JPH05134051A - Surveying method for embedded object and laid object and detection line - Google Patents

Surveying method for embedded object and laid object and detection line

Info

Publication number
JPH05134051A
JPH05134051A JP29705891A JP29705891A JPH05134051A JP H05134051 A JPH05134051 A JP H05134051A JP 29705891 A JP29705891 A JP 29705891A JP 29705891 A JP29705891 A JP 29705891A JP H05134051 A JPH05134051 A JP H05134051A
Authority
JP
Japan
Prior art keywords
silicone rubber
laid
objects
embedded
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29705891A
Other languages
Japanese (ja)
Inventor
Satoshi Watanabe
聡志 渡辺
Susumu Azeyanagi
進 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Silicone Co Ltd filed Critical Toshiba Silicone Co Ltd
Priority to JP29705891A priority Critical patent/JPH05134051A/en
Publication of JPH05134051A publication Critical patent/JPH05134051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To obtain the method for surveying the positions of embedded objects and laid objects simply and accurately and detecting lines which are suitably used in this method. CONSTITUTION:The method for surveying embedded objects and the laid objects is the method for searching the pipes and the lines, which are embedded in the ground or laid in the water. The wires made of conductive silicone rubber are embedded or laid in the vicinities of the pipes and the lines, inside of the pipes or on the pipes beforehand. A measuring wave is applied to or a current is made to flow through the wires made of the conductive silicone rubber. Thus, the wires are detected. The detecting lines for the embedded objects and the laid objects are suitably used in this method. The detecting line comprises the wire material made of the silicone rubber, wherein conductive carbon black is compounded and the volume resistivity is 1.0X10<-2>-1.0X10<4>OMEGAcm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は埋設物・布設物の探査方法
及びそれに用いられる埋設物・布設物の検知線に係り、
さらに詳しくは探査の手掛りとして目的管、目的線の近
傍、管内部あるいは管路上に予め導電性シリコーンゴム
からなる検知線を埋設あるいは布設しておく埋設物・布
設物の探査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for exploring a buried object / fabric and a detection line for the buried object / fabric used therein,
More specifically, the present invention relates to a method for exploring an embedded object or a laid object in which a detection line made of a conductive silicone rubber is embedded or laid in advance in a target pipe, in the vicinity of the target line, inside the pipe, or on the conduit as a clue for exploration.

【0002】[0002]

