JPH05136444A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPH05136444A
JPH05136444A JP3300518A JP30051891A JPH05136444A JP H05136444 A JPH05136444 A JP H05136444A JP 3300518 A JP3300518 A JP 3300518A JP 30051891 A JP30051891 A JP 30051891A JP H05136444 A JPH05136444 A JP H05136444A
Authority
JP
Japan
Prior art keywords
solar cell
glass
silicon substrate
pattern
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3300518A
Other languages
Japanese (ja)
Other versions
JP3007734B2 (en
Inventor
Masato Asai
正人 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3300518A priority Critical patent/JP3007734B2/en
Publication of JPH05136444A publication Critical patent/JPH05136444A/en
Application granted granted Critical
Publication of JP3007734B2 publication Critical patent/JP3007734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Abstract

PURPOSE:To provide a solar cell of improved efficiency by using a simple process of making irregularities on its surface irrespective of whether its substrate is singlecrystal or polycrystalline. CONSTITUTION:Glass paste 2 is applied to form a pattern on a silicon substrate 1 and baked to obtain a glass layer. The glass layer is immersed in an alkaline solution to form irregularities on its surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池の変換効率を
改善するため、太陽電池表面での光の反射による損失を
軽減させる手段の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in means for reducing the loss due to the reflection of light on the surface of a solar cell in order to improve the conversion efficiency of the solar cell.

【0002】[0002]

【従来の技術】太陽電池の変換効率を改善するため、基
板の表面に多数の凹凸を形成して表面積を増加させ、ま
た一旦表面で反射した光を再入射させることにより、太
陽電池の電流値を改善することが行なわれている。これ
には、以下のような方法がある。
2. Description of the Related Art In order to improve the conversion efficiency of a solar cell, a large number of irregularities are formed on the surface of a substrate to increase the surface area, and the light once reflected on the surface is re-incident, so that the current value of the solar cell is increased. Is being improved. There are the following methods for this.

【0003】テクスチャー処理といわれる手法は、(1
00)面のウエハを、イソプロピールアルコールを含有
する数%の水酸化ナトリウム溶液等に、液温80〜90
℃において数十分浸漬することにより、表面に微細な多
数のピラミッド状の突起を形成する技術である。
The technique called texture processing is (1
The wafer of (00) surface is immersed in a solution of isopropyl alcohol containing several percent of sodium hydroxide at a liquid temperature of 80 to 90.
This is a technique of forming a large number of fine pyramid-shaped projections on the surface by immersing the surface at ℃ for several tens of minutes.

【0004】レーザを表面に照射し部分的にシリコンを
溶かしたり、縞状の溝を形成する方法や、ダイシングソ
ーで一本一本溝を形成していく方法もある。
There is also a method of irradiating the surface with a laser to partially melt silicon, forming a striped groove, or a method of forming each groove one by one with a dicing saw.

【0005】フォトレジストを用いてマスキングを行な
い、溝形成を行なうことも可能である。
It is also possible to form a groove by masking with a photoresist.

【0006】[0006]

【発明が解決しようとする課題】前述の水酸化ナトリウ
ム溶液等の化学処理による方法では、単結晶シリコンウ
エハに対しては有効であるが、多結晶シリコンウエハに
対しては効果的な凹凸が形成されない。これは多結晶シ
リコンは、いろいろな結晶面を持つ結晶粒の固りであ
り、結晶面がまちまちでありテクスチャー処理をして
も、十分に光の反射による損失を軽減することはできな
い。簡単のために、多結晶シリコンウエハに含まれる
(111)面を持つ結晶粒について考えた場合、テクス
チャー処理をしても表面は凹凸にはならない。そのた
め、この部分はテクスチャー処理をしていない太陽電池
と同様に光の反射による損失が発生し、太陽電池の効率
は改善されない。
The above-mentioned method of chemical treatment with sodium hydroxide solution is effective for a single crystal silicon wafer, but is effective for a polycrystalline silicon wafer to form unevenness. Not done. This is because polycrystalline silicon is a solid of crystal grains having various crystal planes, and the crystal planes are different, and even if texture treatment is performed, the loss due to the reflection of light cannot be sufficiently reduced. For simplification, when considering a crystal grain having a (111) plane included in a polycrystalline silicon wafer, the surface will not be uneven even if the texture treatment is performed. Therefore, in this portion, the loss due to the reflection of light occurs similarly to the solar cell that has not been textured, and the efficiency of the solar cell cannot be improved.

【0007】レーザ照射やダイシングソーで溝を形成し
ていく方法は、装置が大がかりとなり、設備投資額も莫
大なものとなる。また、ウエハ1枚当りの処理時間はか
なり多くなるため、大量生産にはむいていない。
The method of forming a groove by laser irradiation or a dicing saw requires a large scale of equipment and enormous capital investment. Moreover, since the processing time per wafer is considerably long, it is not suitable for mass production.

