (1)

Country Link
JP (1) JPH05139895A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088190A1 (en) * 2005-02-21 2006-08-24 Tateho Chemical Industries Co., Ltd. Magnesium oxide single crystal vapor deposition material and process for producing the same
JP2008516459A (en) * 2004-10-13 2008-05-15 コミツサリア タ レネルジー アトミーク MgO-based coating on electrically insulating semiconductor substrate and method for manufacturing the same
CN115959905A (en) * 2022-12-07 2023-04-14 南京航空航天大学 Lead zirconate titanate and magnesium oxide vertical self-assembly nano composite dielectric energy storage film and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516459A (en) * 2004-10-13 2008-05-15 コミツサリア タ レネルジー アトミーク MgO-based coating on electrically insulating semiconductor substrate and method for manufacturing the same
WO2006088190A1 (en) * 2005-02-21 2006-08-24 Tateho Chemical Industries Co., Ltd. Magnesium oxide single crystal vapor deposition material and process for producing the same
CN115959905A (en) * 2022-12-07 2023-04-14 南京航空航天大学 Lead zirconate titanate and magnesium oxide vertical self-assembly nano composite dielectric energy storage film and preparation method thereof
CN115959905B (en) * 2022-12-07 2023-08-18 南京航空航天大学 Lead zirconate titanate and magnesium oxide vertical self-assembled nano composite dielectric energy storage film and preparation method thereof

Similar Documents

Publication Publication Date Title
Tani et al. Lead Oxide Coatings on Sol–Gel‐Derived Lead Lanthanum Zirconium Titanate Thin Layers for Enhanced Crystallization into the Perovskite Structure
JP3133922B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
US5811181A (en) Ferroelectric thin film, ferroelectric thin film covering substrate and manufacturing method of ferroelectric thin film
WO2009157189A1 (en) Piezoelectric element and method for manufacturing the same
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
JPH07202295A (en) Ferrodielectric crystalline thin film coated substrate, its manufacture and ferrodielectric thin film device using the substrate
US20020006733A1 (en) Multilayer thin film and its fabrication process as well as electron device
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
JP4122430B2 (en) Ferroelectric film
JPH07330426A (en) Composite material containing preovskite,its preparation, electronic part and module
JPH05139895A (en) Production of oxide ferroelectric thin film
JP4399059B2 (en) Thin film structure
Klee et al. Pb (ZxTi1-x) O3 films produced by a modified sol-gel technique: Thin film growth and electrical properties
JPH0451407A (en) Manufacture of ferroelectric thin film
JPH04133369A (en) Dielectric thin-film, thin-film device and manufacture thereof
JPH09260516A (en) Substrate covered with ferroelectric thin film and capacitor structure device using the same
JPH02258700A (en) Ferroelectric thin film and production thereof
JPS6355198A (en) Substrate for dielectric thin film device
JPH05139892A (en) Production of oxide ferroelectric thin film
JPH0648895A (en) Production of oxide ferroelectric thin film and oxide ferroelectric material
US20060042541A1 (en) Method for preparation of ferroelectric single crystal film structure using deposition method
Lakeman et al. Crystallization behavior and improved properties for sol-gel derived PZT and PLZT thin layers processed with a lead oxide cover coating
JPH07286897A (en) Pyroelectric type infrared ray element and its manufacturing method
JPH088403A (en) Substrate covered with ferroelectric crystal thin film ferroelectric thin film element including the same, and method of manufacturing the ferroelectric thin film element
JP2003023139A (en) Single c-axis pgo thin film electrode with superior smooth surface and uniformity and its forming method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204