【発明の技術的背景とその問題点】ガス、水道、下水
道、配電等の地中化工事等を合理的に行う為には、既に
埋設されているガス管、水道管、地中配線(電線)等や
海中、湖中に布設されているケーブル線等の位置を予め
出来るだけ正確に把握し、既設の埋設管や布設線を損傷
することなく新しい管や線を埋設、布設する必要があ
る。斯かる目的で用いられる現在の埋設物・布設物の探
査手法には、電磁誘導法、衝撃弾性波法、レーリー波
法、地下レーダー法(電磁レーダー法)等があり、数多
くの装置が市販されている。これらは何れも弾性波、電
磁波等を埋設物・布設物に照射し、地中や水中の反射物
体を検知することを基本原理としているものであり、探
査深度、探査精度等の要求に合わせ使い分けられてい
る。現在、最も一般的で地下数m程度の探査には最も適
しているとされる地下レーダー法の測定原理を以下に簡
単に説明する。種々の砂・土の粒子で構成される地盤と
鉄やポリ塩化ビニル等でできている埋設管とは電気的性
質(比誘電率)が異なり、その境界面は明瞭な電磁波の
反射面となる。即ち、比誘電率の差が大きいほど反射係
数が大きくなり、強い反射波を生ずることになる。地下
レーダー法はこの現象を利用したもので、測線沿いに送
受信アンテナを移動させ一定間隔毎に電磁波パルスを発
信し、地中の反射物体(地層境界面、埋設管、空洞等)
からの反射波を測定器本体のディスプレイ画面にアンテ
ナ位置毎に順次並べ、信号強度に応じて色別で表示し、
横軸は測線方向の水平距離、縦軸が発信から反射物体ま
での往復時間に対応する地下断面画像を得るものであ
る。しかしながら、この種の探査法は未だ検知能力・精
度が低いという問題がある。即ち、地下レーダー法は上
述のように比誘電率の差を利用するものであるが、鉄管
等の金属管の場合はその比誘電率が地盤に比べかなり大
きいので強い反射波を生ずるが、非金属管(塩ビ管等)
の比誘電率は地盤とあまり差がなく、強い反射波を生ぜ
ず、その結果検知能力に問題を残すのである。このこと
は地下レーダー法以外の探査法にもあてはまり、近時使
用の急増している非金属管の探査には信頼性に問題が残
されている。よって、現状では既設管の位置を確認する
ため、工事予定地を人力で掘削し確認することを余儀な
くされ、多大な労力と時間が費やされている。従って、
埋設物の位置をより簡便に探知でき、なおかつ信頼性の
ある探査手法の開発が強く求められている。
[Technical background of the invention and its problems] In order to rationally perform undergrounding work such as gas, water supply, sewerage, power distribution, etc., already installed gas pipes, water pipes, underground wiring (electric wires) ) Etc., the position of the cable line laid in the sea, in the lake, etc. as accurately as possible in advance, and it is necessary to bury and lay a new pipe or line without damaging the existing buried pipe or line. .. Current methods for exploring buried objects / laying materials used for such purposes include electromagnetic induction method, shock elastic wave method, Rayleigh wave method, underground radar method (electromagnetic radar method), and many devices are commercially available. ing. All of these are based on the principle of irradiating elastic or electromagnetic waves to buried or laid objects to detect reflective objects in the ground or underwater. Has been. At present, the measurement principle of the underground radar method, which is the most general and most suitable for the exploration of several meters underground, will be briefly described below. The electrical properties (relative permittivity) of the ground consisting of various sand and soil particles and the buried pipe made of iron, polyvinyl chloride, etc. are different, and the boundary surface becomes a clear electromagnetic wave reflection surface. .. That is, the greater the difference in relative permittivity, the greater the reflection coefficient and the stronger reflected wave is generated. The underground radar method takes advantage of this phenomenon by moving the transmitting and receiving antennas along the survey line to emit electromagnetic pulse at regular intervals and reflecting objects in the ground (geological boundary surface, buried pipe, cavity, etc.).
The reflected waves from are sequentially arranged on the display screen of the measuring instrument for each antenna position, and displayed in different colors according to the signal strength,
The horizontal axis represents the horizontal distance in the survey line direction, and the vertical axis represents the underground cross-sectional image corresponding to the round-trip time from the transmission to the reflecting object. However, this type of exploration method still has the problem of low detection capability and accuracy. That is, the underground radar method uses the difference in relative permittivity as described above, but in the case of a metal pipe such as an iron pipe, the relative permittivity is considerably larger than that of the ground, so a strong reflected wave is generated. Metal tube (PVC tube, etc.)
The relative permittivity of is not much different from that of the ground, does not generate a strong reflected wave, and as a result leaves a problem in the detection ability. This also applies to exploration methods other than the underground radar method, and reliability problems remain in the exploration of non-metallic pipes, which have recently been rapidly used. Therefore, at present, in order to confirm the position of the existing pipe, it is necessary to excavate and confirm the planned construction site manually, which requires a great deal of labor and time. Therefore,
There is a strong demand for the development of a reliable exploration method that can detect the location of buried objects more easily.

【0003】[0003]

【発明の目的】本発明はこのような課題に対処するため
になされたもので、埋設物・布設物の位置を簡便かつ正
確に探知しうる手法及びそれに好適に用いられる検知線
を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve such a problem, and provides a method for easily and accurately detecting the position of a buried object or a laid object, and a detection line suitably used for the method. The purpose is.

【0004】[0004]