【0008】フォトレジストを用いて溝形成を行なう方
法は、フォトレジストが長時間高温のアルカリ溶液や酸
に耐えられないという欠点の他、材料費、工数が多くな
るという欠点もある。
The method of forming a groove using a photoresist has the drawback that the photoresist cannot withstand a high temperature alkaline solution or acid for a long time, and that the material cost and the number of steps are increased.

【0009】[0009]

【課題を解決するための手段】本発明においては、半導
体ウエハの受光面となる表面にガラスペーストのパター
ンを形成し燒成してガラス層を形成する工程と、この表
面をアルカリ溶液中で処理して受光面に多数の凹凸を形
成する工程とを設けた。
According to the present invention, a step of forming a glass paste pattern on a surface of a semiconductor wafer which is to be a light receiving surface and sintering the glass paste to form a glass layer, and treating the surface in an alkaline solution. And a step of forming a large number of irregularities on the light receiving surface.

【0010】[0010]

【作用】本発明によれば、半導体ウエハの表面にガラス
フリットを有するガラス層が形成されているから、これ
をアルカリ溶液中で処理することにより、表面に微細な
凹凸を規則正しく形成することができるため、テクスチ
ャー処理をしたのと同様に、太陽電池表面に入射した光
が表面の凹凸によって多重反射し、光の反射による光エ
ネルギーの損失を大幅に軽減でき,特に電流値が改善さ
れる。
According to the present invention, since the glass layer having the glass frit is formed on the surface of the semiconductor wafer, fine irregularities can be regularly formed on the surface by treating the glass layer in the alkaline solution. Therefore, similarly to the case of performing the texture treatment, the light incident on the surface of the solar cell is multiply reflected by the unevenness of the surface, and the light energy loss due to the reflection of the light can be significantly reduced, and the current value is particularly improved.

【0011】[0011]

【実施例】図1(a)〜(g)は本発明による製造方法
の各工程の略断面図である。
1 (a) to 1 (g) are schematic cross-sectional views of respective steps of a manufacturing method according to the present invention.

【0012】まず、粒径10ミクロン以下の硼硅酸系ガ
ラスフリットと、エチルセルローズのようなセルローズ
系化合物と、ブチルカルビトールアセテートやテルピネ
オール等の有機溶剤を混合して、ガラスペーストをつく
る。
First, a borosilicate glass frit having a particle size of 10 microns or less, a cellulosic compound such as ethyl cellulose, and an organic solvent such as butyl carbitol acetate or terpineol are mixed to form a glass paste.

【0013】図1(a)に示すように、単結晶あるいは
多結晶の太陽電池用のたとえばP型シリコン基板1(抵
抗率1〜5Ωcm、厚み400μ)の表面にスクリーン
印刷法により、前述のガラスペースト2を印刷する。パ
ターンは、たとえば120μ間隔の縞状のものとする。
これを100℃でオーブン乾燥させた後、赤外線燒成爐
で600℃において5分間燒成する。
As shown in FIG. 1 (a), the above-mentioned glass is formed on the surface of, for example, a P-type silicon substrate 1 (resistivity 1 to 5 Ωcm, thickness 400 μ) for a monocrystalline or polycrystalline solar cell by a screen printing method. Print paste 2. The pattern is, for example, a striped pattern with 120 μ intervals.
It is oven dried at 100 ° C. and then fired at 600 ° C. for 5 minutes with an infrared firing oven.

【0014】同図(b)は、燒成後のシリコン基板1を
90℃のNaOH溶液(20%)中に浸漬し、15分間
エッチングした状態で、シリコン基板1の表面には縞状
のガラスペースト2の間に深さ30μ程度の溝3,3…
が形成される。
In FIG. 1B, the silicon substrate 1 after baking is immersed in a NaOH solution (20%) at 90 ° C. and etched for 15 minutes, and a striped glass is formed on the surface of the silicon substrate 1. Grooves 3, 3 having a depth of about 30 μ between the pastes 2 ...
Is formed.

【0015】次に同図(c)に示すように数十%のHF
溶液に浸漬しガラス層2を除去する。
Next, as shown in FIG. 3C, tens of percent of HF
The glass layer 2 is removed by immersing in the solution.

