JPH05133629A - Cooling apparatus equipped with scroll type compressor - Google Patents

Cooling apparatus equipped with scroll type compressor

Info

Publication number
JPH05133629A
JPH05133629A JP29725391A JP29725391A JPH05133629A JP H05133629 A JPH05133629 A JP H05133629A JP 29725391 A JP29725391 A JP 29725391A JP 29725391 A JP29725391 A JP 29725391A JP H05133629 A JPH05133629 A JP H05133629A
Authority
JP
Japan
Prior art keywords
compressor
pressure
discharge pressure
refrigerant
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29725391A
Other languages
Japanese (ja)
Inventor
Kanji Fudono
莞爾 不殿
Hiroshi Ogawa
広志 小川
Toshio Yamashita
敏雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29725391A priority Critical patent/JPH05133629A/en
Publication of JPH05133629A publication Critical patent/JPH05133629A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PURPOSE:To enable continuing the operation, in the use of a cooling apparatus equipped with a scroll type compressor as a means of compressing refrigerant, even when the discharge pressure of the compressor exceeds the upper limit determined on the basis of the evaluated strength of the scroll member. CONSTITUTION:There are provided a discharge pressure detective means 2231 related to the compressor; a suction pressure detective means 2232; a refrigerant flow ratecontrolling means 2260a for controlling the flow rate of the refrigerant flowing from the high pressure side to the low pressure side in the refrigerant circulation system; a storing means 3400a for storing in a memory allowable discharge pressure characteristics based on pressure differentials between the discharge pressure and the suction pressure both of the compressor and determined by the evaluation of the lap strength of the scroll members; and a valve opening-controlling means 3900 which, when the discharge pressure during operation exceeds the allowable discharge pressure characteristics, adjusts the valve opening of the refrigerant flow rate-controlling means 2260a to temporarily increase the flow rate of the refrigerant flowing from the high pressure side to the low pressure side in the refrigerant circulation system and by so doing enables continuing the operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスクロール型圧縮機を備
えた冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device equipped with a scroll compressor.

【0002】[0002]

【従来の技術】空気調和を目的とした冷却装置、生鮮物
を長期間にわたり鮮度良く保存する事を目的とした冷蔵
装置又は冷蔵を兼ねる冷凍装置、生鮮物を輸送する期間
これらを鮮度良く保存したり又はその期間を熟成期間に
用いる事の出来る冷蔵乃至冷凍を兼ねるコンテナ等の冷
却装置として、蒸気圧縮式冷却装置が広く用いられてい
る。この装置は、作動物質に蒸発潜熱の大きいガスを冷
媒として用い、圧縮機、凝縮器、液化冷媒流量制御弁、
蒸発器、等の主要機器で作動物質の閉循環系を構成し、
作動物質にランキンサイクルを成させ、所与の対象を目
的の温度に制御している。更には加湿、換気、等の機能
を付加して対象物環境の湿度及び炭酸ガス濃度制御を行
って居るものもある。
2. Description of the Related Art A cooling device for the purpose of air conditioning, a refrigeration device for the purpose of preserving fresh food for a long period of time with good freshness, or a freezing device also serving as refrigeration, and a fresh product for the period of transporting fresh food. A vapor compression type cooling device is widely used as a cooling device for a container or the like that can be used for refrigeration or freezing and can be used during the aging period. This device uses a gas having large latent heat of vaporization as a working substance as a refrigerant, and a compressor, a condenser, a liquefied refrigerant flow control valve,
Main equipment such as an evaporator constitutes a closed circulation system for working substances,
The working substance is subjected to a Rankine cycle to control a given object to a target temperature. Further, there are some that add functions such as humidification and ventilation to control the humidity and carbon dioxide concentration of the target environment.

【0003】これらの制御量の制御には、例えば液化冷
媒流量制御にパルスモータ駆動式流量制御弁を用いると
共に圧縮機の吐出する高圧ガスを蒸発器入り口にバイパ
スさせる電動式のガス流量制御弁等の制御機器と温度及
び圧力検出器等を用い、これらの動作量をマイクロコン
ピュータにより演算制御して極めて精度の高い温湿度、
乃至炭酸ガス濃度、更には酸素濃度制御が行われてい
る。そして前記マイクロコンピュータはプログラミング
によっていくらでも制御機能を高め得ると言う柔軟性
(フレキシビリティ)を利用して、マイクロコンピュー
タの自己診断、各種検出器異常の有無診断、液又はガス
流量制御弁、圧縮機駆動用電動機、凝縮器冷却手段駆動
用電動機及び蒸発器の熱除去手段駆動用電動機その他電
気機器の異常の有無診断を自動的に行う自動診断機能を
持つ冷却装置も、海上輸送用コンテナについては知られ
て居る。例えば本願発明者等の発明による特願平2−4
06714がある。
To control these control amounts, for example, a pulse motor drive type flow control valve is used to control the flow rate of the liquefied refrigerant, and an electrically operated gas flow control valve for bypassing the high pressure gas discharged from the compressor to the evaporator inlet. Control equipment and temperature and pressure detectors, etc., the operation amount of these is controlled by a microcomputer to control temperature and humidity with extremely high accuracy,
The carbon dioxide concentration, and further the oxygen concentration is controlled. Further, the microcomputer can utilize the flexibility that the control function can be enhanced by programming as much as possible, and self-diagnosis of the microcomputer, diagnosis of presence / absence of abnormality of various detectors, liquid or gas flow control valve, compressor drive Electric motors, electric motors for driving condenser cooling means, electric motors for driving heat removal means of evaporators, and other cooling devices that have an automatic diagnostic function for automatically diagnosing abnormalities in electrical equipment are also known for containers for ocean shipping. Are there. For example, Japanese Patent Application No. 2-4
There is 06714.

【0004】これらの冷却装置に用いられる圧縮機に
は、長年の生産実績に拠りその信頼性と保守性の高さか
ら専ら往復動型の圧縮機が用いられている。然し近頃で
はローリングピストン乃至スクロール型の回転圧縮機の
信頼性も高まり、頭初は専ら空気調和に用いられて居た
此等の圧縮機も徐々に冷凍を目的に含む冷却装置にも用
途を拡大しつつある。このことは圧縮機に要求される押
しのけ量の範囲が広がる事を意味する。これに対する圧
縮機設計上の対応は圧縮機の基本形状をなす諸元は変え
ず、変化に対応することが容易な諸元のみを変えて行わ
れるのは、生産性、コスト、性能維持の観点から当然で
ある。
As a compressor used in these cooling devices, a reciprocating compressor is exclusively used because of its high reliability and maintainability due to many years of production results. However, recently, the reliability of rolling piston or scroll type rotary compressors has increased, and these compressors, which were originally used for air conditioning at the beginning, are gradually expanded to use as cooling devices for the purpose of refrigeration. I am doing it. This means that the range of displacement required for the compressor is expanded. In terms of the design of the compressor, the specifications of the basic shape of the compressor are not changed, and only the specifications that are easy to respond to changes are changed from the viewpoint of productivity, cost, and performance maintenance. It is natural from.

【0005】即ちスクロール圧縮機に関しては、渦巻き
体の基本形状を変えず渦巻き体の歯丈を変えて、押しの
け量のバリエーションに対応するのが一般的である。然
し渦巻き体の強度は略片持ち梁の原理によって決まるか
ら、圧縮機の吸入圧力をPs、吐出圧力をPd とする
と、Ps に対するPd には制限があることがわかる。以
下に冷却装置の一例として、自動診断装置付きの海上輸
送用コンテナを例にして冷却装置の運転と制御に関する
従来技術のレベルを示すと共に、スクロール型回転圧縮
機の構成の概要を説明する。
That is, in the scroll compressor, it is general to change the tooth length of the spiral body without changing the basic shape of the spiral body to cope with the variation in the displacement amount. However, since the strength of the spiral body is substantially determined by the cantilever principle, it can be seen that there is a limit to Pd with respect to Ps when the suction pressure of the compressor is Ps and the discharge pressure is Pd. As an example of the cooling device, the level of the prior art relating to the operation and control of the cooling device will be shown by taking a marine transportation container with an automatic diagnosis device as an example, and an outline of the configuration of the scroll rotary compressor will be described.