【発明の構成】本発明者等は、上記目的を達すべく、鋭
意検討した結果、予め導電性シリコーンゴム製線材を管
路や線路の近傍等に埋設、布設しておくことが探査に有
効であること、並びに導電性シリコーンゴムの場合、他
の天然、合成ゴムに比し物性に優れ、地中、水中に半永
久的に埋設されてもバクテリアや微生物、あるいは高い
圧力、温度変化、氷結等にも影響されない耐久性を有
し、この種の素材として極めて好適であることを見出
し、本発明を完成するに到った。即ち本発明は、地中に
埋設あるいは水中に布設された管路、線路を探査する方
法であって、予め導電性シリコーンゴム製線材を管路、
線路の近傍、管内部あるいは管路上に埋設あるいは布設
しておき、測定波を照射することにより、または該線材
の設置時にその片端あるいは両端を地上あるいは地上か
ら容易に掘り出せる深さの所まで出しておき、該端部に
電流を流すことにより、シリコーンゴム製線材の電磁
波、温度変化等を検知対象とする方法をとることによっ
て、該導電性シリコーンゴム製線材を検知することを特
徴とする埋設物・布設物の探査方法、並びに導電性カー
ボンブラックが配合された体積抵抗率が1.0 ×10-2〜1.
0 ×104 Ω・cmのシリコーンゴム製線材からなる埋設物
・布設物の検知線を提供するものである。
The inventors of the present invention have made extensive studies in order to achieve the above object, and as a result, it is effective for exploration to bury or lay a conductive silicone rubber wire material in the vicinity of a pipe or a line in advance. In addition, in the case of conductive silicone rubber, it has excellent physical properties compared to other natural and synthetic rubbers, and even if it is buried in the ground or water semipermanently, it does not cause bacteria or microorganisms, high pressure, temperature change, icing, etc. The present invention has been completed by finding that it has durability not affected by the above and is extremely suitable as a material of this kind. That is, the present invention is a method for exploring a conduit or a line buried in the ground or laid in water, in which a conductive silicone rubber wire is previously used as a conduit,
By embedding or laying in the vicinity of the line, inside the pipe or on the pipe, and irradiating with a measurement wave, or when installing the wire rod, expose one end or both ends to the ground or to a depth where it can be easily dug from the ground. An embedded structure characterized by detecting the conductive silicone rubber wire material by taking a method of detecting electromagnetic waves, temperature change, etc. of the silicone rubber wire material by passing an electric current through the end portion. The method for exploring objects and installations, and the volume resistivity of conductive carbon black is 1.0 × 10 -2 to 1.
The present invention provides a detection wire for an embedded object or a woven object made of a silicone rubber wire material of 0 × 10 4 Ω · cm.

【0005】本発明の探査方法は、地中、水中に管路、
線路を埋設・布設する際に、管路、線路の近傍、内面あ
るいは表面上に予め導電性シリコーンゴムを埋設・布設
しておき、後日管路を探査するにあたっては、地上から
電磁波を照射し、あるいは端部から電流を通じ、正確に
導電性シリコーンゴムの位置、即ち埋設物・布設物の位
置を探査するものである。尚、ここでいう地中、水中に
管路、線路を埋設・布設するとは、地盤を掘り起こし管
路を埋設する場合、水底に管路、線路を沈め布設する場
合、水中に管路、線路を布設する場合等、地上あるいは
水上からは管路、線路が見えない位置に管路、線路を設
置する行為を示すものである。又、本発明の探査方法に
用いられる探査手法は、前述の電磁誘導法、衝撃弾性波
法、レーリー波法、地下レーダー法等の何れでもよい
が、地下レーダー法が一般的である。
The exploration method of the present invention comprises a pipeline in the ground, underwater,
When burying or laying a track, a conductive silicone rubber is buried or laid in advance on the pipeline, near the track, on the inner surface or on the surface, and when exploring the pipeline at a later date, irradiate electromagnetic waves from the ground, Alternatively, the position of the conductive silicone rubber, that is, the position of the buried object / laying object is accurately searched by passing a current from the end. It should be noted that burying and laying pipelines and tracks in the ground as used herein means that when excavating the ground to bury the pipelines, when laying the pipelines and tracks at the bottom of the water, the pipelines and tracks are submerged in water. This shows the act of installing pipelines and tracks in locations where they cannot be seen from the ground or above the water, such as when laying. The exploration method used in the exploration method of the present invention may be any of the above-mentioned electromagnetic induction method, shock elastic wave method, Rayleigh wave method, underground radar method, etc., but the underground radar method is generally used.