【0016】次に85℃のNaOH溶液(数%)にイソ
プロピルアルコールを添加した液にシリコン基板1を浸
漬し、30分間テクスチャーエッチを行なうと同図
(d)のようになる。同図右側の拡大図に示すように溝
3の周辺には多数の微細な凹凸4が形成される。多結晶
シリコンウエハを使用した場合でも、テクスチャー処理
は、(111)面以外の結晶面に対しては異方性エッチ
ングとなるため、部分的にではあるが、有効となる。
Next, when the silicon substrate 1 is immersed in a solution of isopropyl alcohol added to a NaOH solution (several%) at 85 ° C. and texture etching is performed for 30 minutes, the result is as shown in FIG. As shown in the enlarged view on the right side of the figure, many fine irregularities 4 are formed around the groove 3. Even when a polycrystalline silicon wafer is used, the texturing process is effective, although it is partially performed, because the crystal planes other than the (111) plane are anisotropically etched.

【0017】次に、同図(e)に示すように、燐を含む
薬液を前述の溝を設けた側に塗布し900℃において6
0分間熱処理すると、表面にN層5が形成される。こ
の状態は同図右側の拡大図に示される。
Next, as shown in FIG. 3E, a chemical solution containing phosphorus is applied to the side where the above-mentioned groove is provided, and the solution is heated at 900 ° C.
When the heat treatment is performed for 0 minutes, the N + layer 5 is formed on the surface. This state is shown in an enlarged view on the right side of FIG.

【0018】次に、同図(f)に示すように、常圧スプ
レー法により、反射防止膜6としてたとえばTiO2
を受光面に形成する。その状態は、同図右側の拡大図の
ようになる。
Next, as shown in FIG. 3F, a TiO 2 film, for example, as the antireflection film 6 is formed on the light receiving surface by the atmospheric pressure spray method. The state is as shown in the enlarged view on the right side of the figure.

【0019】次に、同図(g)に示すように、シリコン
基板1の表面の必要な部分および裏面のほぼ全面にわた
り、銀ペーストを印刷燒成し、表面電極7および裏面電
極8を形成する。このとき燒成温度および時間はたとえ
ば700℃、3分間とする。その後電極にハンダを被覆
し太陽電池セルが完成する。
Next, as shown in FIG. 1G, a silver paste is printed and burned over the required portion of the front surface of the silicon substrate 1 and almost the entire back surface to form a front electrode 7 and a back electrode 8. .. At this time, the baking temperature and time are, eg, 700 ° C. and 3 minutes. After that, the electrodes are coated with solder to complete the solar cell.

【0020】上記の実施例では、N/P型の太陽電池
セルについて説明を行なったが、N /P/P型(B
SF型)の太陽電池セルについても適用できることはい
うまでもない。
In the above embodiment, N+/ P type solar cell
Having described the cell, +/ P / P+Type (B
It can also be applied to SF type solar cells Yes
Needless to say.

【0021】図2(a),(b)および(c)はそれぞ
れガラスペーストによるパターンの形状の例を示すもの
である。同図(a)は縞状パターンであり、同図(b)
は島状パターンであり、同図(c)は(b)のパターン
の電極印刷箇所を抜いたパターンである。
2 (a), 2 (b) and 2 (c) show examples of the shape of the pattern made of glass paste. The figure (a) is a striped pattern, and the figure (b).
Is an island pattern, and FIG. 6C is a pattern in which the electrode printed portion of the pattern of FIG.

【0022】前述の説明は、シリコン基板の場合につい
て述べたが、ガリウム砒素基板あるいはシリコン基板そ
の他を支持体として使用する薄膜太陽電池にも応用でき
る。また、単結晶シリコン基板に対しては、テクスチャ
ー処理技術との併用により、さらに効率を改善すること
が可能となる。
The above description has been made on the case of a silicon substrate, but it can also be applied to a thin film solar cell using a gallium arsenide substrate, a silicon substrate or the like as a support. For a single crystal silicon substrate, the efficiency can be further improved by using the texture processing technique together.

【0023】[0023]

【発明の効果】本発明によれば、一般の太陽電池プロセ
スに加えて、ガラスフリットと樹脂と溶剤とからなるガ
ラスペーストを印刷するための印刷機と、ガラスペース
トを熱処理してガラス層とするための燒成爐が必要とな
るだけであり、比較的簡単でコストの安い製造装置を用
い、太陽電池セルの表面に凹凸を形成することができ
る。一枚当りの処理時間も短くできるため大量生産に適
しており、高効率の太陽電池セルを安価に容易に作製す
ることができる。
According to the present invention, in addition to a general solar cell process, a printer for printing a glass paste composed of glass frit, a resin and a solvent, and a heat treatment of the glass paste to form a glass layer. However, the unevenness can be formed on the surface of the solar battery cell by using a relatively simple and inexpensive manufacturing apparatus. Since the processing time per piece can be shortened, it is suitable for mass production, and a highly efficient solar cell can be easily manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(g)は本発明の各工程の略断面図で
ある。
1A to 1G are schematic cross-sectional views of each step of the present invention.