【0006】図7は海上輸送用コンテナの内側斜視図、
図8は同コンテナの外側斜視図、図9は同コンテナの内
外を結んで構成される冷却装置の冷媒循環系統図であ
る。以下、主として図7、図8を参照しながら述べる。
冷却装置2000は、直方体の箱状の断熱構造の短辺側
の一面に図示しない出入り口を持つコンテナ1000
の、同出入り口の対面に取り付けられている。冷却装置
2000は図7に示す内側ユニット2100と図8に示
す外側ユニット2200とマイクロコンピュータ式コン
トローラ3000を一体に組み立てたものである。内側
ユニット2100は、蒸発器2110と熱運搬媒体であ
るコンテナの内側空気2180を駆動する手段である蒸
発器用ファン2120よりなる冷媒の蒸発手段と、加熱
用ヒータ2140、加湿器2160、図示しない酸素ガ
ス貯留タンク等の補助機器を一体に組んだものである。
外側ユニット2200は、冷媒の圧縮手段である圧縮機
2210と、凝縮機2250と熱運搬媒体である大気
(冷却空気)2280を駆動する凝縮器用ファンモータ
2251よりなる凝縮手段と、図9に示す液冷媒流量制
御弁2261及びガス冷媒流量制御弁2262等の弁手
段と液ガス熱交換器2271、ドライヤー2272、ス
トレーナ2273、冷媒の閉循環系を遮断する電磁弁2
274、更には図示しない水熱交換器等の配管付属機器
が一体に組み立てられている。勿論これらの機器類は目
的に叶う手段で前記冷媒閉循環系が構成されている。
FIG. 7 is a perspective view of the inside of a shipping container.
FIG. 8 is an outer perspective view of the container, and FIG. 9 is a refrigerant circulation system diagram of a cooling device configured by connecting the inside and the outside of the container. Hereinafter, description will be given mainly with reference to FIGS. 7 and 8.
The cooling device 2000 is a container 1000 having a box-shaped heat insulation structure having a rectangular parallelepiped shape and having a door (not shown) on one surface on the short side.
It is installed on the opposite side of the entrance. The cooling device 2000 is an assembly of an inner unit 2100 shown in FIG. 7, an outer unit 2200 shown in FIG. 8 and a microcomputer type controller 3000 that are integrally assembled. The inner unit 2100 includes an evaporator 2110 and an evaporator fan 2120 which is a means for driving the container inner air 2180 which is a heat transfer medium, a refrigerant evaporating means, a heating heater 2140, a humidifier 2160, and oxygen gas (not shown). It is an integrated set of auxiliary equipment such as a storage tank.
The outer unit 2200 includes a compressor 2210 that is a refrigerant compression means, a condenser 2250, and a condenser fan motor 2251 that drives the atmosphere (cooling air) 2280 that is a heat carrier medium, and the liquid shown in FIG. Solenoid valve 2 for shutting off valve means such as refrigerant flow rate control valve 2261 and gas refrigerant flow rate control valve 2262, liquid gas heat exchanger 2271, dryer 2272, strainer 2273, closed circulation system of refrigerant
274, and piping accessories such as a water heat exchanger (not shown) are integrally assembled. Of course, in these devices, the refrigerant closed circulation system is constituted by means that fulfills the purpose.

【0007】これら両ユニットは略一枚の板の夫々内外
面にコンパクトに纏められている。当然のことながら、
マイクロコンピュータ式コントローラ3000は外部か
ら操作されるので外側ユニットに設けられている。換気
孔2150は前記板部に設けた穴を開閉して外気228
0を出し入れするものでモータ2151で開度制御され
る。冷却装置を要求に叶うよう運転するために内側ユニ
ット2100には蒸発器出口温度検出器2133(図
9)、吸い込み空気2181の温度検出器2131、吹
き出し空気2182の温度検出器2132、ヒータ付近
空気温度検出器2134(図9)が設けられ、一方の熱
運搬媒体であり処理操作の対象でもあるコンテナ100
0の内側空気2180の処理前後の温度は、吸い込み空
気温度検出器2131及び吹き出し空気温度検出器21
32で検出制御される。蒸発手段により熱交換された冷
媒の温度は代表表面の温度を、蒸発器出口温度検出器2
133(図9)で検出される。内側空気2180の湿度
は蒸発手段の熱運搬媒体吸い込み口付近に設けられた加
湿器2160付近の吸い込み空気湿度検出器2162
(図9)で検出される。また用途により炭酸ガス濃度検
出器、酸素ガス濃度検出器も設けられる。デフロストに
関わる内側空気2180の温度はヒータ付近空気温度検
出器2134(図9)で検出制御される。外側ユニット
2100には圧縮手段の吐出圧力検出器2231、圧縮
手段の吸入圧力検出器2232、強制給油方式の圧縮手
段の場合は油圧圧力検出器、圧縮手段の吐出ガス温度検
出器2241、凝縮手段の冷却媒体2280(大気)の
一次温度検出器2242、が装備されていて、冷却装置
の運転状況把握データの一部を測定する。
Both of these units are compactly assembled on the inner and outer surfaces of a substantially single plate. As a matter of course,
Since the microcomputer controller 3000 is operated from the outside, it is provided in the outer unit. The ventilation hole 2150 is opened and closed by opening and closing the hole provided in the plate portion.
The motor 2151 controls the opening degree by moving 0 in and out. In order to operate the cooling device to meet the demand, the inner unit 2100 includes an evaporator outlet temperature detector 2133 (FIG. 9), a suction air 2181 temperature detector 2131, a blown air 2182 temperature detector 2132, and a heater vicinity air temperature. A container 100 provided with a detector 2134 (FIG. 9), which is one of the heat-carrying media and is also the target of the processing operation.
The temperatures of the inside air 2180 of 0 before and after the treatment are the intake air temperature detector 2131 and the blown air temperature detector 21.
The detection is controlled by 32. For the temperature of the refrigerant that has been heat-exchanged by the evaporating means, the temperature of the representative surface is determined by the evaporator outlet temperature detector 2
It is detected at 133 (FIG. 9). The humidity of the inside air 2180 is determined by the suction air humidity detector 2162 near the humidifier 2160 provided near the heat transfer medium suction port of the evaporation means.
(Fig. 9). A carbon dioxide concentration detector and an oxygen gas concentration detector are also provided depending on the application. The temperature of the inside air 2180 related to defrost is detected and controlled by the heater near air temperature detector 2134 (FIG. 9). The outer unit 2100 includes a discharge pressure detector 2231 for the compression means, a suction pressure detector 2232 for the compression means, a hydraulic pressure detector for a forced lubrication type compression means, a discharge gas temperature detector 2241 for the compression means, and a condensing means. A primary temperature detector 2242 for the cooling medium 2280 (atmosphere) is provided and measures a part of the operation status grasp data of the cooling device.

【0008】図9において、冷媒は圧縮手段2210の
吐出口、凝縮手段2250、液冷媒流量制御弁226
1、蒸発手段2110、圧縮手段2210の吸い込み口
の順に循環するのは一般の場合と同一である。ここでや
や特異な点は既に公知の事実ではあるが、圧縮手段22
10の吐出口を出た高温高圧の作動ガスを蒸発手段21
10の入口に、ガス冷媒流量制御弁2262を介してバ
イパスさせている点である。これは冷却装置の冷却能力
調整又は大気温度が低く加熱が必要な時、液冷媒流量を
制限して、高温のガス状冷媒を蒸発手段に流して此の加
熱能力を加熱用ヒータ2140の能力に加算して用いる
目的で行われる。液冷媒流量制御弁2261は例えばパ
ルス駆動式のステッピング動作をする連続制御型の開閉
弁であり、ガス冷媒流量制御弁2262は例えば電磁力
に比例して作動開度変化する連続制御型の開閉弁であ
る。
In FIG. 9, the refrigerant is the discharge port of the compression means 2210, the condensation means 2250, and the liquid refrigerant flow control valve 226.
Circulation in the order of 1, the evaporation means 2110, and the suction port of the compression means 2210 is the same as in the general case. Here, the somewhat peculiar point is a known fact, but the compression means 22
The high temperature and high pressure working gas discharged from the discharge port 10
The point is that the inlet of 10 is bypassed via a gas refrigerant flow rate control valve 2262. This is because when the cooling capacity of the cooling device is adjusted or when the atmospheric temperature is low and heating is required, the liquid refrigerant flow rate is limited and the high-temperature gaseous refrigerant is caused to flow to the evaporating means so that this heating capacity becomes the capacity of the heating heater 2140. It is performed for the purpose of adding and using. The liquid refrigerant flow rate control valve 2261 is, for example, a continuous control type opening / closing valve that performs a pulse drive type stepping operation, and the gas refrigerant flow rate control valve 2262 is, for example, a continuous control type opening / closing valve that changes the operating opening in proportion to electromagnetic force. Is.

【0009】図10は上記装置のシステム制御系統図で
ある。このシステムは電源開閉器4100、圧縮手段駆
動用電動機2211、蒸発手段の蒸発器ファン駆動用電
動機2111、凝縮手段の凝縮ファン駆動用電動機22
51、ヒータ2140等の電力機器、マイクロコンピュ
ータ式コントローラ3000、加湿器2160、冷却装
置の運転データ記録機器への電磁開閉器4200よりな
る電源4000と、マイクロコンピュータ式コントロー
ラ3000よりなる。
FIG. 10 is a system control system diagram of the above apparatus. This system includes a power supply switch 4100, a compression means driving electric motor 2211, an evaporator means driving fan 2111, and a condensing means driving condensing fan 22.
51, a power supply device such as a heater 2140, a microcomputer type controller 3000, a humidifier 2160, an electromagnetic switch 4200 to the operation data recording device of the cooling device, and a microcomputer type controller 3000.

【0010】マイクロコンピュータ式コントローラ30
00は電源3100、コンピュータ本体3200、設定
表示器3300よりなり、ユニットスイッチ3110を
投入すると通電される。コンピュータ本体3200に
は、温度検出器2131〜2134,2241,224
2、圧力検出器2231〜2233、湿度検出器216
2、酸素濃度、炭酸ガス濃度等の濃度検出器等各種の検
出器がセンサーターミナルに接続される。冷媒流量制御
弁2261,2262、換気口開閉用モータ2151、
電磁弁2274等は操作機器ターミナルに接続され出力
が制御される。前記各種電動機及びヒータ類は主として
ON/OFF制御され、これはコンピュータ本体320
0が制御結果として出力するリレー群3210により制
御される開閉器群4210により行われる。
Microcomputer type controller 30
Reference numeral 00 includes a power source 3100, a computer main body 3200, and a setting display unit 3300, which are energized when a unit switch 3110 is turned on. The computer main body 3200 includes temperature detectors 2131 to 2134, 2241 and 224.
2, pressure detectors 2231 to 2233, humidity detector 216
2. Various detectors such as concentration detectors for oxygen concentration and carbon dioxide concentration are connected to the sensor terminal. Refrigerant flow rate control valves 2261 and 2262, ventilation opening / closing motor 2151,
The solenoid valve 2274 and the like are connected to the operation equipment terminal to control the output. The various electric motors and heaters are mainly controlled to be turned on and off, which is a computer main body 320.
The switch group 4210 controlled by the relay group 3210 that outputs 0 as a control result is performed.

【0011】図11は上記システムの自動診断と制御の
フロー概要を示す図である。診断機能は大別して初期診
断、ファンクション診断、予行検査(以下PTIとい
う;pre trip ins pection)の三項目よりなり、PTI
は主要項目のみと全項目に分けられ、必要に応じて選択
可能である。
FIG. 11 is a diagram showing an outline of the flow of automatic diagnosis and control of the above system. The diagnostic functions are roughly divided into three items: initial diagnosis, function diagnosis, and dry run test (hereinafter referred to as PTI; pre trip ins section).
Is divided into only main items and all items, and can be selected as required.

【0012】(a)電源スイッチ4100を投入し、ユ
ニットスイッチ3110を投入するとコンピュータ本体
3200の演算制御機能が動作を開始し、スタート状態
になる。
(A) When the power switch 4100 is turned on and the unit switch 3110 is turned on, the arithmetic control function of the computer main body 3200 starts to operate and enters the start state.

【0013】(b)次に初期診断を始める。初期診断は
主として、ROM,RAM,PROGRAM等CPU
(COMPIUTING UNIT )の診断、A/Dコンバータの診
断、センサーの診断、その他を行う。A/Dコンバータ
の診断は対応するセンサーの入力電圧を印加した時所定
のデジタル符号系列が出力されるかどうかを符号判定す
れば解る。センサーの診断は断線か又は短絡かを先ず診
断する。その後例えばシステムが停止していれば当然互
いに等値を示す物理量に着目して、これを比較すること
によりなされる。例えば冷却装置が停止していれば、内
側ユニット2100の吸い込み空気温度は吹き出し空気
温度、ヒータ付近空気温度、蒸発器出口温度とほぼ等し
く、圧縮手段の吐出圧力は吸入圧力、油圧圧力とほぼ等
しくなる筈であるから誤差範囲を越えて等号条件が満た
されなければ異常と診断する。その他の診断は、例えば
各種電動機の断線の有無、絶縁低下の有無が診断項目の
一部である。絶縁低下の有無診断は本願発明者等がなし
た先の出願特開平01−184475に詳しく記載され
ている。このように、初期診断は非通電状態での各種電
力機器の異常の有無を診断対象にする基本的な診断であ
る。
(B) Next, the initial diagnosis is started. Initial diagnosis is mainly CPU such as ROM, RAM, PROGRAM
(COMPIUTING UNIT) diagnosis, A / D converter diagnosis, sensor diagnosis, etc. The diagnosis of the A / D converter can be understood by determining the sign whether or not a predetermined digital code sequence is output when the input voltage of the corresponding sensor is applied. The sensor is first diagnosed as a disconnection or a short circuit. After that, for example, if the system is stopped, naturally, the physical quantities showing equal values are focused on and compared with each other. For example, if the cooling device is stopped, the intake air temperature of the inner unit 2100 is almost equal to the blowout air temperature, the heater air temperature, and the evaporator outlet temperature, and the discharge pressure of the compression means is almost equal to the suction pressure and the hydraulic pressure. Since it is supposed to be, it is diagnosed as abnormal if the equal sign condition is not satisfied within the error range. For other diagnoses, for example, the presence or absence of disconnection of various electric motors and the presence or absence of insulation deterioration are part of the diagnostic items. The presence / absence diagnosis of insulation deterioration is described in detail in the earlier application JP-A-01-184475 filed by the present inventors. As described above, the initial diagnosis is a basic diagnosis in which the presence or absence of abnormality of various electric power devices in the non-energized state is a diagnosis target.

【0014】(c)電力機器への通電を開始する。初期
診断に合格すればコンピュータ本体3200はリレー群
3210に対応するリレーを介して開閉器4210に動
作指令を出力するので、これに基づき電力機器への一次
側に通電される。
(C) Energization of electric power equipment is started. If the initial diagnosis is passed, the computer main body 3200 outputs an operation command to the switch 4210 via the relays corresponding to the relay group 3210, and accordingly, the power device is energized to the primary side.

【0015】(d)割り込み有無を判定する。コンピュ
ータの動作プログラムは割り込みがあれば対応する作業
ができるよう仕組まれているので、これがあるか否か判
定する。対応する作業の一例は設定値変更、ファンクシ
ョン診断、PTI診断である。設定値変更は制御変数の
設定値、例えば内側ユニット2100の吸い込み空気温
度、デフロスト(除霜)開始設定時間等を変更するもの
である。ファンクション診断では、各種電力機器を通電
しなければ判断不可能な項目を診断する。例えば、各種
電力機器の開閉器4210の接点の動作、圧縮機駆動用
電動機の動力配線の相回転方向(但しこの場合は同電動
機用開閉器は勿論非動作とする)等である。PTI診断
では、冷却装置を実際に運転して、高価な積荷を収容し
て輸送しうる機能を全て満たすか否かを、荷物を入れる
に先立って診断する。ここでは例えば、各種電力機器の
欠相の有無、冷媒漏れの有無が実運転条件で診断され
る。
(D) The presence / absence of interrupt is determined. Since the operation program of the computer is designed so that the corresponding work can be performed if there is an interrupt, it is determined whether or not there is this. An example of corresponding work is setting value change, function diagnosis, and PTI diagnosis. The change of the set value changes the set value of the control variable, for example, the intake air temperature of the inner unit 2100, the defrost (defrost) start set time, and the like. In the function diagnosis, items that cannot be judged without energizing various electric power devices are diagnosed. For example, the operation of the contacts of the switch 4210 of various electric power devices, the phase rotation direction of the power wiring of the compressor driving electric motor (however, in this case, the electric motor switching device is of course inoperative), and the like. In the PTI diagnosis, whether or not the cooling device is actually operated and whether all functions capable of accommodating and transporting an expensive cargo are satisfied, prior to loading the cargo, are diagnosed. Here, for example, the presence / absence of a phase loss of various electric power devices and the presence / absence of refrigerant leakage are diagnosed under actual operating conditions.

【0016】図12は上記装置の運転中の冷媒量診断の
例を示す図である。図はPTIの標準的な運転パターン
を示しており、PTIはMINI.PTIとMAX.P
TIに区分され、前者は主として機器単独の作動診断を
行い、後者は冷却装置としての全ての機能を診断し、前
者は後者に先行して行われる。MINI.PTIが全項
目異常無し、即ち正常に終了すると、冷却装置の運転が
始まり、MAX.PTIに移行する。初めに室内側ユニ
ットの吹き出し空気温度ta D の設定値を0℃に設定し
て冷却運転する。吹き出し空気温度ta D が目標温度に
到達したら、その時の圧縮手段2210の吐出圧力HP
を、ta D =0℃に対する大気温度ta をパラメータと
する冷却装置の高い圧力HPの、実験等で予め求められ
た特性即ちHPの大気温度特性に基づき、所定の圧力範
囲に有るか否か診断し、冷媒量の診断を行う。この条件
で能力制御運転を継続し制御の安定性を診断する。次に
吹き出し空気温度ta D の設定温度を冷凍条件の、例え
ば−15℃まで下げて運転し低温条件で再度冷媒量診断
と制御の安定性診断を行い、次に前記設定温度を更に下
げ、最低到達温度を確認する。その後冷却運転を停止し
て、加熱ヒータ2140を通電してデフロスト機能を診
断する。即ち、所定位置例えば蒸発器出口温度が所定時
間内に所定温度まで上昇するか診断する。
FIG. 12 is a diagram showing an example of the refrigerant amount diagnosis during the operation of the above apparatus. The figure shows the standard operation pattern of PTI. PTI and MAX. P
In the former, the former mainly diagnoses the operation of the equipment alone, the latter diagnoses all the functions as a cooling device, and the former precedes the latter. MINI. When all the items of PTI are normal, that is, when the PTI ends normally, the operation of the cooling device starts and MAX. Move to PTI. First, the set value of the air temperature ta D of the indoor unit is set to 0 ° C. and the cooling operation is performed. When the blown air temperature ta D reaches the target temperature, the discharge pressure HP of the compression means 2210 at that time is reached.
Is based on the characteristics of the high pressure HP of the cooling device having the atmospheric temperature ta as a parameter with respect to ta D = 0 ° C. as a parameter, which is obtained in advance, such as the atmospheric temperature characteristics of HP, and whether or not it is within a predetermined pressure range. Diagnosis is made and the amount of refrigerant is diagnosed. Under this condition, the capacity control operation is continued and the control stability is diagnosed. Next, the set temperature of the blown air temperature ta D is lowered to the refrigerating condition, for example, to -15 ° C, the operation is performed, and the refrigerant amount diagnosis and the control stability diagnosis are performed again under the low temperature condition. Check the temperature reached. After that, the cooling operation is stopped and the heater 2140 is energized to diagnose the defrost function. That is, it is diagnosed whether the temperature at a predetermined position, for example, the evaporator outlet, rises to a predetermined temperature within a predetermined time.

【0017】以上がPTIの概要で有り、診断の途中で
異常を発見すれば、異常内容を表示して直ちに運転を停
止する。また解除操作を行えば、診断を中断すると共に
それまで行った診断結果を表示する。PTI診断が合格
すると、荷積OKのサインが出てコンピュータ本体はこ
れを記憶し電源再投入時此を表示器3300に表示する
ので、特別の指示をしなければこのときは割り込み無し
の処理がなされる。
The above is the outline of PTI. If an abnormality is found during the diagnosis, the content of the abnormality is displayed and the operation is immediately stopped. Further, if the release operation is performed, the diagnosis is interrupted and the result of the diagnosis performed so far is displayed. If the PTI diagnosis passes, a sign of loading is output and the computer main body stores this and displays this on the display unit 3300 when the power is turned on again. Therefore, if no special instruction is given, at this time, the processing without interruption is performed. Done.

【0018】(e)荷積み運転する。ここでは先に設定
した制御変数の設定値に基づき、夫々の冷媒流量制御弁
2260の弁開度をPID演算結果応じて、中間開度か
ら全閉又は全開にわたり制御し、ヒータ2140の通電
有無、凝縮手段のファン運転数等自動制御運転がなされ
る。
(E) Loading operation. Here, based on the set value of the previously set control variable, the valve opening degree of each refrigerant flow rate control valve 2260 is controlled from the intermediate opening degree to fully closed or fully opened according to the PID calculation result, and whether or not the heater 2140 is energized, An automatic control operation such as the number of fans of the condensing means is performed.

【0019】(f)装置を停止する。ユニット停止スイ
ッチ3110が開かれると冷却装置は運転を停止する。
(F) Stop the device. When the unit stop switch 3110 is opened, the cooling device stops operating.

【0020】図13は旋回半径固定型のスクロール型圧
縮機の断面図である。図において、密閉ハウジング8内
上部にはスクロール型圧縮機構Cが、下部には電動モー
タ4が配設され、これらは回転シャフト5によって互い
に連動連結されている。スクロール型圧縮機構Cは固定
スクロール1、旋回スクロール2、旋回スクロール2の
公転を許容するが、その自転を阻止するオルダムリンク
等の自転阻止機構3、固定スクロール1及び電動モータ
4が係止されるフレーム6、回転シャフト5を軸支する
上部軸受71及び下部軸受72、旋回スクロール2を支
持する旋回軸受73及びスラスト軸受74を具えてい
る。
FIG. 13 is a sectional view of a scroll type compressor of a fixed turning radius type. In the figure, a scroll-type compression mechanism C is arranged in the upper part of the closed housing 8, and an electric motor 4 is arranged in the lower part thereof, which are interlockingly connected to each other by a rotary shaft 5. The scroll-type compression mechanism C allows the fixed scroll 1, the orbiting scroll 2, and the orbiting scroll 2 to revolve, but the rotation prevention mechanism 3, such as an Oldham link, which prevents the fixed scroll 1, the fixed scroll 1, and the electric motor 4 are locked. The frame 6 includes an upper bearing 71 and a lower bearing 72 that support the rotating shaft 5, an orbiting bearing 73 and a thrust bearing 74 that support the orbiting scroll 2.

【0021】固定スクロール1は端板11とうず巻体1
2よりなり、端板11には吐出ポート13とこれを開閉
する吐出弁17が設けられている。旋回スクロール2は
端板21とうず巻体22とボス23よりなり、このボス
23内にはドライブブッシュ54が旋回軸受73を介し
て軸支されている。そして、このドライブブッシュ54
には回転シャフト5の上端に突設された偏心ピン53が
回転自在に軸支されている。ハウジング8内底部に貯溜
された潤滑油81は回転シャフト5の回転による遠心力
によって入口孔51から吸い上げられ、給油孔52を通
って下部軸受72、偏心ピン53、上部軸受71、自転
阻止機構3、旋回軸受73、スラスト軸受74等を潤滑
した後、室61、排油孔62を経てハウジング8の底部
に排出される。
The fixed scroll 1 comprises an end plate 11 and a spiral body 1.
The end plate 11 is provided with a discharge port 13 and a discharge valve 17 that opens and closes the discharge port 13. The orbiting scroll 2 comprises an end plate 21, an eddy coil 22 and a boss 23, and a drive bush 54 is pivotally supported in the boss 23 via an orbiting bearing 73. And this drive bush 54
An eccentric pin 53 protruding from the upper end of the rotary shaft 5 is rotatably supported on the shaft. The lubricating oil 81 stored in the bottom portion of the housing 8 is sucked up from the inlet hole 51 by the centrifugal force generated by the rotation of the rotary shaft 5, passes through the oil supply hole 52, and the lower bearing 72, the eccentric pin 53, the upper bearing 71, and the rotation prevention mechanism 3 After lubricating the orbiting bearing 73, the thrust bearing 74, etc., the oil is discharged to the bottom of the housing 8 through the chamber 61 and the oil drain hole 62.

【0022】電動モータ4を回転駆動すると、この回転
は回転シャフト5、偏心ピン53、ドライブブッシュ5
4、旋回軸受73を介して旋回スクロール2に伝達さ
れ、旋回スクロール2は自転阻止機構3によって自転を
阻止されながら公転旋回運動する。するとガスが吸入管
82を経てハウジング8内に入り、電動モータ4を冷却
した後、固定スクロール1に設けられた吸入通路15か
ら吸入室16を経て固定スクロール1と旋回スクロール
2を噛み合せることによって限界された複数の密閉室2
4内に吸入される。そして、旋回スクロール2の公転旋
回運動により密閉室24の容積が減少するのに伴って圧
縮されながら中央部に至り、吐出ポート13から吐出弁
17を押し上げて第1の吐出キャビティ14に吐出さ
れ、次いで、仕切壁31に穿設された穴18を経て第2
の吐出キャビティ19に入り、ここから吐出管83を経
て外部に吐出される。なお、84はドライブブッシュ5
4に取り付けられたバランスウエイトである。
When the electric motor 4 is rotationally driven, this rotation is caused by the rotation shaft 5, the eccentric pin 53, and the drive bush 5.
4, transmitted to the orbiting scroll 2 via the orbiting bearing 73, and the orbiting scroll 2 revolves around the axis while being prevented from rotating by the rotation preventing mechanism 3. Then, the gas enters the housing 8 through the suction pipe 82, cools the electric motor 4, and then meshes the fixed scroll 1 and the orbiting scroll 2 through the suction passage 15 provided in the fixed scroll 1 and the suction chamber 16. Limited closed chambers 2
4 is inhaled. Then, as the volume of the closed chamber 24 decreases due to the orbiting movement of the orbiting scroll 2 and reaches the central portion while being compressed, the discharge valve 13 is pushed up from the discharge port 13 and discharged into the first discharge cavity 14, Then, through the hole 18 formed in the partition wall 31, the second
Into the discharge cavity 19 and is discharged from there through the discharge pipe 83. In addition, 84 is a drive bush 5.
It is a balance weight attached to 4.

【0023】冷却装置の運転条件としては、冷却対象物
の要求から蒸発器2110の吸い込み空気温度範囲が決
まり、冷却装置2000の使用環境条件から凝縮器22
50の吸い込み空気温度(冷却空気2280の温度でも
ある)が決まる。冷却装置2000の冷却能力は使用す
る冷媒の物性値、上記条件下でのコンテナ1000の断
熱性能、冷却負荷の動的特性等から決められ、此が決ま
ると圧縮機2210の単位時間当りの所要押しのけ容積
(Vh:cc/h)が決まり、圧縮機の回転速度N(r
ev/min)が決まると、圧縮機の単位回転当たりの
所要押しのけ容積(Vs:cc/rev)が決まる。こ
れらが決まると、圧縮機の吐出圧力Pd、吸入圧力Ps
は凝縮温度、蒸発温度に対応する飽和圧力が自動的に決
まる。このようにして、圧縮機の運転圧力条件が決ま
る。これを Pd =f(Ps )……………………………………………(1) とする。
As the operating condition of the cooling device, the intake air temperature range of the evaporator 2110 is determined by the requirement of the object to be cooled, and the condenser 22 is determined by the operating environment condition of the cooling device 2000.
The intake air temperature of 50 (which is also the temperature of the cooling air 2280) is determined. The cooling capacity of the cooling device 2000 is determined by the physical properties of the refrigerant used, the heat insulation performance of the container 1000 under the above conditions, the dynamic characteristics of the cooling load, etc. When this is determined, the required displacement of the compressor 2210 per unit time is pushed. The volume (Vh: cc / h) is determined, and the rotation speed N (r of the compressor is
ev / min), the required displacement (Vs: cc / rev) per unit rotation of the compressor is determined. When these are determined, the discharge pressure Pd and suction pressure Ps of the compressor
, The saturation pressure corresponding to the condensation temperature and the evaporation temperature is automatically determined. In this way, the operating pressure condition of the compressor is determined. Let this be Pd = f (Ps) ……………………………………………… (1).

【0024】図13に示したスクロール型圧縮機では、
固定スクロール1に設けた渦巻き体12と旋回スクロー
ル2に設けた渦巻き体22は共働する二つのピストン部
材を成し、複数の密閉室24を形成する。夫々の渦巻き
体は一般にインボリュート曲線がもちいられ、渦巻き体
12の回りに渦巻き体22が非回転旋回運動すると、旋
回運動面内で両渦巻き体が接触して形成する密閉室24
の断面形状は、図14の様に変化する。同図(a)は吸
入締め切り時点を示し旋回角θ=0°の時、同図
(b)、(c)、(d)は夫々θ=90°、θ=180
°、θ=270°の時の状態を示す。密閉室24は旋回
角度の或る範囲では一対形成されθ=0°の時最大でθ
の増加と共に減少し途中で合流して一個の密閉室25に
成ってからも更に減少して遂にはゼロになる。
In the scroll type compressor shown in FIG. 13,
The spiral body 12 provided on the fixed scroll 1 and the spiral body 22 provided on the orbiting scroll 2 form two piston members that cooperate with each other, and form a plurality of closed chambers 24. Each of the spiral bodies generally uses an involute curve, and when the spiral body 22 makes a non-rotating swirl motion around the swirl body 12, a closed chamber 24 formed by contact between the spiral bodies in the swirl motion plane is formed.
The cross-sectional shape of is changed as shown in FIG. In the figure, (a) shows the deadline for suction, and when the turning angle is θ = 0 °, (b), (c), and (d) in the figure show θ = 90 ° and θ = 180, respectively.
The state is shown when θ and θ = 270 °. A pair of closed chambers 24 are formed within a certain range of the turning angle, and when θ = 0 °, the maximum is θ.
It decreases with an increase in the value of ## EQU1 ## and merges in the middle to form one closed chamber 25, and then it further decreases and finally becomes zero.

【0025】吐出穴13は密閉室25が所定の容積に減
少した旋回角度以後密閉室25に連通する様設けられて
いる。
The discharge hole 13 is provided so that the closed chamber 25 communicates with the closed chamber 25 after the turning angle at which the closed volume is reduced to a predetermined volume.

【0026】 Vs …………密閉室24の吸入締め切り時点の容積 A …………断面積 h …………渦巻体12及び22の高さ とすれば Vs =A×h……………………………………………………………(2) で表され、断面積Aは渦巻き体12または22の形状パ
ラメータにより決まる。
Vs: Volume of the closed chamber 24 at the time of closing the suction A: Cross-sectional area h: Vs = A × h, assuming the height of the spiral bodies 12 and 22. ………………………………………… (2) The cross-sectional area A is determined by the shape parameters of the spiral body 12 or 22.

【0027】渦巻き体がインボリュート曲線であれば、
形状パラメータとは次の諸元であり、一定の幾何学的条
件を満たすことが要求される量である。
If the spiral body is an involute curve,
The shape parameter has the following specifications and is an amount required to satisfy a certain geometrical condition.

【0028】 インボリュート曲線の基円半径………………b 渦巻き体の板厚…………………………………t 最大伸開角度または渦巻きの巻き数…………Φmax 旋回半径…………………………………………ρ 渦巻き体の旋回角θに対する密閉室24の圧力は此の間
をポリトロープ圧縮と考えれば Pdc=(Vs /V( θ) )n ×Ps …………………………………(3) =Φ×Ps n…………ポリトロープ指数 Pdc…………密閉室24の圧力 の関係で上昇する。Pdc≒Pd の旋回角以後吐出穴13
に連通する様設計すれば以後吐出行程になる。これを図
15に模式的指圧図で示す。
Radius of base circle of involute curve ……………… b Thickness of spiral body ………………………… t Maximum expansion angle or number of spirals Φmax Swirl Radius ………………………………………… ρ The pressure in the closed chamber 24 with respect to the swirl angle θ of the spiral body is considered to be polytropic compression in this area. Pdc = (Vs / V (θ)) n × Ps …………………………………… (3) = Φ × Ps n ………… Polytropic index Pdc ………… Increases due to the pressure in the sealed chamber 24. After the turning angle of Pdc≈Pd, the discharge hole 13
If it is designed to communicate with This is shown in a schematic acupressure diagram in FIG.

【0029】冷却装置の冷却能力のバリエーションに対
する圧縮機の押しのけ容積のバリエーションVsへの対
応は、渦巻き体12または22の形状パラメータを変え
ずに、hを変えて行うのが経済的である。一方渦巻き体
12及び22の両側には、密閉室25を形成する部位で
は一方からPd 、他方から圧縮途中の圧力Pdc、密閉室
24を形成する部位では一方から圧縮途中の圧力Pdc、
他方からPs が渦巻き体の高さに沿い一様に作用する。
そして此等渦巻き体12及び22は端板11又は21に
固定支持されているから、渦巻き体に作用する上記差圧
に基づく曲げ応力σは根元で最大、撓みδは先端で最大
に成る。
It is economical to respond to the variation Vs of the displacement of the compressor with respect to the variation of the cooling capacity of the cooling device by changing h without changing the shape parameter of the spiral body 12 or 22. On the other hand, on both sides of the spiral bodies 12 and 22, Pd is from one side in the part forming the closed chamber 25, pressure Pdc is in the middle of compression from the other side, and pressure Pdc is in the middle from compression in the part forming the closed chamber 24.
On the other hand, Ps acts uniformly along the height of the spiral body.
Since these spiral bodies 12 and 22 are fixedly supported by the end plates 11 or 21, the bending stress σ based on the above-mentioned differential pressure acting on the spiral bodies is maximum at the root, and flexure δ is maximum at the tip.

【0030】これを単純片持ち梁として近似すると荷重
分布は上記の様に等分布荷重であるから次に示す結果を
得る。
If this is approximated as a simple cantilever beam, the load distribution is a uniform load as described above, and the following results are obtained.

【0031】 σmax =Mmax /Z =(w×h2 /2)/(st2 /6) =(ΔP×s×h2 /2)/(st2 /6) =3×ΔP×h2 /t2 ……………………………………(4) δmax =wh4 /(8×E×I) =ΔP×s×h4 /(8×E×s×t3 /12) =4×h4 ×ΔP/(3×E×t3 )……………………(5) ここに w=梁の単位長さ当たりの分布荷重 s=渦巻き体に沿う長さ M=梁の断面に作用する曲げモーメント σ=梁の断面内の最大応力 δ=梁の断面の中立軸の変位 E=渦巻き体の弾性率 I=断面二次モーメント =s×t3 /12 Z=断面係数 =I/(梁の厚さ/2=t/2) =s×t2 /6 ΔP=Pd −Pdc=ΔPd ……渦巻き体の密閉室25を
形成する部位に対し =Pdc−Ps =ΔPm ……渦巻き体の密閉室24を形成
する部位に対し 更にw=ΔP×s×h/h =ΔP×s である。
[0031] σmax = Mmax / Z = (w × h 2/2) / (st 2/6) = (ΔP × s × h 2/2) / (st 2/6) = 3 × ΔP × h 2 / t 2 .......................................... (4) δmax = wh 4 / (8 × E × I) = ΔP × s × h 4 / (8 × E × s × t 3/12 ) = 4 × h 4 × ΔP / (3 × E × t 3 ) …………………… (5) where w = distributed load per unit length of beam s = length along spiral body M = bending acting on the cross section of the beam moment of sigma = beamed maximum stress [delta] = beam cross section of the displacement E = elastic modulus I = moment of inertia of the spiral of the neutral axis of the cross section = s × t 3/12 Z = section modulus = I / (beam thickness / 2 = t / 2) = s × t 2/6 ΔP = Pd -Pdc = relative site to form a ΔPd ...... sealed chamber 25 of the spiral body = Pdc-Ps = .DELTA.Pm: Paired with the part forming the closed chamber 24 of the spiral body Furthermore, w = ΔP × s × h / h 2 = ΔP × s 2.

【0032】そしてより詳しい解析に依れば、渦巻き体
の密閉室25を形成する部位に対して、σmax やδmax
が大きくなることが解った。従ってΔPにはΔPd が適
用され式(3)より ΔP=ΔPd =Pd−Φ×Ps ………………………………………(6) で現わされる。
According to a more detailed analysis, σmax and δmax are determined for the region forming the closed chamber 25 of the spiral body.
Was found to be large. Therefore, .DELTA.Pd is applied to .DELTA.P, which is expressed by the equation (3) as follows: .DELTA.P = .DELTA.Pd = Pd-.PHI..times.Ps (6).

【0033】圧縮機の押しのけ量に対するヴァリエーシ
ョンVs に対し渦巻き体の高さhを大きくして対応する
場合、 渦巻き体の強度に対しては…………………高さの変化率
の2倍 渦巻き体の先端の変位に対しては…………高さの変化率
の4倍 の割り合いで不利に成ることが解る。又渦巻き体の先端
の変位δmaxはΔPd に比例して増加し、許容範囲を
満足しなく成れば、互いの渦巻き体の接触圧力が過大と
成り焼き付きを起こし運転不能に至る。従って ΔPd ≦ΔPa 此処で添字「a 」は許容値を示す添字とする。これより Pd ≦Φ×Ps +ΔPa =fh (Ps )……………………………(7) と成りPdの上限fh (Ps )が決まる。fh (Ps )
がf(Ps )に対し十分余裕があれば問題は無いが、バ
リエーションの要求から不十分の場合もある。
When the height h of the spiral body is increased to cope with the variation Vs with respect to the displacement of the compressor, the strength of the spiral body is doubled by the change rate of the height. It is understood that the displacement of the tip of the spiral body is disadvantageous at a rate of 4 times the rate of change in height. Further, the displacement δmax of the tip of the spiral body increases in proportion to ΔP d , and if the allowable range is not satisfied, the contact pressure between the spiral bodies becomes excessive and seizure occurs, resulting in inoperability. Therefore, ΔPd ≦ ΔPa, where the subscript “a” is a subscript indicating an allowable value. From this, Pd ≤ Φ x Ps + ΔPa = f h (Ps) ………………………… (7) and the upper limit f h (Ps) of Pd is determined. f h (Ps)
If there is a sufficient margin for f (Ps), there will be no problem, but in some cases it may be insufficient due to the requirement of variation.

【0034】[0034]

【発明が解決しようとする課題】冷却装置としては環境
温度の急上昇、凝縮器の熱交換器の内外表面への異物付
着、冷却フアンの故障等、凝縮器の能力低下を来し、圧
縮機の吐出圧力Pdを上昇させる要因がある。そのよう
な何らかの要因で、吐出圧力が上昇し、スクロール型圧
縮機の渦巻き体の強度を保持しうる許容圧力上限値を越
えた時、直ちに冷却装置を止めるのは、冷却負荷が高価
な積荷である場合は特に好ましくなく、圧縮機の能力を
若干犠牲にしても極力運転を継続するのが好ましい。
As a cooling device, the capacity of the compressor is deteriorated due to a sudden increase in the ambient temperature, foreign substances adhering to the inner and outer surfaces of the heat exchanger of the condenser, failure of the cooling fan, etc. There is a factor that increases the discharge pressure Pd. If the discharge pressure rises for some reason and exceeds the upper limit of the allowable pressure that can maintain the strength of the scroll body of the scroll compressor, immediately stop the cooling device because the cooling load is an expensive load. In some cases, it is not particularly preferable, and it is preferable to continue the operation as much as possible even if the capacity of the compressor is slightly sacrificed.

【0035】本発明は従来技術に関する此の様な問題点
を解決する事を目的とし、スクロール型圧縮機を備えた
冷却装置において、上記圧縮機の吐出圧力が許容圧力上
限値以上に上昇した時でも、冷却装置を止めることな
く、運転を継続できるようにしようとするものである。
An object of the present invention is to solve these problems of the prior art, and in a cooling device equipped with a scroll type compressor, when the discharge pressure of the compressor rises above an allowable pressure upper limit value. However, it is intended to continue the operation without stopping the cooling device.

【0036】[0036]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、冷媒を圧縮する手段としてスクロー
ル型圧縮機を備えた冷却装置において、同圧縮機の吐出
圧力検出手段、同吸入圧力検出手段、冷媒循環系統の高
圧側から低圧側へ流れる冷媒の流量を制御する冷媒流量
制御手段、前記圧縮機の吐出圧力と吸入圧力との圧力差
に基づくスクロール部材のラップ強度評価から決まる許
容吐出圧力特性を記憶する記憶手段、および運転中の吐
出圧力が許容吐出圧力特性を越えた時前記冷媒流量制御
手段の開度を調整して冷媒循環系統の高圧側から低圧側
への冷媒流量を一時的に増加させ運転を継続させる開度
制御手段が備えてあることを特徴とするスクロール型圧
縮機を備えた冷却装置に関するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and in a cooling device having a scroll type compressor as a means for compressing a refrigerant, the discharge pressure detecting means and the suction means of the compressor are provided. Pressure detection means, refrigerant flow rate control means for controlling the flow rate of the refrigerant flowing from the high pressure side to the low pressure side of the refrigerant circulation system, and the tolerance determined by the wrap strength evaluation of the scroll member based on the pressure difference between the discharge pressure and the suction pressure of the compressor The storage means for storing the discharge pressure characteristic, and when the discharge pressure during operation exceeds the allowable discharge pressure characteristic, the opening of the refrigerant flow rate control means is adjusted to change the refrigerant flow rate from the high pressure side to the low pressure side of the refrigerant circulation system. The present invention relates to a cooling device provided with a scroll compressor, which is provided with an opening control means for temporarily increasing the operation and continuing the operation.

【0037】[0037]

【作用】本発明の冷却装置においては、記憶手段によっ
て圧縮機の吸入圧力に対する許容吐出圧力の特性が記憶
されている。吸入圧力検出手段と吐出圧力検出手段とに
よって、運転中の吐出圧力がその時の吸入圧力に対応す
る前記の記憶されている許容吐出圧力を越えたと判定さ
れた時、開度制御手段が冷媒流量制御手段を開にし、冷
媒循環系統の高圧側から低圧側へ冷媒をバイパスさせて
流し、吐出圧力の上昇を抑制する。これによって圧縮機
のスクロール部材の強度を保ちながら冷却装置の継続運
転が可能となる。
In the cooling device of the present invention, the characteristic of the allowable discharge pressure with respect to the suction pressure of the compressor is stored by the storage means. When it is determined by the suction pressure detection means and the discharge pressure detection means that the discharge pressure during operation exceeds the stored allowable discharge pressure corresponding to the suction pressure at that time, the opening control means controls the refrigerant flow rate. The means is opened, and the refrigerant is caused to flow from the high pressure side to the low pressure side of the refrigerant circulation system by-passing to suppress the rise of the discharge pressure. This enables continuous operation of the cooling device while maintaining the strength of the scroll member of the compressor.

【0038】[0038]

【実施例】図1は本発明の一実施例の機能ブロック図で
ある。図において、3400aは吐出圧力特性記憶手
段、2231は吐出圧力検出手段、2232は吸入圧力
検出手段、3900は冷媒流量制御手段の開度制御手
段、2260aは冷媒流量制御手段、3800aは表示
手段である。上記冷媒流量制御手段の開度制御手段39
00は比較手段3910、演算手段3920、出力手段
3930からなっている。
1 is a functional block diagram of an embodiment of the present invention. In the figure, 3400a is discharge pressure characteristic storage means, 2231 is discharge pressure detection means, 2232 is suction pressure detection means, 3900 is opening control means of refrigerant flow rate control means, 2260a is refrigerant flow rate control means, and 3800a is display means. .. Opening degree control means 39 of the refrigerant flow rate control means
00 includes a comparison unit 3910, a calculation unit 3920, and an output unit 3930.

【0039】図2は上記実施例の作動物質の循環系統図
である。図において、2261aは凝縮機2250の出
口側と蒸発器2110の出口側とを連結するよう新に設
けられた管上に備えられた液冷媒流量制御弁、2262
aは圧縮機2210の吐出側と蒸発器2110の出口側
とを連通するよう新に設けられた管上に備えられたガス
冷媒流量制御弁である。上記以外の部分は従来技術(図
9)と同じである。
FIG. 2 is a circulation system diagram of the working substance of the above embodiment. In the figure, reference numeral 2261a denotes a liquid refrigerant flow control valve provided on a pipe newly provided to connect the outlet side of the condenser 2250 and the outlet side of the evaporator 2110, 2262.
Reference numeral a is a gas refrigerant flow control valve provided on a pipe newly provided so as to connect the discharge side of the compressor 2210 and the outlet side of the evaporator 2110. The parts other than the above are the same as those of the conventional technique (FIG. 9).

【0040】図3は上記実施例のシステム制御系統図で
ある。図において、3800aは前記の表示手段であ
る。上記以外の部分は従来技術(図10)と同じであ
る。
FIG. 3 is a system control system diagram of the above embodiment. In the figure, 3800a is the display means. The parts other than the above are the same as those of the conventional technique (FIG. 10).

【0041】図1、図2において、吐出圧力検出手段2
231、吸入圧力検出手段2232は圧縮機の夫々吐出
圧力、吸入圧力Pd,Psを検出する。
1 and 2, the discharge pressure detecting means 2
231 and suction pressure detection means 2232 detect the discharge pressure and suction pressure Pd, Ps of the compressor, respectively.

【0042】冷媒流量制御手段2260aは、 (a)圧縮機2210の吐出側と蒸発器2110の入口
側を連結するガス冷媒流量制御弁2262 (b)圧縮機2210の吐出側と蒸発器2110の出口
側を連結するガス冷媒流量制御弁2262a (c)凝縮器2250の出口側と蒸発器2110の入口
側を連結する液冷媒流量制御弁2261 (d)凝縮器2250の出口側と蒸発器2110の出口
側を連結する液冷媒流量制御弁2261a の内少なくとも一つの液冷媒流量制御弁と一つのガス冷
媒流量制御弁を組合わせた冷媒流量制御弁とである。ガ
ス冷媒流量制御弁2262又は2262aは圧縮機22
10の吐出するガス冷媒の一部を凝縮器2250に流さ
ないので凝縮器の熱負荷が減少し、吐出圧力が下がる。
液冷媒流量制御弁2261又は2261aは液化した冷
媒を圧縮機2210の吸入側に流すのでガス冷媒を流す
ことに依る圧縮機の吸入ガス温度上昇に依る電動機4の
コイル温度上昇を防止する。
The refrigerant flow rate control means 2260a includes (a) a gas refrigerant flow rate control valve 2262 connecting the discharge side of the compressor 2210 and the inlet side of the evaporator 2110. (b) the discharge side of the compressor 2210 and the outlet of the evaporator 2110. Gas refrigerant flow rate control valve 2262a (c) which connects the two sides, the liquid refrigerant flow rate control valve 2261a (c) which connects the outlet side of the condenser 2250 and the inlet side of the evaporator 2110, and the outlet side of the condenser 2250 and the outlet of the evaporator 2110 At least one liquid refrigerant flow control valve and one gas refrigerant flow control valve of the liquid refrigerant flow control valves 2261a connecting the two sides are combined. The gas refrigerant flow control valve 2262 or 2262a is the compressor 22
Since a part of the gas refrigerant discharged by 10 does not flow into the condenser 2250, the heat load of the condenser is reduced and the discharge pressure is reduced.
Since the liquid refrigerant flow control valve 2261 or 2261a causes the liquefied refrigerant to flow to the suction side of the compressor 2210, it prevents the coil temperature of the electric motor 4 from rising due to the rise of the suction gas temperature of the compressor due to the flowing of the gas refrigerant.

【0043】図1において、開度制御手段3900は比
較手段3910と理論演算手段3920と演算結果出力
手段3930を具備し、吸入圧力検出手段2232の検
出したPsに対するPdhとPdlを演算し吐出圧力検
出手段2231の検出したPdと比較し結果を論理値又
は数値で出力する。なお、Pdhはfh(Ps)で表現
される吐出圧力制御の上限、Pdlはfl(Ps)で表
現される吐出圧力制御復帰の為の下限である。演算結果
出力手段3930は論理値又は数値演算結果として冷媒
流量制御手段2260aの開度制御に要する操作量を出
力して、各々の弁の開閉を制御する。これを保護制御A
と名付ける。表示手段3800aは一時的にも吐出圧力
が上限まで達したことを表示し、原因究明を促す。保護
制御Aは自動診断機能の一部として通常運転プログラム
の先頭に置けば容易に追加の機能を果たす。そして開度
制御手段3900はコンピュータ本体3200の機能の
一部として組み込まれる。
In FIG. 1, the opening control means 3900 comprises a comparison means 3910, a theoretical calculation means 3920 and a calculation result output means 3930, and calculates Pdh and Pdl for Ps detected by the suction pressure detection means 2232 to detect discharge pressure. The Pd detected by the means 2231 is compared and the result is output as a logical value or a numerical value. Note that Pdh is the upper limit of the discharge pressure control expressed by fh (Ps), and Pdl is the lower limit for the return of the discharge pressure control expressed by fl (Ps). The calculation result output means 3930 outputs the operation amount required to control the opening degree of the refrigerant flow rate control means 2260a as a logical value or a numerical calculation result, and controls the opening / closing of each valve. This is protection control A
Name it. The display means 3800a temporarily displays that the discharge pressure has reached the upper limit, and prompts investigation of the cause. The protection control A easily performs an additional function when placed at the head of the normal operation program as a part of the automatic diagnosis function. The opening control means 3900 is incorporated as a part of the function of the computer main body 3200.

【0044】図4は上記実施例の制御フロー図であり、
前述の吐出圧力保護制御Aがこれによって実行される。
FIG. 4 is a control flow chart of the above embodiment,
The discharge pressure protection control A described above is thereby executed.

【0045】図5は上記実施例を自動診断機能と組み合
せた制御フロー図である。スクロール型圧縮機において
は、密閉室25を形成する渦巻き体部が、強度的には最
も厳しい条件になる。この時渦巻き体の一方から吐出室
のガスの圧力Pd、他方から圧縮途中にある密閉室24
の圧力Φ×Psが作用し、渦巻き体の強度はこの時の差
圧に支配される。この差圧ΔPd =Pd −Φ×Pd≦Δ
Pa が運転可能な吐出圧力の上限Pdhを決める。これは
(7)式の形で表現される。吐出圧力特性記憶手段34
00aは圧縮機の吸入圧力Ps と吐出圧力Pd の関係 Pd ≦Pdh=fh (Ps )……………………………………………(7) Pd ≧Pdl=fl (Ps )……………………………………………(8) を記憶する。此処に呼号は次を意味する。 Pdh …………渦巻き体の強度から決まる吐出圧力の上
限設定値 fh (Ps )…………吐出圧力の上限設定値を決めるP
sの関数形 Pdl …………復帰処理の為の吐出圧力設定値 fl (Ps )…………復帰処理の為の吐出圧力設定値の
関数形 但し Pdl<Pd <Pdhであってfl とfhの形は装置
特性に基づいて決める。
FIG. 5 is a control flow chart in which the above embodiment is combined with the automatic diagnosis function. In the scroll compressor, the spiral body portion forming the closed chamber 25 is the most severe condition in terms of strength. At this time, the pressure Pd of the gas in the discharge chamber from one side of the spiral body, and the closed chamber 24 in the middle of compression from the other side.
The pressure of Φ × Ps acts, and the strength of the spiral body is governed by the pressure difference at this time. This differential pressure ΔPd = Pd−Φ × Pd ≦ Δ
Pa determines the upper limit Pdh of the discharge pressure that can be operated. This is expressed in the form of equation (7). Discharge pressure characteristic storage means 34
00a the relationship of the suction pressure Ps and the discharge pressure Pd of the compressor Pd ≦ Pdh = f h (Ps ) ................................................... (7) Pd ≧ Pdl = f l ( Ps) ………………………………………………… (8) Memorize. The name here means the following. Pdh ............ The upper limit set value of discharge pressure determined by the strength of the spiral body f h (Ps) ............ P which determines the upper limit set value of discharge pressure
functional form although Pdl of the discharge pressure setpoint for the discharge pressure setpoint f l (Ps) ............ return process for functional form Pdl ............ return processing s <Pd <a Pdh f l The shapes of and f h are determined based on the device characteristics.

【0046】運転中には次の順序で制御が行われる。詳
しくはフロー図に示すとおりである。 (1)Pd <Pdhなら、通常の運転プログラムを実行す
る。 (2)Pd ≧Pdhなら、冷媒流量制御手段2260aを
開動作させ、警告表示をする(F=1:警告有り) (3)冷媒流量制御手段2260aを開動作した後、P
d <Pdhなら、冷媒流量制御手段2260aを閉動作さ
せ、通常の運転プログラムへ移る。
During operation, control is performed in the following order. Details are as shown in the flow chart. (1) If Pd <Pdh, execute a normal operation program. (2) If Pd ≧ Pdh, the refrigerant flow rate control means 2260a is opened and a warning is displayed (F = 1: with warning). (3) After the refrigerant flow rate control means 2260a is opened, P
If d <Pdh, the refrigerant flow rate control means 2260a is closed and the normal operation program is started.

【0047】本実施例においては、運転中、圧縮機の吐
出圧力Pd が上限値Pdhを越える時、高圧側から低圧側
への冷媒流量を一時的に増加させるので、圧縮機の吐出
圧力Pd は低下しΔPd 減少するから冷却装置の運転を
継続する事が出来る。
In this embodiment, when the discharge pressure Pd of the compressor exceeds the upper limit value Pdh during operation, the refrigerant flow rate from the high pressure side to the low pressure side is temporarily increased, so that the discharge pressure Pd of the compressor is Since it decreases and ΔPd decreases, the operation of the cooling device can be continued.

【0048】図6は、上記実施例において上記制御が実
行された時の吐出圧力と吸入圧力の関係の例である。図
において、(イ)で制御運転中Pdが上昇して(ロ)の
上限に達する。(ロ)でPd −Ps を低下するため冷媒
流量制御手段が開(非常処理として)になる。これによ
りPd は下り、Psは上り運転点は(ハ)へ移動する。
(ハ)でPdlが検出され、非常手段は復元(復帰処理)
される。これ以降は、環境条件に応じて(ニ)へ移動す
る。(ニ)は(イ)に一致する場合もあるが必らずしも
元にもどるとは限らない。
FIG. 6 shows an example of the relationship between the discharge pressure and the suction pressure when the above control is executed in the above embodiment. In the figure, Pd rises during control operation in (a) and reaches the upper limit in (b). In (b), since Pd-Ps is lowered, the refrigerant flow rate control means is opened (as an emergency process). As a result, Pd moves down, and Ps moves up (c).
Pdl is detected in (c), and the emergency means is restored (recovery process)
To be done. After this, move to (d) according to the environmental conditions. (D) may coincide with (a), but it does not necessarily return to the original.

【0049】[0049]

【発明の効果】本発明のスクロール型圧縮機を備えた冷
却装置においては、同圧縮機の吐出圧力検出手段、同吸
入圧力検出手段、冷媒循環系統の高圧側から低圧側へ流
れる冷媒の流量を制御する冷媒流量制御手段、前記圧縮
機の吐出圧力と吸入圧力との圧力差に基づくスクロール
部材のラップ強度評価から決まる許容吐出圧力特性を記
憶する記憶手段、および運転中の吐出圧力が許容吐出圧
力特性を越えた時前記冷媒流量制御手段の開度を調整し
て冷媒循環系統の高圧側から低圧側への冷媒流量を一時
的に増加させ運転を継続させる開度制御手段が備えてあ
るので、圧縮機の吐出圧力が、スクロール部材の強度評
価から決まる上限値を越えた場合でも、冷却装置の運転
を継続することができる。
In the cooling device equipped with the scroll type compressor of the present invention, the discharge pressure detecting means, the suction pressure detecting means, and the flow rate of the refrigerant flowing from the high pressure side to the low pressure side of the refrigerant circulation system of the compressor are controlled. Refrigerant flow rate control means for controlling, storage means for storing the allowable discharge pressure characteristic determined from the wrap strength evaluation of the scroll member based on the pressure difference between the discharge pressure and the suction pressure of the compressor, and the discharge pressure during operation is the allowable discharge pressure. Since the opening control means for adjusting the opening degree of the refrigerant flow rate control means when the characteristics are exceeded to temporarily increase the refrigerant flow rate from the high pressure side to the low pressure side of the refrigerant circulation system to continue the operation, Even when the discharge pressure of the compressor exceeds the upper limit value determined by the strength evaluation of the scroll member, the operation of the cooling device can be continued.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の機能ブロック図。FIG. 1 is a functional block diagram of an embodiment of the present invention.

【図2】上記実施例の作動物質の循環系統図。FIG. 2 is a circulation system diagram of the working substance of the above embodiment.

【図3】上記実施例のシステム制御系統図。FIG. 3 is a system control system diagram of the above embodiment.

【図4】上記実施例の制御フロー図。FIG. 4 is a control flow chart of the above embodiment.

【図5】上記実施例を自動診断機能と組み合せた制御フ
ロー図。
FIG. 5 is a control flow chart in which the above embodiment is combined with an automatic diagnosis function.

【図6】上記実施例において吐出圧力保護制御が実行さ
れた時の吐出圧力と吸入圧力の関係図。
FIG. 6 is a relationship diagram of the discharge pressure and the suction pressure when the discharge pressure protection control is executed in the above embodiment.

【図7】海上輸送用コンテナの内側斜視図。FIG. 7 is an internal perspective view of the ocean shipping container.

【図8】同コンテナの外側斜視図。FIG. 8 is an outer perspective view of the container.

【図9】上記コンテナの冷却装置の冷媒循環系統図。FIG. 9 is a refrigerant circulation system diagram of the container cooling device.

【図10】上記装置のシステム制御系統図。FIG. 10 is a system control system diagram of the above apparatus.

【図11】上記装置の自動診断と制御のフロー図。FIG. 11 is a flow chart of automatic diagnosis and control of the above device.

【図12】上記装置の運転中の冷媒量診断の例を示す
図。
FIG. 12 is a diagram showing an example of refrigerant amount diagnosis during operation of the above apparatus.

【図13】スクロール型圧縮機の断面図。FIG. 13 is a cross-sectional view of a scroll compressor.

【図14】スクロール型圧縮機の圧縮行程説明図。FIG. 14 is an explanatory diagram of a compression stroke of the scroll compressor.

【図15】スクロール型圧縮機の指圧模式図。FIG. 15 is a schematic diagram of acupressure of a scroll type compressor.

【符号の説明】[Explanation of symbols]

1000 コンテナ 2000 冷却装置 2100 内側ユニット 2110 蒸発器 2120 蒸発器用フアン 2130 温度検出器 2131 吸い込み空気温度検出器 2132 吹き出し空気温度検出器 2133 蒸発器出口温度検出器 2134 ヒータ温度検出器 2140 加熱用ヒータ 2150 ダンパー 2160 加湿器 2170 空気圧力スイッチ 2180 内側空気 2181 吸い込み空気 2182 吹き出し空気 2200 外側ユニット 2210 圧縮機 2220 潤滑油 2230 圧力検出器 2231 吐出圧力検出器 2232 吸入圧力検出器 2240 温度検出器 2241 吐出ガス温度検出器 2242 大気温度検出器 2250 凝縮器 2260a 冷媒流量制御手段 2261 液冷媒流量制御弁(c) 2261a 液冷媒流量制御弁(d) 2262 ガス冷媒流量制御弁(a) 2262a ガス冷媒流量制御弁(b) 2260 冷媒流量制御弁 2261 液冷媒流量制御弁 2262 ガス冷媒流量制御弁 2280 冷却空気 3000 マイクロコンピュータ式コントローラ 3100 マイクロコンピュータ式コントローラの電
源 3110 ユニットスイッチ 3200 コンピュータ本体 3210 リレー群 3300 設定表示器 3400a 吐出圧力特性記憶手段 3800a 表示手段 3900 冷媒流量制御手段の開度制御手段 3910 比較手段 3920 演算手段 3930 出力手段 4000 電源 4100 ノーヒュズブレーカ 4200 開閉器 4210 開閉器群 A 吐出圧力保護制御 Pdh fh(Ps)で表現される吐出圧力制御の
上限 Pdl fl(Ps)で表現される吐出圧力制御復
帰の為の下限
1000 container 2000 cooling device 2100 inner unit 2110 evaporator 2120 evaporator fan 2130 temperature detector 2131 suction air temperature detector 2132 blowout air temperature detector 2133 evaporator outlet temperature detector 2134 heater temperature detector 2140 heating heater 2150 damper 2160 Humidifier 2170 Air pressure switch 2180 Inner air 2181 Intake air 2182 Outlet air 2200 Outer unit 2210 Compressor 2220 Lubricating oil 2230 Pressure detector 2231 Discharge pressure detector 2232 Intake pressure detector 2240 Temperature detector 2241 Discharge gas temperature detector 2242 Atmosphere Temperature detector 2250 Condenser 2260a Refrigerant flow rate control means 2261 Liquid refrigerant flow control valve (c) 2261a Liquid refrigerant flow control valve (d) 262 gas refrigerant flow control valve (a) 2262a gas refrigerant flow control valve (b) 2260 refrigerant flow control valve 2261 liquid refrigerant flow control valve 2262 gas refrigerant flow control valve 2280 cooling air 3000 microcomputer controller 3100 power supply for microcomputer controller 3110 Unit switch 3200 Computer main body 3210 Relay group 3300 Setting display 3400a Discharge pressure characteristic storage means 3800a Display means 3900 Refrigerant flow rate control means opening control means 3910 Comparison means 3920 Calculation means 3930 Output means 4000 Power supply 4100 No fuse breaker 4200 Open / close 4210 Switch group A Discharge pressure protection control Upper limit of discharge pressure control expressed by Pdh fh (Ps) Discharge pressure control expressed by Pdl fl (Ps) Lower limit for the return

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 敏雄 愛知県西春日井郡西枇杷島町字旭町3丁目 1番地 三菱重工業株式会社エアコン製作 所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Yamashita 3-1, Asahicho, Nishibiwajima-cho, Nishikasugai-gun, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. Air Conditioning Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮する手段としてスクロール型
圧縮機を備えた冷却装置において、同圧縮機の吐出圧力
検出手段、同吸入圧力検出手段、冷媒循環系統の高圧側
から低圧側へ流れる冷媒の流量を制御する冷媒流量制御
手段、前記圧縮機の吐出圧力と吸入圧力との圧力差に基
づくスクロール部材のラップ強度評価から決まる許容吐
出圧力特性を記憶する記憶手段、および運転中の吐出圧
力が許容吐出圧力特性を越えた時前記冷媒流量制御手段
の開度を調整して冷媒循環系統の高圧側から低圧側への
冷媒流量を一時的に増加させ運転を継続させる開度制御
手段が備えてあることを特徴とするスクロール型圧縮機
を備えた冷却装置。
1. A cooling device comprising a scroll type compressor as a means for compressing a refrigerant, comprising: a discharge pressure detecting means, a suction pressure detecting means of the compressor; and a refrigerant flowing from a high pressure side to a low pressure side of a refrigerant circulation system. Refrigerant flow rate control means for controlling the flow rate, storage means for storing the allowable discharge pressure characteristic determined from the wrap strength evaluation of the scroll member based on the pressure difference between the discharge pressure and the suction pressure of the compressor, and the discharge pressure during operation are allowed. When the discharge pressure characteristic is exceeded, there is provided an opening degree control means for adjusting the opening degree of the refrigerant flow rate control means to temporarily increase the refrigerant flow rate from the high pressure side to the low pressure side of the refrigerant circulation system to continue the operation. A cooling device equipped with a scroll-type compressor.
JP29725391A 1991-11-13 1991-11-13 Cooling apparatus equipped with scroll type compressor Withdrawn JPH05133629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29725391A JPH05133629A (en) 1991-11-13 1991-11-13 Cooling apparatus equipped with scroll type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29725391A JPH05133629A (en) 1991-11-13 1991-11-13 Cooling apparatus equipped with scroll type compressor

Publications (1)

Publication Number Publication Date
JPH05133629A true JPH05133629A (en) 1993-05-28

Family

ID=17844141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29725391A Withdrawn JPH05133629A (en) 1991-11-13 1991-11-13 Cooling apparatus equipped with scroll type compressor

Country Status (1)

Country Link
JP (1) JPH05133629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194187A (en) * 2016-04-18 2017-10-26 ダイキン工業株式会社 Fan drive circuit of heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194187A (en) * 2016-04-18 2017-10-26 ダイキン工業株式会社 Fan drive circuit of heat pump device
US10914482B2 (en) 2016-04-18 2021-02-09 Daikin Industries, Ltd. Fan drive circuit for heat pump device

Similar Documents

Publication Publication Date Title
US20180320690A1 (en) Diagnostic System
USRE40830E1 (en) Compressor capacity modulation
US5335507A (en) Control system for an air conditioning/refrigeration system
JP3858297B2 (en) Pressure control valve and vapor compression refrigeration cycle
EP1598611B1 (en) An adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor
US20060248904A1 (en) Temperature control system and method of operating the same
JP4013318B2 (en) Refrigeration cycle equipment for vehicles
JP2002161878A (en) Air conditioner and capacity regulator for scroll compressor
US7048511B2 (en) Device for prevention of backward operation of scroll compressors
JP2009235982A (en) Air conditioning device for vehicle
EP2318788A2 (en) Start-up control for refrigeration system
US6694764B1 (en) Air conditioning system with electric compressor
JPH05133629A (en) Cooling apparatus equipped with scroll type compressor
JPH04225769A (en) Refrigerating machine with gas leakage diagnostic device
US11460024B2 (en) Method of monitoring a volume index valve of a compressor and diagnostic system
JPS5813962A (en) Controller for refrigeration cycle for automobile
JPH11101514A (en) Refrigeration cycle
JP2000320462A (en) Enclosed type motor-driven compressor
JP3213456B2 (en) refrigerator
JPH07180687A (en) Closed type motor-driven compressor
JP2011236855A (en) Two-stage boosting compressor
JP2923109B2 (en) Refrigeration cycle control method for constant temperature and humidity apparatus, and constant temperature and humidity apparatus
JP2002147873A (en) Co2 refrigeration cycle and method for controlling operation of compressor of the same
JPH0741359U (en) Automotive air conditioner
JP2002098425A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204