【0006】本発明に用いられるシリコーンゴムは特に
種類を問わないが、沿設時に張力に耐え得るような配合
設計が求められる。又、一般に、ゴム類に導電性カーボ
ンブラック、グラファイト、金属粉、金属酸化物、表面
導電処理粉体等を配合して導電性を付与することは従来
より広く行われているが、導電性を確保するためには導
電材の多量充填を余儀なくされ、その結果、物性低下に
つながることが多い。その為、仮に従来の導電性クロロ
プレンゴム等を検知線に使用した場合、物性の経時劣化
が激しく、到底実用に耐えない。更に検知線としての実
際の使用状況を考えた場合、その線径が大きくなると重
量増加を招き、布設そのものに支障を生じ、又、あまり
に小さいと弱い外力によっても切断するおそれがある。
そこで、検知線としては、必要な強度を有する範囲で出
来るだけ線径の小さなものが要求されるが、シリコーン
ゴムはこの点でも満足できるものである。これらの点を
ふまえた場合、最も望ましいのは軽量化および充分な導
電性を兼ね備えた導電性カーボンブラックを配合したシ
リコーンゴムであり、又、検知精度の面からその体積抵
抗率が1.0 ×105 Ω・cm以下、特に深度精度向上の点か
ら1.0 ×10-2〜1.0 ×104 Ω・cmのものである。又、そ
の線径は一般に1〜50mm程度でよい。
The silicone rubber used in the present invention may be of any type, but it is required to have a compounding design capable of withstanding tension when installed. Further, generally, it has been widely practiced to add conductivity by mixing conductive carbon black, graphite, metal powder, metal oxide, surface conductive treatment powder, etc. into rubbers, but A large amount of conductive material has to be filled in order to secure such properties, and as a result, physical properties often deteriorate. Therefore, if a conventional conductive chloroprene rubber or the like is used for the detection line, the physical properties thereof deteriorate drastically with time and cannot be put to practical use. Further, in consideration of the actual usage as a detection wire, if the wire diameter becomes large, the weight will increase, which will hinder the installation itself, and if it is too small, it may be cut even by a weak external force.
Therefore, the detection wire is required to have a wire diameter as small as possible within a range having a necessary strength, and the silicone rubber is also satisfactory in this respect. Taking these points into consideration, the most desirable is a silicone rubber blended with conductive carbon black that has both light weight and sufficient conductivity, and its volume resistivity is 1.0 × 10 5 in terms of detection accuracy. Ω · cm or less, especially 1.0 × 10 −2 to 1.0 × 10 4 Ω · cm from the viewpoint of improving depth accuracy. The wire diameter may be generally about 1 to 50 mm.

【0007】又、軽量化を図るために線内部を中空とし
たチューブ状としてもよい。このようなシリコーンゴム
を検知線に用いることの利点はその耐久性にある。即
ち、金属を探査線に用いると、錆、腐食の問題が生じて
耐久性に乏しい。これに対しエラストマーは、その本来
有する弾性から、線状に加工したものの埋設・布設作業
は工数が削減でき、経済性が高いが、一般の有機ゴムと
称される天然ゴムやスチレンブタジエンゴム、クロロス
ルフォン化ポリエチレンゴム等は、経時の種々の要因で
オゾン亀裂、硬化、酸化、軟化等を生じ、経時信頼性が
ない。一方、シリコーンゴムは、上記経時劣化が生じに
くく、信頼性が著しく高く、この種の用途に好適なもの
である。これは主鎖の結合力の差に基づくものと考えら
れる。尚、検知方法の種類・方法等の面から更に検知能
を向上させたい場合や、張力との関係で強度を増加させ
たいような場合、金属線や高強度繊維等の繊維状物質を
併用してもよい。併用の態様としては、導電性シリコー
ンゴム製線材を該繊維状物質で被覆加工したり、逆に該
繊維状物質を芯材として導電性シリコーンゴムで被覆し
たり、導電性シリコーンゴム製線材の一部に該繊維状物
質を付着(積層等)させること等が考えられるが、特に
限定されるものではない。ここで使用される高強度繊維
としては、芳香族ポリアミド繊維、芳香族ポリエステル
繊維、ポリエチレン繊維等の有機繊維、カーボン繊維、
アルミナ繊維、炭化珪素繊維等の無機繊維等が挙げら
れ、本発明の目的から該高強度繊維自体に導電性があれ
ば尚良いので金属線の他、カーボン繊維が好ましい。
Further, in order to reduce the weight, the inside of the wire may be formed into a hollow tube. The advantage of using such silicone rubber for the detection wire is its durability. That is, when a metal is used for the exploration line, there are problems of rust and corrosion, and durability is poor. On the other hand, an elastomer has a high elasticity due to its inherent elasticity, but it is economical because it can be embedded and laid, but the man-hours required for embedding and laying it are high. Sulfonated polyethylene rubber or the like is not reliable over time due to ozone cracking, hardening, oxidation, softening, etc. due to various factors over time. On the other hand, silicone rubber is not easily deteriorated with time and has extremely high reliability, and is suitable for this type of application. It is considered that this is due to the difference in the bond strength of the main chain. If you want to further improve the detectability in terms of the type and method of detection, or if you want to increase the strength in relation to the tension, use a fibrous substance such as a metal wire or high-strength fiber together. Good. As an aspect of combined use, a conductive silicone rubber wire is coated with the fibrous substance, or conversely, the fibrous substance is used as a core material and coated with conductive silicone rubber. It is conceivable that the fibrous substance is adhered (laminated or the like) to the part, but it is not particularly limited. As the high-strength fiber used here, aromatic polyamide fiber, aromatic polyester fiber, organic fiber such as polyethylene fiber, carbon fiber,
Inorganic fibers such as alumina fibers and silicon carbide fibers may be mentioned. For the purpose of the present invention, it is more preferable that the high-strength fibers themselves have electrical conductivity, and therefore carbon fibers are preferable in addition to metal wires.

【0008】[0008]

【実施例】以下に本発明の実施例を挙げて本発明を更に
具体的に説明するが、本発明はこれらに限定されるもの
ではない。
EXAMPLES The present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited thereto.

【0009】実施例1、比較例1〜2 実施例1として導電性カーボンブラックを配合してなる
体積抵抗率2.5 Ω・cmのシリコーンゴム線状押出品(φ
=10mm)、比較例1として耐候性の高いゴムとして知ら
れているクロロプレンゴムに導電性カーボンブラックを
配合し、やはり体積抵抗率を2.5 Ω・cmとした線状押出
品(φ=10mm)を用意し、夫々加熱硬化させた。又、比
較例2としてステンレス線材(φ=10mm、体積抵抗率3.
0 ×10-3Ω・cm)を用意した。これら探査線を地中2m
の所に、夫々長さ20mを直線状に埋設し、1年経過後に
電磁誘導法(交流電流、周波数10kHz)と電磁レーダー法
(周波数500MHz) で探査した。その結果を表1に示す。
次に上記探査実験後、埋設してある探査線を掘り起こ
し、強度を測定し、埋設前と比較すると共に外観を観察
した。全て断面積は0.785cm2である。その結果を表2に
示す。
Example 1, Comparative Examples 1-2 As Example 1, a silicone rubber linear extruded product (φ having a volume resistivity of 2.5 Ω · cm and containing conductive carbon black) was prepared.
= 10 mm), as Comparative Example 1, a linear extruded product (φ = 10 mm) was prepared by mixing conductive carbon black with chloroprene rubber, which is known as a rubber having high weather resistance, and also having a volume resistivity of 2.5 Ω · cm. They were prepared and heat-cured respectively. Also, as Comparative Example 2, a stainless wire (φ = 10 mm, volume resistivity 3.
0 × 10 −3 Ω · cm) was prepared. 2m underground in these exploration lines
Each of them was buried in a straight line at a length of 20 m, and one year later, the electromagnetic induction method (AC current, frequency 10 kHz) and the electromagnetic radar method (frequency 500 MHz) were used for exploration. The results are shown in Table 1.
Next, after the above exploration experiment, the buried exploration line was excavated, the strength was measured, and the appearance was observed while comparing with the strength before embedding. All have a cross-sectional area of 0.785 cm 2 . The results are shown in Table 2.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】実施例2 導電性カーボンブラックを配合してなる体積抵抗率1Ω
・cmのシリコーンゴムを押出機で線状に押出し(φ=5
mm)、加熱硬化させたものを用意した。 実施例3 導電性カーボンブラックを配合してなる体積抵抗率10Ω
・cmのシリコーンゴムを電線のように加工した。即ち、
芯線として単線銅線(φ=1.4mm)を用い、これにシリコ
ーンゴムを被覆し、加熱硬化させたもの(φ=4mm)を
用意した。 実施例4 導電性カーボンブラックを配合してなる体積抵抗率30Ω
・cmのシリコーンゴムを巾9mm、厚さ2mmの帯状物に押
出した。一方で、巾9mm、厚さ0.3mm のステンレス鋼(S
US 303) の表面を脱脂後、接着剤(シリコーン系付加
型)を塗布し、上記シリコーンゴム製帯状物とラミネー
トし、圧着しながら加熱硬化させた。尚、ここで用いる
接着剤は上記以外のものでも接着性が良く、経時劣化し
ないものであれば種類や量は問わない。 実施例5 導電性カーボンブラックを配合してなる体積抵抗率5×
102 Ω・cmのシリコーンゴムを押出機で線状に押出し
(φ=3mm)、加熱硬化させ、次いでこの表面を、800
デニールのPAN 系カーボンファイバーで被覆加工したも
のを用意した。 比較例3 クロロプレンゴムに導電性カーボンブラックを配合し、
体積抵抗率を10Ω・cmとした線状押出品(φ=5mm)を
加熱硬化させたものを用意した。 比較例4 単線銅線(φ=1.2mm)を用意した。 比較例5 導電性シリコーンゴムの代わりに体積抵抗率30Ω・cmの
エチレン・プロピレンゴムを用いた他は実施例4と同様
にして積層品を用意した。これら実施例2〜5、比較例
3〜5の検知線について前記実施例1、比較例1〜2と
同様の試験を行ったところ、実施例2〜5のものは電磁
誘導法、電磁レーダー法の何れでも検知可能であったの
に対し、比較例3〜5のものは検知不能であった。
Example 2 Volume resistivity of 1 Ω prepared by blending conductive carbon black
・ Cm silicone rubber is extruded linearly with an extruder (φ = 5
mm), which was cured by heating. Example 3 Volume resistivity of 10 Ω prepared by blending conductive carbon black
・ Cm silicone rubber was processed like an electric wire. That is,
A single copper wire (φ = 1.4 mm) was used as the core wire, and a silicone rubber was coated on this and heat-cured (φ = 4 mm) was prepared. Example 4 Volume resistivity of 30 Ω prepared by blending conductive carbon black
Cm silicone rubber was extruded into a strip with a width of 9 mm and a thickness of 2 mm. On the other hand, stainless steel with a width of 9 mm and a thickness of 0.3 mm (S
After degreasing the surface of US 303), an adhesive (silicone addition type) was applied, laminated with the above-mentioned silicone rubber strip, and heat-cured while pressure bonding. The adhesive used here may be of any kind and amount as long as it has good adhesiveness and does not deteriorate with time. Example 5 Volume resistivity 5 × prepared by blending conductive carbon black
Silicone rubber of 10 2 Ω · cm was extruded into a linear shape with an extruder (φ = 3 mm) and heat-cured.
Prepared was coated with denier PAN carbon fiber. Comparative Example 3 A conductive carbon black was blended with chloroprene rubber,
A linear extruded product (φ = 5 mm) having a volume resistivity of 10 Ω · cm was cured by heating. Comparative Example 4 A single copper wire (φ = 1.2 mm) was prepared. Comparative Example 5 A laminated product was prepared in the same manner as in Example 4 except that ethylene / propylene rubber having a volume resistivity of 30 Ω · cm was used instead of the conductive silicone rubber. When the same tests as in Example 1 and Comparative Examples 1 and 2 were performed on the detection lines of Examples 2 to 5 and Comparative Examples 3 to 5, those of Examples 2 to 5 were electromagnetic induction method and electromagnetic radar method. In any of Comparative Examples 3 to 5, detection was impossible, whereas in Comparative Examples 3 to 5, detection was impossible.

【0013】[0013]

【発明の効果】以上説明したように、本発明の方法によ
れば、埋設物の位置を簡便かつ正確に探知しうることが
でき、しかも検知線の経時劣化が少ないのでその効果が
半永続的に期待できるものであり、埋設物の探知に極め
て有効である。
As described above, according to the method of the present invention, the position of the buried object can be detected easily and accurately, and the deterioration of the detection line with time is small, so that the effect is semi-permanent. It is very effective for detecting buried objects.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 地中に埋設あるいは水中に布設された管
路、線路を探査する方法であって、予め導電性シリコー
ンゴム製線材を管路、線路の近傍、管内部あるいは管路
上に埋設あるいは布設しておき、測定波を照射するか又
は該導電性シリコーンゴム製線材に電流を与えることに
より該線材を検知することを特徴とする埋設物・布設物
の探査方法。
1. A method for exploring a conduit or line buried in the ground or laid in water, wherein a conductive silicone rubber wire is previously buried in the conduit, near the track, inside the pipe, or on the conduit. A method for exploring buried objects / fabricated objects, which comprises laying a wire and detecting the wire material by irradiating a measuring wave or by applying an electric current to the wire material made of a conductive silicone rubber.
【請求項2】 導電性カーボンブラックが配合された体
積抵抗率が1.0 ×10-2〜1.0 ×104 Ω・cmのシリコーン
ゴム製線材からなる埋設物・布設物の検知線。
2. A wire for detecting an embedded object or a woven object, which is made of a silicone rubber wire material having a volume resistivity of 1.0 × 10 −2 to 1.0 × 10 4 Ω · cm mixed with conductive carbon black.
JP29705891A 1991-11-13 1991-11-13 Surveying method for embedded object and laid object and detection line Pending JPH05134051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29705891A JPH05134051A (en) 1991-11-13 1991-11-13 Surveying method for embedded object and laid object and detection line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29705891A JPH05134051A (en) 1991-11-13 1991-11-13 Surveying method for embedded object and laid object and detection line

Publications (1)

Publication Number Publication Date
JPH05134051A true JPH05134051A (en) 1993-05-28

Family

ID=17841671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29705891A Pending JPH05134051A (en) 1991-11-13 1991-11-13 Surveying method for embedded object and laid object and detection line

Country Status (1)

Country Link
JP (1) JPH05134051A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518715A (en) * 1974-07-13 1976-01-23 Kanegafuchi Chemical Ind
JPS56132586A (en) * 1980-03-19 1981-10-16 Osaka Gas Co Ltd Method of and conductor for long-sized material buried underground

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518715A (en) * 1974-07-13 1976-01-23 Kanegafuchi Chemical Ind
JPS56132586A (en) * 1980-03-19 1981-10-16 Osaka Gas Co Ltd Method of and conductor for long-sized material buried underground

Similar Documents

Publication Publication Date Title
AU624238B2 (en) Methods and apparatus employing permanent magnets for marking, locating, tracing and identifying hidden objects such as buried fiber optic cables
US5017873A (en) Methods and apparatus employing permanent magnets for marking, locating, tracing and identifying hidden objects such as buried fiber optic cables
US5122750A (en) Methods employing permanent magnets for marking, locating, tracing and identifying hidden objects such as buried fiber optic cables
CN1154251C (en) Method and system for transmitting information by electromagnetic wave
KR102406308B1 (en) signal tape
JPH0247714B2 (en)
US10663422B2 (en) Apparatus and method for detecting defects within a flexible pipe
US20180259676A1 (en) Litz Wire As Tracer Wire And Litz Wire Marker Tape
JPH0535999B2 (en)
CN101446616B (en) Method for finding fault point of cable or pipeline and device thereof
JPH05134051A (en) Surveying method for embedded object and laid object and detection line
CN202794563U (en) Positioning system used for underground plastic pipe network
EP3483634A1 (en) Systems and methods for detecting buried non-conductive pipes
Cataldo et al. Accuracy improvement in the TDR-based localization of water leaks
US20030189428A1 (en) Time domain induction method and apparatus for locating buried objects in a medium by inducing and measuring transient eddy currents
CN208362472U (en) Flexible anode
KR200188711Y1 (en) Antenna structure of detection apparatus for the survey of buried structures by used gpr system
KR200194863Y1 (en) Detection apparatus for the survey of buried structures having receive signal saved device by used gpr system
KR200194864Y1 (en) Signal management device of detection apparatus for the survey of buried structures having receive signal saved device by used gpr system
JP2001098538A (en) Physical property level measuring system
WO2002075360A2 (en) Method for locating and inspecting underground or other non-visible non-electrically conductive pipes
CN108823574A (en) Flexible anode
Eberle et al. The Development and Field Testing of a New Locator for Plastic and Metal Pipelines
Kutrubes et al. Time-Depth Imaging to Locate Bedrock Fractures and Voids, Saint James, Barbados
JPH03185389A (en) Method for detecting position of embedded joint

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960903