【図2】(a)〜(c)はガラスペーストのパターンの
例を示す図である。
2A to 2C are diagrams showing examples of glass paste patterns.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 ガラスペースト 3 溝 5 N層 6 反射防止膜1 Silicon Substrate 2 Glass Paste 3 Groove 5 N + Layer 6 Antireflection Film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエハの受光面となる表面にガラ
スペーストのパターンを形成し燒成してガラス層を形成
する工程と、この表面をアルカリ溶液中で処理して受光
面に多数の凹凸を形成する工程とを有することを特徴と
する太陽電池の製造方法。
1. A step of forming a glass paste pattern on a surface of a semiconductor wafer which is to be a light receiving surface and baking the glass paste to form a glass layer, and treating the surface in an alkaline solution to form a large number of irregularities on the light receiving surface. And a step of forming the solar cell.
JP3300518A 1991-11-15 1991-11-15 Solar cell manufacturing method Expired - Fee Related JP3007734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3300518A JP3007734B2 (en) 1991-11-15 1991-11-15 Solar cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3300518A JP3007734B2 (en) 1991-11-15 1991-11-15 Solar cell manufacturing method

Publications (2)

Publication Number Publication Date
JPH05136444A true JPH05136444A (en) 1993-06-01
JP3007734B2 JP3007734B2 (en) 2000-02-07

Family

ID=17885788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3300518A Expired - Fee Related JP3007734B2 (en) 1991-11-15 1991-11-15 Solar cell manufacturing method

Country Status (1)

Country Link
JP (1) JP3007734B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562625A (en) * 1979-06-20 1981-01-12 Shindengen Electric Mfg Co Ltd Manufacture of epitaxial wafer
JPS59113654A (en) * 1982-12-20 1984-06-30 Matsushita Electric Ind Co Ltd Manufacture of tape carrier having metal projection
JPS6142144A (en) * 1984-08-03 1986-02-28 Sansha Electric Mfg Co Ltd Manufacture of semiconductor device
JPS62237768A (en) * 1986-04-08 1987-10-17 Oki Electric Ind Co Ltd Manufacture of compound semiconductor sorar battery
JPH01186629A (en) * 1988-01-14 1989-07-26 Rohm Co Ltd Manufacture of mesa-type semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562625A (en) * 1979-06-20 1981-01-12 Shindengen Electric Mfg Co Ltd Manufacture of epitaxial wafer
JPS59113654A (en) * 1982-12-20 1984-06-30 Matsushita Electric Ind Co Ltd Manufacture of tape carrier having metal projection
JPS6142144A (en) * 1984-08-03 1986-02-28 Sansha Electric Mfg Co Ltd Manufacture of semiconductor device
JPS62237768A (en) * 1986-04-08 1987-10-17 Oki Electric Ind Co Ltd Manufacture of compound semiconductor sorar battery
JPH01186629A (en) * 1988-01-14 1989-07-26 Rohm Co Ltd Manufacture of mesa-type semiconductor device

Also Published As

Publication number Publication date
JP3007734B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
JP3803133B2 (en) Manufacturing method of contact pattern of solar cell
US6278053B1 (en) Decals and methods for providing an antireflective coating and metallization on a solar cell
JP2004221149A (en) Manufacturing method of solar cell
KR100677374B1 (en) Manufacturing method of porous solar cells using thin silicon wafer
JP2000183379A (en) Method for manufacturing solar cell
JP4842655B2 (en) Screen mask for solar cell manufacturing
JPH02177569A (en) Manufacture of solar cell
JPH07135333A (en) Fabrication of solar cell
JP2006156646A (en) Solar cell manufacturing method
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
RU2139601C1 (en) METHOD FOR MANUFACTURING n+-p-p+ STRUCTURE SOLAR CELL
JP2951061B2 (en) Solar cell manufacturing method
JP3238003B2 (en) Method of manufacturing solar cell element
JPH114008A (en) Manufacture of thin film solar battery
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
US5504015A (en) Process for preparing photovoltaic modules based on crystalline silicon
JP2006210385A (en) Method for manufacturing solar battery
JPH05136444A (en) Manufacture of solar cell
JP2000049368A (en) Manufacture of solar battery element
JPH1197726A (en) Manufacture of solar battery
JP2958203B2 (en) Method of manufacturing solar cell element
KR940004869A (en) Manufacturing method of solar cell
KR100192257B1 (en) Manufacturing method of solar cell
JPS62108579A (en) Manufacture of solar cell
JP2007266649A (en) Method of manufacturing solar cell element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees