JPH05133368A - Two-stage compression refrigerator provided with check valve device - Google Patents

Two-stage compression refrigerator provided with check valve device

Info

Publication number
JPH05133368A
JPH05133368A JP29551491A JP29551491A JPH05133368A JP H05133368 A JPH05133368 A JP H05133368A JP 29551491 A JP29551491 A JP 29551491A JP 29551491 A JP29551491 A JP 29551491A JP H05133368 A JPH05133368 A JP H05133368A
Authority
JP
Japan
Prior art keywords
stage
gas
stage compression
liquid separator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29551491A
Other languages
Japanese (ja)
Other versions
JP2699723B2 (en
Inventor
Katsuharu Fujio
勝晴 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3295514A priority Critical patent/JP2699723B2/en
Publication of JPH05133368A publication Critical patent/JPH05133368A/en
Application granted granted Critical
Publication of JP2699723B2 publication Critical patent/JP2699723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/72Safety, emergency conditions or requirements preventing reverse rotation

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To improve a two-stage compression/two-stage expansion refrigerating cycle by preventing refrigerating gas from its reverse flow from a communication path between low/high-step compressing elements to a gas-liquid separator arranged between a condenser and an evaporator, in a two-stage compression refrigerator of using a two-stage compressor. CONSTITUTION:A two-stage refrigerating compressor 1 having a two-stage compressing mechanism of connecting a delivery side of a low-stage compressing element 7 to a suction side of a high-stage compressing element 9 in series through a communication path, condenser 13, first expanding device 15, gas- liquid separator 17, second expanding device 19 and an evaporator 21 are successively connected by pipes. A refrigerant injection passage 72 of connecting the halfway of the communication path to the gas-liquid separator of the two- stage compressor is constituted to arrange a check valve device, which permits an inflow of fluid to only the communication path from a gas-liquid separator 2, on the halfway of this refrigerant injection passage 72.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2段圧縮機能を備えた冷
凍サイクルにおいて、冷凍装置内の逆流防止による耐久
性の向上に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving the durability of a refrigeration cycle having a two-stage compression function by preventing backflow in the refrigeration system.

【0002】[0002]

【従来の技術】近年、冷凍機器分野において、低温熱源
および高温熱源確保の一環として、高圧縮比運転に適し
た冷媒圧縮機の実用化研究が盛んである。
2. Description of the Related Art In recent years, in the field of refrigeration equipment, as part of securing low-temperature heat sources and high-temperature heat sources, research into practical use of refrigerant compressors suitable for high compression ratio operation has been active.

【0003】とりわけ、圧縮室と吸入室との間の圧力差
を小さくして圧縮途中漏洩ガス量を低減して圧縮効率を
向上させるための方策として、種々の多段ロータリ式圧
縮機が提案されている。
In particular, various multi-stage rotary compressors have been proposed as a measure for reducing the pressure difference between the compression chamber and the suction chamber to reduce the amount of leakage gas during compression and improve the compression efficiency. There is.

【0004】具体的には、ローリグピストン型ロータリ
式2段圧縮機と同圧縮機を接続した2段圧縮冷凍サイク
ル系統図が図8〜図10の構成で提案されている(特開
昭50−72205号公報)。
Specifically, a two-stage compression refrigeration cycle system diagram in which a low rig piston type rotary two-stage compressor and the same compressor are connected has been proposed in the configurations of FIGS. -72205).

【0005】同図は、密閉容器1003内の上部に駆動
電動機1005を、下部に駆動電動機1005の回転軸
1005cに連結し且つ上下2段に形成された圧縮機構
(上部は低圧圧縮機構1007、下部は高圧圧縮機構1
009)を、低部に油溜を配置し、低圧圧縮機構100
7、高圧圧縮機構1009の各シリンダを吸入室と圧縮
室とに区画するベーン1007c(1009c)の背面
が密閉容器1003の内部空間に通じており、ベーン1
007c(1009c)への背圧付勢力をバネ装置の反
力と密閉容器1003内圧力とで形成している。
In the same figure, a compression motor 1005 is connected to the upper part of a closed container 1003 and a rotary shaft 1005c of the drive motor 1005 is connected to the lower part of the closed container 1003. Is a high-pressure compression mechanism 1
009), an oil sump is arranged in the lower part, and the low pressure compression mechanism 100
7. The back surface of the vane 1007c (1009c) that divides each cylinder of the high-pressure compression mechanism 1009 into the suction chamber and the compression chamber communicates with the internal space of the closed container 1003.
The back pressure biasing force to 007c (1009c) is formed by the reaction force of the spring device and the pressure inside the sealed container 1003.

【0006】低圧圧縮機構1007の吐出冷媒ガスは、
吐出管1007eを介して外部の気液分離器1017に
接続され、連通管1009d’を介して再び密閉容器1
003の内部空間に流入して駆動電動機1005を冷却
する。
The refrigerant gas discharged from the low pressure compression mechanism 1007 is
It is connected to the external gas-liquid separator 1017 via the discharge pipe 1007e, and is again closed via the communication pipe 1009d '.
It flows into the internal space of 003 to cool the drive motor 1005.

【0007】密閉容器1003に再流入した吐出冷媒ガ
スは、吸油管1023を備えた吸入管1009dを通過
する際に密閉容器1003の底部の潤滑油を吸い込んで
高圧圧縮機構1009に導入され、潤滑油が摺動面の冷
却と圧縮室隙間の密封に供される。
The discharged refrigerant gas re-flowing into the closed container 1003 sucks the lubricating oil at the bottom of the closed container 1003 when passing through the suction pipe 1009d provided with the oil absorption pipe 1023, and is introduced into the high pressure compression mechanism 1009. Is used for cooling the sliding surface and sealing the compression chamber gap.

【0008】高圧圧縮機構1009で再圧縮された吐出
冷媒ガスは、吐出管1009eを介して外部の凝縮器1
013に送出され、第一膨張弁1015、気液分離器1
017、第二膨張弁1019、蒸発器1021を順次経
由して、吸入管1007dを通じて再び低圧圧縮機構1
007に帰還する。
The discharged refrigerant gas recompressed by the high-pressure compression mechanism 1009 is discharged through the discharge pipe 1009e to the outside condenser 1
013, the first expansion valve 1015, gas-liquid separator 1
017, the second expansion valve 1019, the evaporator 1021, and the low pressure compression mechanism 1 again through the suction pipe 1007d.
Return to 007.

【0009】また、実施例図示はないが説明文に記載の
如く、ローリグピストン型ロータリ式圧縮機の欠点であ
る圧縮時の大きなトルク変動を改善するために、回転軸
1005cのクランク部偏心方向を180度ずらせ、且
つ両圧縮機構(低圧圧縮要素機構1007、高圧圧縮要
素機構1009)のベーン(1007c,1009c)
の取り付け方向を高段側と低段側との間で75〜80度
ずらせてある。それによって、ロータリ式1段圧縮機よ
りも変動を減じる方策が提案されている。
Although not shown in the embodiments, as described in the description, in order to improve the large torque fluctuation at the time of compression, which is a drawback of the low rig piston rotary compressor, the crankshaft eccentric direction of the rotary shaft 1005c is improved. By 180 degrees, and vanes (1007c, 1009c) of both compression mechanisms (low pressure compression element mechanism 1007, high pressure compression element mechanism 1009)
The mounting direction is shifted by 75 to 80 degrees between the high-stage side and the low-stage side. As a result, measures have been proposed to reduce the fluctuation compared to the rotary one-stage compressor.

【0010】このような部品配置によって2段圧宿冷凍
サイクルが構成され、密閉容器1003の内部空間が冷
媒の凝縮圧力と蒸発圧力との中間圧力に保たれるように
工夫されている。
A two-stage compression refrigeration cycle is constructed by such a component arrangement, and is devised so that the internal space of the closed container 1003 is maintained at an intermediate pressure between the condensation pressure and the evaporation pressure of the refrigerant.

【0011】また、特開昭60−128990号公報に
も記載されているように、ヒートポンプ給湯装置、ヒー
トポンプ式空調機においては、2段圧宿冷凍サイクルを
使用した方が、単段圧縮冷凍サイクルを使用する場合よ
りも冷凍サイクルの効率が向上し、特に、温度落差の大
きいヒートポンプ給湯装置の場合には、圧縮機吐出温度
を下げることができるので、圧縮機の過熱を防止できる
ことが知られている。
Further, as described in Japanese Patent Application Laid-Open No. 60-128990, in a heat pump water heater and a heat pump type air conditioner, it is better to use a two-stage compression refrigeration cycle. It is known that the efficiency of the refrigeration cycle is improved as compared with the case of using, and in particular, in the case of a heat pump water heater having a large temperature difference, the compressor discharge temperature can be lowered, so that overheating of the compressor can be prevented. There is.

【0012】[0012]

【発明が解決しようとする課題】しかしながらこの周知
技術を利用して、2段圧縮機の低段圧縮要素の吐出側と
高段圧縮要素の吸入側との間の中間通路と、2段膨張冷
凍サイクルにおける気液分離器の下流側とを配管結合し
て2段圧縮機を使用した2段膨張冷凍サイクルを稼動さ
せた場合に、次のような支障が生じることがある。
However, utilizing this well-known technique, the intermediate passage between the discharge side of the low-stage compression element and the suction side of the high-stage compression element of the two-stage compressor, and the two-stage expansion refrigeration When the two-stage expansion refrigeration cycle using the two-stage compressor is operated by connecting the downstream side of the gas-liquid separator in the cycle by piping, the following trouble may occur.

【0013】すなわち、周知の如く、2段圧縮機におけ
る高圧圧縮要素機構1009の吸入シリンダ容積は低圧
圧縮要素機構1007から吐出される冷媒ガス体積相当
に設定されているが、両圧縮要素機構の吸入・吐出行程
過度期には、低圧圧縮要素機構1007から排出される
冷媒ガス体積と高圧圧縮要素機構1009の吸入シリン
ダ容積との間で過不足が生じ、その結果、両圧縮要素の
間を連通する中間通路に圧力脈動が発生して、低圧圧縮
要素機構1007では瞬時的に吐出圧力が高くなった
り、高圧圧縮要素機構1009では吸入圧力が瞬時的に
低くなって圧縮比が変動する。その結果、2段圧縮機起
動初期のように高圧圧縮要素機構1009の吐出側圧力
が低い場合には、中間通路の冷媒ガスが気液分離器10
17に逆流して正常な冷凍サイクル運転ができなくなる
ので、その対策として、中間通路と気液分離器1017
との間に止弁形式の開閉弁を設け、圧縮機起動後、適当
な時間を遅延させ、気液分離器1017の圧力上昇後に
開弁操作する方法もあるが、気液分離器1017と中間
通路の圧力をそれぞれ検出する手段やその圧力検出に基
づき上述の止弁を開閉する手段などを必要とする関係
で、冷凍サイクル配管系制御が複雑化するなどして2段
圧縮・2段膨張冷凍装置のコスト上昇および大型化を招
くと言う課題があった。
That is, as is well known, the suction cylinder volume of the high pressure compression element mechanism 1009 in the two-stage compressor is set to be equivalent to the volume of the refrigerant gas discharged from the low pressure compression element mechanism 1007. In the discharge stroke transient period, excess and deficiency occur between the volume of the refrigerant gas discharged from the low pressure compression element mechanism 1007 and the suction cylinder volume of the high pressure compression element mechanism 1009, and as a result, the two compression elements communicate with each other. Pressure pulsation occurs in the intermediate passage, and the discharge pressure in the low-pressure compression element mechanism 1007 increases instantaneously, and the suction pressure in the high-pressure compression element mechanism 1009 decreases instantaneously, and the compression ratio fluctuates. As a result, when the pressure on the discharge side of the high-pressure compression element mechanism 1009 is low as in the initial stage of starting the two-stage compressor, the refrigerant gas in the intermediate passage is separated from the gas-liquid separator 10.
17 and the normal refrigeration cycle cannot be performed. Therefore, as a countermeasure against this, the intermediate passage and the gas-liquid separator 1017 are used.
There is also a method in which a stop valve type on-off valve is provided between and, and after the compressor is started, an appropriate time is delayed and the valve is opened after the pressure of the gas-liquid separator 1017 has risen. Two-stage compression / two-stage expansion refrigeration due to complicated control of the refrigeration cycle piping system due to the need for means for detecting the pressure in each passage and means for opening / closing the stop valve based on the pressure detection. There is a problem that the cost of the device is increased and the device is increased in size.

【0014】また、2段圧縮・2段膨張冷凍サイクルで
冬期の給湯運転や空調暖房運転中に、吸熱機側熱交換器
の表面に着霜した際に吸熱機側への配管と放熱機側への
配管を電磁弁等で切り替えて除霜運転を開始した直後に
は、放熱機側の高圧の液冷媒が2段圧縮機の吸入側に多
量流入して低圧圧縮要素機構で液圧縮が生じ、中間通路
の圧力が異常上昇する。一方、除霜運転への切り替えに
よって気液分離器1017側の圧力が急低下するので、
中間通路の圧力が気液分離器1017より高くなり、上
記の場合と同様に2段圧縮機の中間通路から気液分離器
1017の側に冷媒が逆流し、冷凍サイクル配管系制御
機器の破損を招くという課題があった。
Further, during the hot water supply operation and the air conditioning heating operation in the winter in the two-stage compression / two-stage expansion refrigeration cycle, when the surface of the heat exchanger on the heat absorber side is frosted, the pipe to the heat absorber side and the radiator side. Immediately after starting the defrosting operation by switching the piping to the solenoid valve etc., a large amount of high-pressure liquid refrigerant on the radiator side flows into the suction side of the two-stage compressor, causing liquid compression in the low-pressure compression element mechanism. , The pressure in the intermediate passage rises abnormally. On the other hand, since the pressure on the gas-liquid separator 1017 side drops sharply by switching to the defrosting operation,
The pressure in the intermediate passage becomes higher than that in the gas-liquid separator 1017, and the refrigerant flows backward from the intermediate passage of the two-stage compressor to the side of the gas-liquid separator 1017 in the same manner as in the above case, causing damage to the refrigeration cycle piping system control device. There was a problem of inviting.

【0015】本発明は、上記従来の課題に鑑み、2段圧
縮機を使用した2段圧縮2段膨張冷凍サイクルにおい
て、圧縮機起動初期に、凝縮器と蒸発器との間に配置し
た気液分離器に、低段圧縮要素と高段圧縮要素との間の
連通路からの冷媒ガスが逆流するのを防止して2段圧縮
冷凍装置の効率向上を図ることを目的とするものであ
る。
In view of the above-mentioned conventional problems, the present invention is a two-stage compression two-stage expansion refrigeration cycle using a two-stage compressor, and a gas-liquid arranged between a condenser and an evaporator at the initial stage of starting the compressor. It is an object of the present invention to improve the efficiency of a two-stage compression refrigeration system by preventing the refrigerant gas from flowing back into the separator from the communication path between the low-stage compression element and the high-stage compression element.

【0016】また本発明は、2段圧縮機を使用した2段
圧縮2段膨張冷凍サイクルにおいて、圧縮機起動初期等
に、底段圧縮要素の吐出側から気液分離器への逆流を簡
易手段により防止し、コスト低減と2段圧縮冷凍装置の
信頼性および小型化を図ることを目的とするものであ
る。
Further, according to the present invention, in a two-stage compression two-stage expansion refrigeration cycle using a two-stage compressor, a simple means for backflow from the discharge side of the bottom stage compression element to the gas-liquid separator at the initial stage of compressor startup or the like. The present invention aims to reduce the cost, reduce the reliability, and reduce the size of the two-stage compression refrigeration system.

【0017】[0017]

【課題を解決するための手段】上記課題を解決するため
に本発明は、低段圧縮要素の吐出側と高段圧縮要素の吸
入側とを連通路を介して直列接続した2段圧縮機構を有
する2段冷媒圧縮機、凝縮器、第1膨張装置、気液分離
器、第2膨張装置、蒸発器を順次配管接続すると共に、
2段圧縮機の連通路の途中と気液分離器とを連通する冷
媒インジェクション通路を構成し、その冷媒インジェク
ション通路の途中に気液分離器から連通路へのみの流体
流入を許容する逆止弁装置を配置したものである。
In order to solve the above problems, the present invention provides a two-stage compression mechanism in which the discharge side of a low-stage compression element and the suction side of a high-stage compression element are connected in series via a communication passage. The two-stage refrigerant compressor, the condenser, the first expansion device, the gas-liquid separator, the second expansion device, and the evaporator, which are included, are sequentially pipe-connected,
A check valve that forms a refrigerant injection passage that connects the gas-liquid separator to the middle of the communication passage of the two-stage compressor, and allows fluid to flow only from the gas-liquid separator to the communication passage in the middle of the refrigerant injection passage. The device is arranged.

【0018】また本発明は逆止弁装置の弁体が、気液分
離器からの導入路を形成する圧縮部接続配管の端面に当
接して逆止作用を成すべく構成したものである。
Further, according to the present invention, the valve body of the check valve device is configured to contact the end face of the compression section connecting pipe forming the introduction path from the gas-liquid separator to perform the check function.

【0019】[0019]

【作用】上記手段による作用は、以下のとおりである。The operation of the above means is as follows.

【0020】本発明は、圧縮機起動初期など、低段圧縮
要素と高段圧縮要素との間の連通路の気体圧力が2段圧
縮2段膨張冷凍サイクルの凝縮器と蒸発器との間に設け
られた気液分離器の流体圧力よりも高い場合には、冷媒
インジェクション通路が閉路し、連通路の気体が気液分
離器の側に逆流することなく高段圧縮要素で吸入・圧縮
された後、圧縮機外部配管系の凝縮器に排出し、圧縮機
始動後の時間経過と共に、気液分離器内圧力が連通路の
気体圧力よりも上昇して、冷媒インジェクション通路が
開通し、気液分離器からの未蒸発冷媒が連通路に流入
し、低段圧縮要素からの吐出気体と合流し、高段圧縮要
素に送られ、高段圧縮要素を冷却する。
According to the present invention, the gas pressure of the communication passage between the low-stage compression element and the high-stage compression element is such that the gas pressure is between the condenser and the evaporator of the two-stage compression two-stage expansion refrigeration cycle at the initial stage of compressor startup. When the fluid pressure is higher than that of the provided gas-liquid separator, the refrigerant injection passage is closed, and the gas in the communication passage is sucked and compressed by the high-stage compression element without flowing back to the gas-liquid separator side. After that, it is discharged to the condenser of the compressor external piping system, and with the passage of time after the compressor is started, the pressure inside the gas-liquid separator rises above the gas pressure in the communication passage, the refrigerant injection passage is opened, and the gas-liquid The non-evaporated refrigerant from the separator flows into the communication passage, merges with the discharge gas from the low-stage compression element, is sent to the high-stage compression element, and cools the high-stage compression element.

【0021】また本発明は、圧縮機起動初期など、低段
圧縮要素と高段圧縮要素との間の連通路の気体圧力が2
段圧縮2段膨張冷凍サイクルの凝縮器と蒸発器との間に
設けられた気液分離器の流体圧力よりも高い場合には、
その圧力差によって圧縮機接続配管の端面の側に逆止弁
装置の弁体が移動して圧縮機接続配管端面を塞ぎ、冷媒
インジェクション通路が遮断し、連通路からの気液分離
器への冷媒の逆流が阻止される。圧縮機始動後の時間経
過と共に、気液分離器内圧力が連通路の気体圧力よりも
上昇すると、その差圧力によって逆止弁装置の弁体が圧
縮機接続配管の端面から離反し、冷媒インジェクション
通路が開通し、低段圧縮要素からの吐出流体と合流して
高段圧縮要素に送られ、高段圧縮要素を冷却する。
Further, according to the present invention, the gas pressure in the communication passage between the low-stage compression element and the high-stage compression element is 2 at the initial stage of compressor startup.
When the fluid pressure is higher than the fluid pressure of the gas-liquid separator provided between the condenser and the evaporator of the two-stage compression two-stage expansion refrigeration cycle,
The pressure difference causes the valve body of the check valve device to move to the side of the end face of the compressor connection pipe to close the end face of the compressor connection pipe, shut off the refrigerant injection passage, and shut off the refrigerant from the communication passage to the gas-liquid separator. Backflow is prevented. When the pressure in the gas-liquid separator rises above the gas pressure in the communication passage with the passage of time after the compressor is started, the valve element of the check valve device separates from the end surface of the compressor connection pipe due to the pressure difference, and refrigerant injection occurs. The passage opens, joins the discharge fluid from the low-stage compression element, and is sent to the high-stage compression element to cool the high-stage compression element.

【0022】[0022]

【実施例】以下、本発明による第1の実施例のローリン
グピストン型ロータリ式2段冷媒圧縮機と同圧縮機を使
用した2段圧縮2段膨張冷凍サイクル配管系について、
図1〜図6を参照しながら説明する。
EXAMPLE A rolling piston type rotary two-stage refrigerant compressor according to a first embodiment of the present invention and a two-stage compression two-stage expansion refrigeration cycle piping system using the same will be described below.
This will be described with reference to FIGS.

【0023】図1はアキュームレータ2を備えたローリ
ングピストン型ロータリ式2段圧縮機1,凝縮器13,
第1膨張弁15,気液分離器17,第2膨張弁19,蒸
発器21を順次接続した2段圧縮2段膨張冷凍サイクル
の配管系統を示し、図2はローリングピストン型ロータ
リ式2段圧縮機1の断面、図3は2段圧縮機構の要部詳
細を示す。
FIG. 1 is a rolling piston type rotary two-stage compressor 1 equipped with an accumulator 2, a condenser 13,
FIG. 2 shows a piping system of a two-stage compression two-stage expansion refrigeration cycle in which a first expansion valve 15, a gas-liquid separator 17, a second expansion valve 19 and an evaporator 21 are sequentially connected, and FIG. 2 is a rolling piston type rotary two-stage compression. A cross section of the machine 1 and FIG. 3 show details of essential parts of the two-stage compression mechanism.

【0024】密閉容器3内の上部空間の電動機室8には
電動機5、その下部には2段圧縮機構4を配置し、その
外周部および底部が油溜35として構成されている。
An electric motor 5 is arranged in an electric motor chamber 8 in an upper space of the closed container 3, and a two-stage compression mechanism 4 is arranged below the electric motor chamber 8. An outer peripheral portion and a bottom portion thereof are constituted as an oil sump 35.

【0025】電動機5の固定子5aは密閉容器3の内壁
に焼きばめ固定されている。2段圧縮機構4は、上部の
高段圧縮要素9と下部の低段圧縮要素7と両圧縮要素
(7,9)の間に配置された平板形状の中板36とから
成り、低段圧縮要素7の吐出カバーA37と中板36の
外周部の数カ所(図示なし)で密閉容器3の内壁に溶接
固定されている。
The stator 5a of the electric motor 5 is shrink-fitted and fixed to the inner wall of the closed container 3. The two-stage compression mechanism 4 is composed of an upper high-stage compression element 9, a lower low-stage compression element 7, and a flat plate-shaped middle plate 36 arranged between both compression elements (7, 9). The discharge cover A37 of the element 7 and the outer peripheral portion of the middle plate 36 are welded and fixed to the inner wall of the closed container 3 at several places (not shown).

【0026】高段圧縮要素9のシリンダ容積は、低段圧
縮要素7のシリンダ容積の約45〜65%に設定されて
いる。
The cylinder volume of the high-stage compression element 9 is set to about 45 to 65% of the cylinder volume of the low-stage compression element 7.

【0027】高段圧縮要素9の第2のシリンダブロック
9aの上側面に取り付けられた上部軸受部材11と低段
圧縮要素7の第1のシリンダブロック7aの下側面に取
り付けられた下部軸受部材12とに支持された駆動軸6
は電動機5の回転子5bに連結固定されている。
An upper bearing member 11 attached to the upper side surface of the second cylinder block 9a of the high-stage compression element 9 and a lower bearing member 12 attached to the lower side surface of the first cylinder block 7a of the low-stage compression element 7. Drive shaft 6 supported by and
Is connected and fixed to the rotor 5b of the electric motor 5.

【0028】駆動軸6の第1クランク軸6aと第2クラ
ンク軸6bは、その偏心方向が互いに180度ずらして
配置されている。
The first crankshaft 6a and the second crankshaft 6b of the drive shaft 6 are arranged so that their eccentric directions are offset from each other by 180 degrees.

【0029】7b,9bは駆動軸6の第1クランク軸6
a,第2クランク軸6bに装着された第1ピストンおよ
び第2ピストン、38,39は第1ピストン7b,第2
ピストン9bの外周面に当接して低段圧縮要素7および
高段圧縮要素9の各シリンダ内を吸入室と圧縮室とに区
画するベーン、40,41はベーン38,39の背面を
付勢するコイルバネである。
Reference numerals 7b and 9b denote the first crankshaft 6 of the drive shaft 6.
a, the first piston and the second piston mounted on the second crankshaft 6b, 38 and 39 are the first piston 7b and the second piston
A vane that abuts on the outer peripheral surface of the piston 9b and divides the cylinders of the low-stage compression element 7 and the high-stage compression element 9 into a suction chamber and a compression chamber, and 40 and 41 urge the rear surfaces of the vanes 38 and 39. It is a coil spring.

【0030】高段圧縮要素9のコイルバネ41の後端部
は密閉容器3の内壁に支持されているが、低段圧縮要素
7のコイルバネ40の後端部は第1のシリンダブロック
7aに密封装着されたキャップ42に支持されている。
The rear end of the coil spring 41 of the high-stage compression element 9 is supported by the inner wall of the closed container 3, but the rear end of the coil spring 40 of the low-stage compression element 7 is hermetically mounted on the first cylinder block 7a. It is supported by the closed cap 42.

【0031】高段圧縮要素9のベーン39の背面室B4
3は油溜35に開通しているが、低段圧縮要素7のベー
ン38の背面室A44はキャップ42によってその端部
を密封され、油溜35と遮断されている。
Back chamber B4 of the vane 39 of the high-stage compression element 9
3 is open to the oil sump 35, but the back chamber A44 of the vane 38 of the low-stage compression element 7 is sealed off at its end by the cap 42 and is cut off from the oil sump 35.

【0032】低段圧縮要素7の吐出カバーA37は下部
軸受部材12と共に第1のシリンダブロック7aに取付
られて低段吐出室45を形成し、その底部は吐出室油溜
46である。
The discharge cover A37 of the low-stage compression element 7 is attached to the first cylinder block 7a together with the lower bearing member 12 to form a low-stage discharge chamber 45, and the bottom thereof is a discharge chamber oil sump 46.

【0033】吐出室油溜46は吐出カバーA37に固定
され且つ複数の***47を有する仕切り板48によって
低段吐出室45の上部空間と区画されると共に、その底
部が吐出カバーA37と下部軸受部材12に設けられた
油戻し穴A49a,油戻し穴B49bから成る油戻し通
路49を介してベーン38の背面室A44に通じてい
る。
The discharge chamber oil sump 46 is fixed to the discharge cover A37 and is partitioned from the upper space of the low-stage discharge chamber 45 by a partition plate 48 having a plurality of small holes 47, and the bottom portion thereof is the discharge cover A37 and the lower bearing member. The back chamber A44 of the vane 38 communicates with an oil return passage 49 including an oil return hole A49a and an oil return hole B49b.

【0034】制振鋼板を成形した吐出カバーB50は、
上部軸受部材11の外周を囲むように配置されて高段吐
出室51を形成している。
The discharge cover B50 formed by damping steel plate is
The high-stage discharge chamber 51 is formed by being arranged so as to surround the outer circumference of the upper bearing member 11.

【0035】電動機5の回転子5bの端部に凹設された
消音室52は、上部軸受部材11の突出部11aの外周
を囲む吐出カバーB50の突出部50aとの間の環状通
路53を介して高段吐出室51と連通すると共に、回転
子5bのエンドリング5cの内側面と吐出カバーB50
の突出部50aとの間の環状通路54を介して密閉容器
3の内部空間に通じている。
The muffling chamber 52, which is recessed at the end of the rotor 5b of the electric motor 5, has an annular passage 53 between it and the projecting portion 50a of the discharge cover B50 that surrounds the outer periphery of the projecting portion 11a of the upper bearing member 11. Communicating with the high-stage discharge chamber 51, and the inner surface of the end ring 5c of the rotor 5b and the discharge cover B50.
To the inner space of the closed container 3 via an annular passage 54 between the protruding portion 50a and

【0036】低段吐出室45と高段圧縮要素9の吸入室
56とは、下部軸受部材12に設けられたガス通路A5
5a,第1のシリンダブロック7aに設けられたガス通
路B55b,中板36に設けられたガス通路C55cか
ら成る連通路55を介して通じている。
The low-stage discharge chamber 45 and the suction chamber 56 of the high-stage compression element 9 have a gas passage A5 provided in the lower bearing member 12.
5a, a gas passage B55b provided in the first cylinder block 7a, and a gas passage C55c provided in the intermediate plate 36, which communicates with each other.

【0037】連通路55の途中から分岐したバイパス通
路57は高段圧縮要素9の第2のシリンダブロック9a
と上部軸受部材11とに設けられたバイパス通路A57
a,バイパス通路B57bとで形成され、その下流側が
高段吐出室51に開通している。
The bypass passage 57 branched from the middle of the communication passage 55 is provided in the second cylinder block 9a of the high-stage compression element 9.
And a bypass passage A57 provided in the upper bearing member 11
a and a bypass passage B57b, the downstream side of which is opened to the high-stage discharge chamber 51.

【0038】バイパス通路A57aには、その外周部に
切り欠き部を有する薄鋼板製の弁体58a(図4にその
外観形状を示す)とコイルバネ58bとから成るバイパ
ス弁装置58が装着され、バイパス弁装置58は連通路
55から高段吐出室51へのみの流体流れを許容する。
The bypass passage A57a is provided with a bypass valve device 58 consisting of a thin steel plate valve body 58a (not shown in FIG. 4) having a cutout portion on its outer peripheral portion and a coil spring 58b. The valve device 58 allows the fluid flow only from the communication passage 55 to the high-stage discharge chamber 51.

【0039】コイルバネ58bは、それ自身が温度上昇
するとそのバネ定数が増加する形状記憶合金特性を備
え、弁体58aへの付勢力が大きくなる。
The coil spring 58b has a shape memory alloy characteristic in which its spring constant increases when the temperature of the coil spring 58b itself rises, and the urging force to the valve body 58a increases.

【0040】連通路55の一部を構成するガス通路B5
5bは連通管59を介して気液分離器17の下流側に通
じており、冷媒インジェクション通路72を形成してい
る。
Gas passage B5 forming part of the communication passage 55
5b communicates with the downstream side of the gas-liquid separator 17 via a communication pipe 59, and forms a refrigerant injection passage 72.

【0041】連通管59は第1のシリンダブロック7a
に挿入され、その接続部の外周は0リング66でシール
され、その端部とガス通路B55bとの間に図4と類似
形状の弁体60が配置されて逆止弁装置71を構成して
いる。
The communication pipe 59 is the first cylinder block 7a.
The outer periphery of the connecting portion is sealed with an O-ring 66, and a valve body 60 having a shape similar to that of FIG. 4 is arranged between the end portion and the gas passage B55b to form a check valve device 71. There is.

【0042】逆止弁装置71は、気液分離器17からガ
ス通路B55bへのみの流体流入を許容すべく構成され
ている。
The check valve device 71 is configured to allow the fluid to flow only from the gas-liquid separator 17 into the gas passage B55b.

【0043】中板36には、その通路途中に絞り部を有
する油インジェクション通路61が設けられており、そ
の上流側は油溜35に、下流側はベーン38の背面室A
44と高段圧縮要素9の圧縮室とにそれぞれ間欠的に連
通すべく設けられている。
The middle plate 36 is provided with an oil injection passage 61 having a throttle part in the middle of the passage. The upstream side thereof is the oil sump 35 and the downstream side thereof is the rear chamber A of the vane 38.
44 and the compression chamber of the high-stage compression element 9 are provided so as to intermittently communicate with each other.

【0044】油インジェクション通路61の下流側通路
A61aと背面室A44とはベーン38が概略半分以上
の行程をピストン7bの側に前進している時に開通し、
それ以外の時に遮断すべくベーン44の摺動端面に開口
している。
The downstream passage A61a of the oil injection passage 61 and the rear chamber A44 are opened when the vane 38 is advanced to the piston 7b side by a stroke of approximately half or more,
It opens at the sliding end surface of the vane 44 to shut off at other times.

【0045】油インジェクション通路61の下流側通路
B61bと高段圧縮要素9の圧縮室とは、ベーン39が
概略3分の1の行程までピストン7bの側に前進した時
に開通が始まり、概略3分の1の行程を後退した時にピ
ストン9bの摺動端面によって遮断が始まるべく位置に
開口している(図5参照)。
The downstream passage B61b of the oil injection passage 61 and the compression chamber of the high-stage compression element 9 start to open when the vane 39 advances to the piston 7b side to the stroke of approximately one third, and approximately three minutes. When the stroke 1 is retreated, the sliding end surface of the piston 9b opens to a position where interruption is started (see FIG. 5).

【0046】駆動軸6の軸芯部には、貫通した軸穴62
が設けられ、その下部にポンプ装置63が装着されてい
る。
The shaft core of the drive shaft 6 has a penetrating shaft hole 62.
Is provided, and the pump device 63 is attached to the lower part thereof.

【0047】上部軸受部材11と下部軸受部材12とに
支持された駆動軸5の外周面に螺旋状の油溝64,64
aが設けられ、螺旋状の油溝64の上流側は軸穴62か
ら分岐した半径方向油孔を介してポンプ装置63の下流
側に通じ、螺旋状の油溝64の下流側は消音室52に開
通していない。
Helical oil grooves 64, 64 are formed on the outer peripheral surface of the drive shaft 5 supported by the upper bearing member 11 and the lower bearing member 12.
a is provided, the upstream side of the spiral oil groove 64 communicates with the downstream side of the pump device 63 via a radial oil hole branched from the shaft hole 62, and the downstream side of the spiral oil groove 64 has a silencing chamber 52. Not open to.

【0048】アキュームレータ2の下流側は低段圧縮要
素7の吸入室(図示なし)に連通し、密閉容器3の上部
に吐出管7eが設けられている。
A downstream side of the accumulator 2 communicates with a suction chamber (not shown) of the low-stage compression element 7, and a discharge pipe 7e is provided above the closed container 3.

【0049】気液分離器17の底部には第2膨張弁19
に通じる液管65が接続され、気液分離器17の胴体外
表面にはポリエチレン膜をコーティングした後、加熱
し、5mm程度まで発泡させたポリエチレン発泡材67
で保温処理が施されている。
A second expansion valve 19 is provided at the bottom of the gas-liquid separator 17.
Is connected to a liquid pipe 65, the outer surface of the body of the gas-liquid separator 17 is coated with a polyethylene film, and the polyethylene foam material 67 is heated and foamed to about 5 mm.
Has been heat-insulated.

【0050】図6は、圧縮機冷時起動直後のバイパス通
路57の開通状態と連通管59の端部を弁体60が閉塞
した状態、及び油インジェクション通路61の下流側通
路61aと背面室A44との間をベーン38によって遮
断した状態を示す。
FIG. 6 shows an opened state of the bypass passage 57 immediately after the compressor is started cold, a state in which the valve body 60 closes the end of the communication pipe 59, a downstream side passage 61a of the oil injection passage 61 and the rear chamber A44. A state in which the vane 38 blocks the space between and is shown.

【0051】次に、本発明の第2の実施例のローリング
ピストン型ロータリ式2段冷媒圧縮機の逆止弁装置の構
成などについて、図7を参照しながら説明する。
Next, the structure of the check valve device of the rolling piston type rotary two-stage refrigerant compressor of the second embodiment of the present invention will be described with reference to FIG.

【0052】従来の1段圧縮機に使用されるアキューム
レータの吸入管よりも、その管内径を1.5倍程度大き
くしてアキュームレータの過吸作用(圧縮機の吸入作用
に追従して吸入管内の気体圧力が脈動現象を生じ、周期
的に圧力上昇した気体が吸入室に流入しその状態で圧縮
されることにより吸入効率が高くなる現象のこと)を抑
制した吸入管202aを備えた第1のアキュームレータ
202の下流側は、第1の実施例の場合と同様に、低段
圧縮要素207の吸入側に接続されている。
The inner diameter of the suction pipe of the accumulator used in the conventional one-stage compressor is made about 1.5 times larger than that of the suction pipe of the accumulator to follow the suction action of the compressor. The gas pressure causes a pulsation phenomenon, and the gas whose pressure rises cyclically flows into the suction chamber and is compressed in that state, thereby increasing the suction efficiency). The downstream side of the accumulator 202 is connected to the suction side of the low stage compression element 207, as in the case of the first embodiment.

【0053】低段圧縮要素207の低段吐出室245
は、駆動軸6を支持する下部軸受部材212を囲むよう
に第1のシリンダブロック207aに取り付けられた吐
出カバーA237と第1のシリンダブロック207aと
で形成され、且つその内容積が第1の実施例の構成より
も小型化されている。
Low-stage discharge chamber 245 of low-stage compression element 207
Is formed by the discharge cover A237 and the first cylinder block 207a attached to the first cylinder block 207a so as to surround the lower bearing member 212 that supports the drive shaft 6, and the internal volume thereof is the first embodiment. It is smaller than the example configuration.

【0054】高段圧縮要素209は、低段圧縮要素20
7の吸入・圧縮タイミングに対して約60度〜80度の
位相遅れで吸入・圧縮作用を開始して低段吐出室245
内の過剰な圧力上昇を抑制することにより、低段圧縮要
素207での圧縮動力を低減すべく配置されている。
The high-stage compression element 209 is the low-stage compression element 20.
The suction / compression action starts at a phase delay of about 60 to 80 degrees with respect to the suction / compression timing of No. 7, and the low-stage discharge chamber 245
It is arranged to reduce the compression power in the low-stage compression element 207 by suppressing the excessive pressure rise in the inside.

【0055】背面室A244に連通している低段吐出室
245は、その上部が高段圧縮要素209の吸入側と連
通路255を介して接続され、その途中で連通路255
に接続された第2のアキュームレータ202bは、その
上流側を第1の実施例の場合と同様の気液分離器(図示
なし)に接続され、その下流側の接続部端には第1の実
施例と同様な弁体206が装着されている。
The upper part of the low-stage discharge chamber 245 communicating with the back chamber A244 is connected to the suction side of the high-stage compression element 209 via the communication passage 255, and the communication passage 255 is formed on the way.
The second accumulator 202b connected to is connected at its upstream side to a gas-liquid separator (not shown) similar to that in the case of the first embodiment, and at the downstream end of the connecting portion, the first accumulator 202b is connected. A valve body 206 similar to the example is mounted.

【0056】弁体206には気液分離器17からの接続
部開口端を塞ぐためのコイルバネ270が付勢され、コ
イルバネ270はそれ自身の温度が上昇するとバネ定数
が減少して弁体206への付勢力を小さくする形状記憶
特性を備えている。そして連通管59の端面と弁体20
6とコイルバネ270とで逆止弁装置271を構成して
いる。
A coil spring 270 for closing the open end of the connecting portion from the gas-liquid separator 17 is biased to the valve body 206, and the spring constant of the coil spring 270 decreases as the temperature of the coil spring 270 increases and the coil spring 270 moves toward the valve body 206. It has a shape memory characteristic that reduces the biasing force of. The end face of the communication pipe 59 and the valve body 20
The check valve device 271 is constituted by 6 and the coil spring 270.

【0057】その他の構成は、第1の実施例と同様であ
るので説明を省略する。以上のように構成された2段圧
縮機とその冷凍サイクルについて、その動作を説明す
る。
The other structure is the same as that of the first embodiment, and the description thereof is omitted. The operation of the two-stage compressor configured as above and its refrigeration cycle will be described.

【0058】図1〜図6において、モータ5によって駆
動軸6が回転駆動すると、必ず、低段圧縮要素7が吸入
を開始してアキュームレータ2から冷媒ガスが低段圧縮
要素7の吸入室に流入する。駆動軸6のクランク角度の
進行に伴って低段吸入室容積が増加していく一方、低段
圧縮室での圧縮作用も同時に進行し、圧縮冷媒ガス圧が
次第に昇圧する。
In FIGS. 1 to 6, when the drive shaft 6 is rotationally driven by the motor 5, the low-stage compression element 7 always starts sucking and the refrigerant gas from the accumulator 2 flows into the suction chamber of the low-stage compression element 7. To do. While the volume of the low-stage suction chamber increases as the crank angle of the drive shaft 6 advances, the compression action in the low-stage compression chamber also progresses at the same time, and the compressed refrigerant gas pressure gradually increases.

【0059】圧縮冷媒ガスは、吸入作用開始後、低段側
クランク角度が約170度進行した頃に下部軸受部材1
2に設けられた吐出ポート(図示なし)から低段吐出室
45に吐出される。
The compressed refrigerant gas is supplied to the lower bearing member 1 when the low-stage crank angle advances by about 170 degrees after the start of the suction action.
The liquid is discharged into the low-stage discharge chamber 45 from a discharge port (not shown) provided in No. 2.

【0060】低段吐出室45に排出された冷媒ガスは、
油戻し穴A49aと油戻し穴B49bとから成る油戻し
通路49を介して吐出室油溜46の底部に貯溜する潤滑
油と共に背面室A44に逆流入し、ベーン38の背面を
第1のピストン7bの側に背圧付勢する。
The refrigerant gas discharged to the low-stage discharge chamber 45 is
Through the oil return passage 49 composed of the oil return hole A49a and the oil return hole B49b, the lubricating oil that accumulates at the bottom of the discharge chamber oil sump 46 flows back into the back chamber A44, and the back face of the vane 38 is brought to the first piston 7b. Back pressure is applied to the side of.

【0061】起動直後、低段吐出室45に排出された冷
媒ガスは、ガス通路A55a,ガス通路B55b,ガス
通路C55cから成る連通路55を経由して高段圧縮要
素9の吸入室56に送出される。
Immediately after starting, the refrigerant gas discharged to the low-stage discharge chamber 45 is delivered to the suction chamber 56 of the high-stage compression element 9 via the communication passage 55 composed of the gas passage A55a, the gas passage B55b, and the gas passage C55c. To be done.

【0062】低段圧縮要素7の吸入開始から60〜80
度遅れて高段圧縮要素9も吸入・圧縮作用を開始する。
60 to 80 from the start of inhalation of the low-stage compression element 7
After a delay, the high-stage compression element 9 also starts the suction / compression action.

【0063】起動直後の低段吐出室45および連通路5
5の冷媒ガスは、密閉容器3の内部空間やローリングピ
ストン型ロータリ式2段圧縮機1に配管接続する凝縮器
13,気液分離器17よりも高い。
Immediately after starting, the low-stage discharge chamber 45 and the communication passage 5
The refrigerant gas of 5 is higher than the condenser 13 and the gas-liquid separator 17 which are connected to the internal space of the closed container 3 and the rolling piston type rotary two-stage compressor 1 by piping.

【0064】したがって、図6に示すように、連通路5
5を通過する吐出冷媒ガスと気液分離器17との間の圧
力差によって弁体60が移動して気液分離器17の接続
管59の端部を塞ぎ、冷媒インジェクション通路72が
閉路して連通路55の冷媒ガスが気液分離器17に逆流
することが阻止される。
Therefore, as shown in FIG.
The pressure difference between the discharged refrigerant gas passing through 5 and the gas-liquid separator 17 causes the valve body 60 to move to close the end of the connecting pipe 59 of the gas-liquid separator 17, and the refrigerant injection passage 72 to close. Refrigerant gas in the communication passage 55 is prevented from flowing back to the gas-liquid separator 17.

【0065】また連通路55の冷媒ガス圧力は密閉容器
3の内部空間に通じる高段吐出室51の圧力よりも高
く,バイパス弁装置58の弁体58aがコイルバネ58
bの付勢力に抗してコイルバネ58bの方に移動してバ
イパス通路57を開通し、連通路55を通過する冷媒ガ
スの一部が高段吐出室51に流出して吸入室56の冷媒
ガス圧力が降下する。その結果、コイルバネ41のみの
付勢力に依存する高段圧縮要素9のベーン39は、圧力
上昇した冷媒ガスが急激に吸入室56に流入することに
よる急激な後退の際に生じるジャンピング現象を起こす
ことなく、第2のピストン9bの外周面の運動に追従し
て後退し、ベーン39と第2のピストン9bとの衝突音
や圧縮ガス漏れを生ぜずに円滑な軽負荷圧縮作用を開始
する。
Further, the pressure of the refrigerant gas in the communication passage 55 is higher than the pressure in the high-stage discharge chamber 51 communicating with the internal space of the closed container 3, and the valve body 58a of the bypass valve device 58 has the coil spring 58.
It moves toward the coil spring 58b against the urging force of b to open the bypass passage 57, and a part of the refrigerant gas passing through the communication passage 55 flows out to the high-stage discharge chamber 51 and flows into the suction chamber 56. The pressure drops. As a result, the vane 39 of the high-stage compression element 9 that depends on the biasing force of only the coil spring 41 causes a jumping phenomenon that occurs when the refrigerant gas whose pressure has risen suddenly flows into the suction chamber 56 and suddenly retracts. Instead, the second piston 9b retreats following the movement of the outer peripheral surface of the second piston 9b, and a smooth light load compression action is started without producing a collision noise between the vane 39 and the second piston 9b or leakage of compressed gas.

【0066】なお、低段圧縮要素7の吸入・圧縮作用開
始から60〜80度遅延して高段圧縮要素9の吸入・圧
縮作用が開始することから、低段圧縮室から低段吐出室
45に排出される冷媒ガス容積と高段圧縮要素9の吸入
室容積との間に過不足が生じ、その過不足量は駆動軸6
のクランク角度の進行と共に変化する。その結果、低段
吐出室45に排出される冷媒ガス量が不足するクランク
角度の範囲と余剰するクランク角度の範囲とが存在する
ことから、低段吐出室45および連通路55の冷媒ガス
に圧力脈動が生じる。この圧力脈動は駆動軸6の回転速
度が速い程激しく生じる傾向を示す。
Since the suction / compression action of the high-stage compression element 9 starts 60 to 80 degrees after the suction / compression action of the low-stage compression element 7 starts, the low-stage compression chamber 45 to the low-stage discharge chamber 45 starts. Between the volume of the refrigerant gas discharged to the high-pressure compression element 9 and the volume of the suction chamber of the high-stage compression element 9, and the excess / deficiency amount is the drive shaft 6
Changes with the crank angle of. As a result, there is a crank angle range in which the amount of the refrigerant gas discharged to the low-stage discharge chamber 45 is insufficient and a surplus crank angle range, so that the refrigerant gas in the low-stage discharge chamber 45 and the communication passage 55 is pressurized. Pulsation occurs. This pressure pulsation tends to occur more intensely as the rotational speed of the drive shaft 6 increases.

【0067】高段吐出室51に排出された吐出冷媒ガス
は、環状通路53を経て消音室52に流入し、その後、
環状通路54を介して密閉容器3の内部空間に送出され
る。
The discharged refrigerant gas discharged into the high-stage discharge chamber 51 flows into the muffling chamber 52 through the annular passage 53, and thereafter,
It is delivered to the internal space of the closed container 3 via the annular passage 54.

【0068】圧縮機冷時始動後の時間経過と共に電動機
室8およびこれに通じる凝縮器13と気液分離器17の
圧力が上昇し、バイパス通路57内のバイパス弁装置5
8の弁体58aが高段吐出室51のガス圧と温度上昇に
よりそのバネ定数を増したコイルバネ58bにより付勢
されてバイパス通路57を閉じると共に、連通管59の
端部を閉塞していた弁体60が連通路55の方に移動し
て気液分離器17と連通路55との間の冷媒インジェク
ション通路72が開通する。
With the lapse of time after the cold start of the compressor, the pressures of the electric motor chamber 8, the condenser 13 and the gas-liquid separator 17 communicating with the electric motor chamber 8 rise, and the bypass valve device 5 in the bypass passage 57 is increased.
The valve body 58a of No. 8 is biased by the coil spring 58b whose spring constant is increased by the gas pressure and temperature rise of the high-stage discharge chamber 51 to close the bypass passage 57 and close the end of the communication pipe 59. The body 60 moves toward the communication passage 55 to open the refrigerant injection passage 72 between the gas-liquid separator 17 and the communication passage 55.

【0069】また、吐出圧力が作用する油溜35の潤滑
油は、高段圧縮要素9のコイルバネ41と共にベーン3
9の背面を背圧付勢すると共にベーン39の摺動面を潤
滑しながら摺動面隙間を介して吸入室56と圧縮室とに
微少量流入する。また潤滑油は、絞り通路部を有する油
インジェクション通路61の下流側通路B61bを通じ
て減圧されて圧縮室に間欠的に給油され、圧縮室隙間の
油膜密封と第2のピストン39の摺動面の潤滑に供され
る。
The lubricating oil in the oil sump 35, which is acted upon by the discharge pressure, together with the coil spring 41 of the high-stage compression element 9 and the vanes 3.
A small amount of gas flows into the suction chamber 56 and the compression chamber through the sliding surface gap while urging the back surface of 9 and backing the sliding surface of the vane 39. Further, the lubricating oil is decompressed through the downstream passage B61b of the oil injection passage 61 having the throttle passage portion and is intermittently supplied to the compression chamber to seal the oil film in the compression chamber gap and lubricate the sliding surface of the second piston 39. Be offered to.

【0070】また油溜35の潤滑油は、絞り通路部を有
する油インジェクション通路61の下流側通路A61a
を介して低段圧縮要素7の吐出圧力相当にまで減圧され
た後、低段圧縮要素7のベーン38が第1のピストン7
bの側に約3分の1程度に前進した時点から再び3分の
1程度にまで後退する間に、下流側通路A61aの背面
室A44への開口部が開通して背面室A44に流入す
る。
The lubricating oil in the oil sump 35 is the downstream passage A61a of the oil injection passage 61 having the throttle passage portion.
After the pressure is reduced to a level equivalent to the discharge pressure of the low-stage compression element 7 via the vane 38, the vane 38 of the low-stage compression element 7 moves to the first piston 7
During the time point of advancing to about 1/3 to the side of b and retreating to about 1/3 again, the opening of the downstream passage A61a to the back chamber A44 is opened and flows into the back chamber A44. ..

【0071】背面室A44に流入した潤滑油は、ベーン
38の摺動面を潤滑すると共に、油戻し穴B49b,油
戻し穴A49aを介して低段吐出室45に流入し、吐出
冷媒ガスに混入して高段圧縮要素9の吸入室56に流入
する。高段圧縮要素9の吸入室56に流入した潤滑油
は、背面室B43と下流側通路61bを介して流入した
潤滑油と合流して圧縮室隙間の密封と摺動面の潤滑と冷
却に供される。
The lubricating oil that has flowed into the rear chamber A44 lubricates the sliding surface of the vane 38, and also flows into the low-stage discharge chamber 45 through the oil return hole B49b and the oil return hole A49a and mixes with the discharged refrigerant gas. And flows into the suction chamber 56 of the high-stage compression element 9. The lubricating oil that has flowed into the suction chamber 56 of the high-stage compression element 9 merges with the lubricating oil that has flowed in via the back chamber B43 and the downstream passage 61b to provide sealing of the compression chamber gap and lubrication and cooling of the sliding surface. To be done.

【0072】また油溜35の潤滑油は、駆動軸6の表面
に設けられた螺旋状の油溝64による粘性ポンプ作用と
駆動軸6の下端に設けられたポンプ装置62とによっ
て、軸穴62や半径方向孔69を介して駆動軸6を支持
する下部軸受部材12,上部軸受部材11の軸受面と第
1のピストン7b,第2のピストン9bの内側面に給油
される。螺旋状の油溝64aに供給された潤滑油は、粘
性ポンプ作用によって上部軸受部材11の軸受上端から
消音室52に排出され、高段吐出室51から排出された
2段圧縮の高圧吐出ガスと混合の後、環状通路54を経
て電動機室8に排出される。
The lubricating oil in the oil sump 35 is supplied to the shaft hole 62 by the viscous pump action of the spiral oil groove 64 provided on the surface of the drive shaft 6 and the pump device 62 provided at the lower end of the drive shaft 6. Oil is supplied to the bearing surfaces of the lower bearing member 12 and the upper bearing member 11 that support the drive shaft 6 and the inner surfaces of the first piston 7b and the second piston 9b via the radial holes 69. The lubricating oil supplied to the spiral oil groove 64a is discharged from the upper end of the bearing of the upper bearing member 11 to the muffling chamber 52 by the viscous pump action, and the two-stage compressed high-pressure discharge gas discharged from the high-stage discharge chamber 51. After mixing, it is discharged into the electric motor chamber 8 through the annular passage 54.

【0073】電動機室8で潤滑油を分離した吐出冷媒ガ
スは、吐出管7eを経て圧縮機外部の冷凍サイクルに送
出される。
The discharged refrigerant gas from which the lubricating oil has been separated in the electric motor chamber 8 is sent to the refrigeration cycle outside the compressor via the discharge pipe 7e.

【0074】凝縮器13,第1膨張弁15を経由して減
圧の後、低段圧縮要素7の吐出圧力相当にまで膨張した
未蒸発冷媒は、気液分離器17に流入の後、気体と液体
とに分離し、液化冷媒が気液分離器17の底部に収集す
る。
The non-evaporated refrigerant, which has been decompressed via the condenser 13 and the first expansion valve 15 and expanded to the discharge pressure of the low-stage compression element 7, flows into the gas-liquid separator 17 and becomes gas. It is separated into liquid and liquefied refrigerant is collected at the bottom of the gas-liquid separator 17.

【0075】気液分離器17内上部空間の未蒸発冷媒ガ
スは、気液分離器17内の上部空間に開口する連通管5
9を介してローリングピストン型ロータリ式2段圧縮機
1内の連通路55に流入し、低段圧縮要素7の吐出冷媒
ガスと合流して低段吐出冷媒ガス温度を低下させた後、
高段圧縮要素9の吸入室56に流入する。
The non-evaporated refrigerant gas in the upper space inside the gas-liquid separator 17 is connected to the communication pipe 5 that opens to the upper space inside the gas-liquid separator 17.
After flowing into the communication passage 55 in the rolling piston type rotary two-stage compressor 1 via 9 and joining the discharge refrigerant gas of the low-stage compression element 7 to lower the low-stage discharge refrigerant gas temperature,
It flows into the suction chamber 56 of the high-stage compression element 9.

【0076】高段圧縮要素9の2段圧縮吐出冷媒ガス
は、気液分離器17の未蒸発冷媒ガスを吸入することに
よって異常温度上昇を抑制される。その結果、摺動部隙
間の縮小が少なくなると共に、電動機5の異常温度上昇
が抑制されて圧縮機入力が低減する。
The second-stage compression discharge refrigerant gas of the high-stage compression element 9 sucks the non-evaporated refrigerant gas of the gas-liquid separator 17 to suppress an abnormal temperature rise. As a result, the reduction of the sliding portion clearance is reduced, and the abnormal temperature rise of the electric motor 5 is suppressed to reduce the compressor input.

【0077】一方、気液分離器17の底部に収集した液
化冷媒は、液管65を介して第2膨張弁19,蒸発器2
1を順次経由して第2回目の膨張と吸熱の後、再びアキ
ュームレータ2に帰還する。
On the other hand, the liquefied refrigerant collected at the bottom of the gas-liquid separator 17 is passed through the liquid pipe 65 to the second expansion valve 19 and the evaporator 2.
After the second expansion and heat absorption through 1 in sequence, it returns to the accumulator 2 again.

【0078】なお、気液分離器17内の冷媒は、気液分
離器17の胴体外周部を囲むポリエチレン発泡部材によ
って断熱と防音がなされているので、気液分離器17に
冷媒が流入する際の冷媒と気液分離器内壁との衝突音が
外部に伝播するのを防ぐと共に、冷媒が吸熱することも
少ない。
Since the refrigerant in the gas-liquid separator 17 is insulated and soundproofed by the polyethylene foam member surrounding the outer periphery of the body of the gas-liquid separator 17, when the refrigerant flows into the gas-liquid separator 17. The collision sound between the refrigerant and the inner wall of the gas-liquid separator is prevented from propagating to the outside, and the refrigerant does not absorb much heat.

【0079】また、2段圧縮・2段膨張冷凍サイクルで
冬期の給湯運転や空調暖房運転中に、吸熱機側熱交換器
の表面に着霜した際に吸熱器側への配管と放熱機側への
配管を電磁弁等で切り替えて除霜運転を開始した直後し
ばらくの間は、放熱機側の高圧の液冷媒が2段冷媒圧縮
機1の吸入側に多量流入して低段圧縮要素7の圧縮室で
液圧縮が生じ、連通路55の圧力が異常上昇する。一
方、除霜運転への切り替えによって気液分離器17や電
動機室8の圧力が急低下するので、連通路55の圧力が
気液分離器17や電動機室8より高くなり、連通路55
から気液分離器17に冷媒が逆流しようとするが上述の
場合と同様に弁体60が連通管59の側に移動し、連通
管59の端部を塞いで冷媒インジェクション通路72を
閉路する。また同時に、バイパス弁装置58が作動して
バイパス通路57が開通し、連通路55の冷媒圧力が低
下して高段圧縮要素9での圧縮負荷が軽減する。
When the frost forms on the surface of the heat exchanger on the heat absorber side during the hot water supply operation or the air conditioning heating operation in the winter in the two-stage compression / two-stage expansion refrigeration cycle, the pipe to the heat absorber side and the radiator side Immediately after the defrosting operation is started by switching the piping to the low pressure compression element 7 for a while immediately after the defrosting operation is started, the high pressure liquid refrigerant on the radiator side flows into the suction side of the second stage refrigerant compressor 1. The liquid is compressed in the compression chamber, and the pressure in the communication passage 55 rises abnormally. On the other hand, since the pressure in the gas-liquid separator 17 and the electric motor chamber 8 drops sharply by switching to the defrosting operation, the pressure in the communication passage 55 becomes higher than that in the gas-liquid separator 17 and the electric motor chamber 8, and the communication passage 55
Although the refrigerant tries to flow back from the gas-liquid separator 17 to the gas-liquid separator 17, the valve body 60 moves to the side of the communication pipe 59, closes the end of the communication pipe 59, and closes the refrigerant injection passage 72, as in the case described above. At the same time, the bypass valve device 58 operates to open the bypass passage 57, the refrigerant pressure in the communication passage 55 decreases, and the compression load on the high-stage compression element 9 is reduced.

【0080】次に、第2の実施例の動作を図7を参照し
ながら説明する。2段圧縮機の運転によって第1のアキ
ュームレータ202に流入した冷媒ガスは、周期的な圧
力脈動を抑制されて吸入管202aを介して低段圧縮要
素207の吸入室に流入し、圧縮された後、高段圧縮要
素209の吸入側に順次送出される。第1のアキューム
レータ202の過給作用が抑制されているので、駆動軸
6の一回転当りの低段圧縮要素207への吸入気体容積
は、圧縮機運転速度が変動してもあまり変化せず、低段
吐出ガスが高段圧縮要素209のシリンダ容積に対して
ほぼ一定割合で送出される。この結果、低段吐出ガス圧
力は圧縮機運転速度が変動した場合でも異常圧力上昇せ
ずにほぼ一定を保ち、低段圧縮要素207の圧縮室での
過圧縮を少なくする。
Next, the operation of the second embodiment will be described with reference to FIG. The refrigerant gas that has flowed into the first accumulator 202 by the operation of the two-stage compressor has its periodic pressure pulsation suppressed, flows into the suction chamber of the low-stage compression element 207 via the suction pipe 202a, and is compressed. , Are sequentially delivered to the suction side of the high-stage compression element 209. Since the supercharging action of the first accumulator 202 is suppressed, the suction gas volume to the low-stage compression element 207 per one rotation of the drive shaft 6 does not change much even if the compressor operating speed changes, The low-stage discharge gas is delivered at a substantially constant rate with respect to the cylinder volume of the high-stage compression element 209. As a result, the low-stage discharge gas pressure is kept substantially constant without abnormal pressure rise even when the compressor operating speed fluctuates, and overcompression of the low-stage compression element 207 in the compression chamber is reduced.

【0081】気液分離器(図示せず)から第2のアキュ
ームレータ202bに流入した未蒸発冷媒は、逆止弁2
06を経由して高段圧縮要素209の吸入側に低段吐出
ガスと共に流入する。
The non-evaporated refrigerant that has flowed into the second accumulator 202b from the gas-liquid separator (not shown) is the check valve 2
The gas flows into the suction side of the high-stage compression element 209 together with the low-stage discharge gas via 06.

【0082】一方、小内容積を有する低段吐出室245
に排出された低段吐出冷媒ガスは、潤滑油を分離するこ
となく拡散し、隣接する背面室A244に油溜35から
油インジェクション通路261を経て流入した潤滑油を
巻き込んで背面室A244の摺動面を潤滑の後、高段圧
縮要素209に送出される。
On the other hand, the low-stage discharge chamber 245 having a small internal volume
The low-stage discharge refrigerant gas discharged to the diffuser diffuses without separating the lubricating oil and entrains the lubricating oil that has flowed into the adjacent back chamber A244 from the oil reservoir 35 through the oil injection passage 261 and slides in the back chamber A244. After lubricating the surface, it is delivered to the high-stage compression element 209.

【0083】圧縮機停止後は、コイルバネ270の温度
が低下してそのバネ定数が増加し、弁体58aを第2の
アキュームレータ202bの側へ移動させてその流入路
を塞ぎ、圧縮機停止中に第2のアキュームレータ202
bを経由して液冷媒が連通路255に流入するのを防
ぐ。
After the compressor is stopped, the temperature of the coil spring 270 is lowered and the spring constant thereof is increased, and the valve body 58a is moved to the second accumulator 202b side to block the inflow passage thereof, and the compressor is stopped. Second accumulator 202
The liquid refrigerant is prevented from flowing into the communication passage 255 via b.

【0084】その他の動作については、第1の実施例の
場合と類似であるので、その説明を省略する。
The other operations are similar to those of the first embodiment, and the description thereof will be omitted.

【0085】以上のように上記実施例によれば、低段圧
縮要素7の低段吐出室45と高段圧縮要素9の吸入室5
6とを連通路55を介して直列接続した2段圧縮機構を
有する2段冷媒圧縮機1、凝縮器13、第1膨張装置1
5、気液分離器17、第2膨張装置19、蒸発器21を
順次配管接続すると共に、2段冷媒圧縮機1の連通路5
5の途中と気液分離器17とを連通する冷媒インジェク
ション通路72を構成し、冷媒インジェクション通路7
2の途中に気液分離器17から連通路55へのみの流体
流入を許容する逆止弁装置71を配置したことにより、
圧縮機起動初期など、低段圧縮要素7と高段圧縮要素9
との間の連通路55の冷媒ガス圧力が2段圧縮2段膨張
冷凍サイクルの凝縮器13と蒸発器21との間に設けら
れた気液分離器17の冷媒圧力よりも高い場合には、冷
媒インジェクション通路を閉路して、連通路55の冷媒
ガスが気液分離器17の側に逆流するのを阻止して気液
分離器17内の液冷媒の流失を防ぐと共に、低段圧縮要
素7で圧縮した冷媒ガスを高段圧縮要素9で圧縮した
後、凝縮器13へ送出する通常の冷凍サイクルを構成す
ることによって、冷凍サイクルの立ち上がりを速め、気
液分離器17の冷媒が所定圧力を超えると自動的に2段
冷媒圧縮機1への冷媒インジェクションを開始させるこ
とができ、高効率な2段圧縮2段膨張冷凍サイクル装置
の立ち上がりを速めることができる。
As described above, according to the above embodiment, the low-stage discharge chamber 45 of the low-stage compression element 7 and the suction chamber 5 of the high-stage compression element 9 are provided.
6, a two-stage refrigerant compressor 1 having a two-stage compression mechanism connected in series via a communication passage 55, a condenser 13, and a first expansion device 1.
5, the gas-liquid separator 17, the second expansion device 19, and the evaporator 21 are sequentially connected by piping, and the communication passage 5 of the two-stage refrigerant compressor 1 is connected.
5, a refrigerant injection passage 72 that connects the gas-liquid separator 17 to the middle thereof is formed, and the refrigerant injection passage 7 is formed.
By arranging the check valve device 71 that allows the fluid to flow only from the gas-liquid separator 17 to the communication passage 55 in the middle of 2,
Low-stage compression element 7 and high-stage compression element 9 such as the initial stage of compressor startup
When the refrigerant gas pressure of the communication passage 55 between the and is higher than the refrigerant pressure of the gas-liquid separator 17 provided between the condenser 13 and the evaporator 21 of the two-stage compression two-stage expansion refrigeration cycle, The refrigerant injection passage is closed to prevent the refrigerant gas in the communication passage 55 from flowing backward to the gas-liquid separator 17 side to prevent the liquid refrigerant in the gas-liquid separator 17 from flowing out, and also to the low-stage compression element 7 By configuring the normal refrigeration cycle in which the refrigerant gas compressed in step 1 is compressed by the high-stage compression element 9 and then sent to the condenser 13, the start-up of the refrigeration cycle is accelerated, and the refrigerant in the gas-liquid separator 17 has a predetermined pressure. When it exceeds, the refrigerant injection into the two-stage refrigerant compressor 1 can be automatically started, and the startup of the highly efficient two-stage compression and two-stage expansion refrigeration cycle device can be accelerated.

【0086】また、冷媒が冷凍サイクル配管系を逆流す
るのを防止することによって、潤滑油や液冷媒の不要な
移動を防いで、冷凍サイクル配管系を構成する各要素機
器の故障や破損を防止することができる。
Further, by preventing the refrigerant from flowing back through the refrigeration cycle piping system, unnecessary movement of the lubricating oil and the liquid refrigerant is prevented, and the failure and damage of each component device constituting the refrigeration cycle piping system are prevented. can do.

【0087】また上記実施例によれば、逆止弁装置71
の弁体60が、気液分離器17からの導入路を形成する
連通管59の端面に当接して逆止作用を成すべく構成し
たことにより、簡易手段で小型・低コストな逆止弁装置
71を構成することができ、2段圧縮冷凍装置の信頼性
向上および小型化を図ることができる。
Further, according to the above embodiment, the check valve device 71
Since the valve body 60 is configured to abut the end face of the communication pipe 59 forming the introduction path from the gas-liquid separator 17 to perform the check function, the check valve device is small in size and low in cost with simple means. 71 can be configured, and the reliability and size of the two-stage compression refrigeration system can be improved.

【0088】なお、上記実施例ではローリングピストン
型ロータリ式2段圧縮機について説明したが、他の回転
式2段圧縮機、往復動式2段圧縮機およびスクロール式
2段圧縮機などについても実施例図を応用展開した構成
で同様の作用・効果が期待できる。
Although the rolling piston type rotary two-stage compressor has been described in the above embodiment, the present invention is also applied to other rotary two-stage compressors, reciprocating two-stage compressors, scroll two-stage compressors and the like. The same action and effect can be expected with the configuration in which the example diagram is applied and developed.

【0089】また、上記実施例では高段吐出ガス圧力の
作用する潤滑油を密閉容器内部に収集する構成とした
が、密閉容器の大きさや油分離能力等の都合によって、
圧縮機外に設けた吐出側の油分離装置に潤滑油を収集
し、そこから圧縮機内部に導入する給油通路を構成して
もよい。
In the above embodiment, the lubricating oil under the action of the high-stage discharge gas pressure is collected in the closed container. However, due to the size of the closed container and the oil separation ability,
A lubricating oil passage may be configured to collect the lubricating oil in an oil separation device on the discharge side provided outside the compressor and introduce the lubricating oil into the inside of the compressor.

【0090】[0090]

【発明の効果】上記実施例より明らかなように本発明
は、低段圧縮要素の吐出側と高段圧縮要素の吸入側とを
連通路を介して直列接続した2段圧縮機構を有する2段
冷媒圧縮機、凝縮器、第1膨張装置、気液分離器、第2
膨張装置、蒸発器を順次配管接続すると共に、2段冷媒
圧縮機の連通路の途中と気液分離器とを連通する冷媒イ
ンジェクション通路を構成し、その冷媒インジェクショ
ン通路の途中に気液分離器から連通路へのみの流体流入
を許容する逆止弁装置を配置したことにより、圧縮機起
動初期など、低段圧縮要素と高段圧縮要素との間の連通
路の冷媒ガス圧力が2段圧縮2段膨張冷凍サイクルの凝
縮器と蒸発器との間に設けられた気液分離器の冷媒圧力
よりも高い場合には、冷媒インジェクション通路を閉路
して、連通路の冷媒ガスが気液分離器の側に逆流するの
を阻止して気液分離器内の液冷媒の流失を防ぐと共に、
低段圧縮要素で圧縮した冷媒ガスを高段圧縮要素で圧縮
した後、凝縮器へ送出する通常の冷凍サイクルを構成す
ることによって、冷凍サイクルの立ち上がりを速め、気
液分離器の冷媒が所定圧力を超えると自動的に2段冷媒
圧縮機への冷媒インジェクションを開始させることがで
き、高効率な2段圧縮2段膨張冷凍サイクル装置の立ち
上がりを速めることができる。
As is apparent from the above embodiments, the present invention has a two-stage compression mechanism in which the discharge side of the low-stage compression element and the suction side of the high-stage compression element are connected in series via a communication passage. Refrigerant compressor, condenser, first expansion device, gas-liquid separator, second
The expansion device and the evaporator are sequentially connected by piping, and a refrigerant injection passage that connects the middle of the communication passage of the two-stage refrigerant compressor and the gas-liquid separator is formed, and the gas-liquid separator is formed in the middle of the refrigerant injection passage. By arranging the check valve device that allows the fluid to flow into only the communication passage, the refrigerant gas pressure in the communication passage between the low-stage compression element and the high-stage compression element is compressed by the two-stage compression at the initial stage of compressor startup. When the refrigerant pressure of the gas-liquid separator provided between the condenser and the evaporator of the stage expansion refrigeration cycle is higher than that, the refrigerant injection passage is closed, and the refrigerant gas in the communication passage is To prevent the liquid refrigerant in the gas-liquid separator from flowing out,
The refrigerant gas compressed by the low-stage compression element is compressed by the high-stage compression element and then sent to the condenser to form a normal refrigeration cycle, which accelerates the start-up of the refrigeration cycle and causes the refrigerant in the gas-liquid separator to reach a predetermined pressure. When it exceeds, the refrigerant injection into the two-stage refrigerant compressor can be automatically started, and the startup of the highly efficient two-stage compression two-stage expansion refrigeration cycle device can be accelerated.

【0091】また、冷媒が冷凍サイクル配管系を逆流す
るのを防止することによって、潤滑油や液冷媒の不要な
移動を防いで、冷凍サイクル配管系を構成する各要素機
器の故障や破損を防止することができる。
Further, by preventing the refrigerant from flowing back through the refrigeration cycle piping system, it is possible to prevent unnecessary movement of the lubricating oil and the liquid refrigerant, and to prevent the failure and damage of each component equipment constituting the refrigeration cycle piping system. can do.

【0092】また本発明は、低段圧縮要素の吐出側と高
段圧縮要素の吸入側とを連通路を介して直列接続した2
段圧縮機構を有する2段冷媒圧縮機、凝縮器、第1膨張
装置、気液分離器、第2膨張装置、蒸発器を順次配管接
続すると共に、2段冷媒圧縮機の連通路の途中と気液分
離器とを連通する冷媒インジェクション通路を構成し、
その冷媒インジェクション通路の途中に気液分離器から
連通路へのみの流体流入を許容する逆止弁装置を配置す
ると共に、逆止弁装置の弁体が、気液分離器からの導入
路を形成する圧縮部接続配管の端面に当接して逆止作用
を成すべく構成したことにより、簡易手段で小型・低コ
ストな逆止弁装置を構成することができ、2段圧縮冷凍
装置の信頼性向上および小型化を図ることができる。
Further, according to the present invention, the discharge side of the low-stage compression element and the suction side of the high-stage compression element are connected in series via a communication passage.
A two-stage refrigerant compressor having a two-stage compression mechanism, a condenser, a first expansion device, a gas-liquid separator, a second expansion device, and an evaporator are sequentially connected by piping, and the middle of the communication passage of the two-stage refrigerant compressor Constitutes a refrigerant injection passage communicating with the liquid separator,
A check valve device that allows fluid to flow only from the gas-liquid separator into the communication passage is arranged in the middle of the refrigerant injection passage, and the valve body of the check valve device forms an introduction passage from the gas-liquid separator. Since it is configured to come into contact with the end face of the compression section connecting pipe to perform the check function, a small-sized and low-cost check valve device can be configured with simple means, and the reliability of the two-stage compression refrigeration system can be improved. And miniaturization can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における2段冷媒圧縮機
を使用した2段圧縮冷凍サイクルの配管系統図
FIG. 1 is a piping system diagram of a two-stage compression refrigeration cycle using a two-stage refrigerant compressor according to the first embodiment of the present invention.

【図2】同圧縮機の縦断面図FIG. 2 is a vertical sectional view of the compressor.

【図3】同圧縮機における圧縮要部断面図FIG. 3 is a sectional view of a main part of compression in the compressor.

【図4】同圧縮機に使用するバイパス弁の外観図FIG. 4 is an external view of a bypass valve used in the compressor.

【図5】図3におけるA−A線に沿った部分平面図5 is a partial plan view taken along the line AA in FIG.

【図6】同圧縮機におけるバイパス弁装置と逆止弁装置
の作動状態を示した圧縮要部断面図
FIG. 6 is a sectional view of the main part of the compression showing the operating states of the bypass valve device and the check valve device in the compressor.

【図7】本発明の第2の実施例の逆止弁装置を備えた2
段冷媒圧縮機の圧縮要部断面図
FIG. 7 is a view showing a second embodiment of the present invention, which is provided with a check valve device;
Cross-sectional view of the main part of compression of a three-stage refrigerant compressor

【図8】従来の2段冷媒圧縮機を使用した2段圧縮冷凍
サイクルの配管系統図
FIG. 8 is a piping system diagram of a two-stage compression refrigeration cycle using a conventional two-stage refrigerant compressor.

【図9】同圧縮機における圧縮機構の平面説明図FIG. 9 is an explanatory plan view of a compression mechanism in the compressor.

【図10】同圧縮機における潤滑装置の詳細断面図FIG. 10 is a detailed cross-sectional view of a lubricating device in the compressor.

【符号の説明】[Explanation of symbols]

3 密閉容器 5 電動機 7 低段圧縮要素 8 電動機室 9 高段圧縮要素 13 凝縮器 15 第1膨張弁 17 気液分離器 19 第2膨張弁 21 蒸発器 55 連通路 57 バイパス通路 58 バイパス弁装置 58a 弁体 58b コイルバネ 59 連通管 60 弁体 72 冷媒インジェクション通路 206 逆止弁 270 コイルバネ 271 逆止弁装置 3 Airtight container 5 Electric motor 7 Low-stage compression element 8 Electric motor room 9 High-stage compression element 13 Condenser 15 First expansion valve 17 Gas-liquid separator 19 Second expansion valve 21 Evaporator 55 Communication passage 57 Bypass passage 58 Bypass valve device 58a Valve body 58b Coil spring 59 Communication pipe 60 Valve body 72 Refrigerant injection passage 206 Check valve 270 Coil spring 271 Check valve device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】低段圧宿要素の吐出側と高段圧縮要素の吸
入側とを連通路を介して直列接続した2段圧縮機構を有
する2段冷媒圧縮機、凝縮器、第1膨張装置、気液分離
器、第2膨張装置、蒸発器を順次配管接続すると共に、
前記2段冷媒圧縮機の前記連通路の途中と前記気液分離
器とを連通する冷媒インジェクション通路を構成し、前
記冷媒インジェクション通路の途中に前記気液分離器か
ら前記連通路へのみの液体流入を許容する逆止弁装置を
備えた2段圧縮冷凍装置。
1. A two-stage refrigerant compressor, a condenser, and a first expansion device having a two-stage compression mechanism in which a discharge side of a low-stage compression element and a suction side of a high-stage compression element are connected in series via a communication passage. , The gas-liquid separator, the second expansion device, and the evaporator are sequentially connected by piping,
A refrigerant injection passage that connects the middle of the communication passage of the two-stage refrigerant compressor and the gas-liquid separator is formed, and liquid flows only from the gas-liquid separator into the communication passage in the middle of the refrigerant injection passage. A two-stage compression refrigeration system equipped with a check valve device that allows
【請求項2】逆止弁装置の弁体が、気液分離器からの導
入路を形成する圧縮部接続配管の端面に当接して逆止作
用を成す請求項1記載の逆止弁装置を備えた2段圧縮冷
凍装置。
2. The check valve device according to claim 1, wherein the valve body of the check valve device comes into contact with the end face of the compression section connecting pipe forming an introduction path from the gas-liquid separator to perform a check action. A two-stage compression refrigeration system equipped.
JP3295514A 1991-11-12 1991-11-12 Two-stage compression refrigeration system with check valve device Expired - Fee Related JP2699723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3295514A JP2699723B2 (en) 1991-11-12 1991-11-12 Two-stage compression refrigeration system with check valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3295514A JP2699723B2 (en) 1991-11-12 1991-11-12 Two-stage compression refrigeration system with check valve device

Publications (2)

Publication Number Publication Date
JPH05133368A true JPH05133368A (en) 1993-05-28
JP2699723B2 JP2699723B2 (en) 1998-01-19

Family

ID=17821609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3295514A Expired - Fee Related JP2699723B2 (en) 1991-11-12 1991-11-12 Two-stage compression refrigeration system with check valve device

Country Status (1)

Country Link
JP (1) JP2699723B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057696A1 (en) * 2000-12-22 2002-07-25 Biocryos Co., Ltd. Apparatus for making hexagonal cold water and ice with hot water
EP1344938A3 (en) * 2002-03-13 2004-06-09 Sanyo Electric Co., Ltd. Multistage rotary compressor and refrigeration circuit system
JP2006177226A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary compressor and air conditioner using the same
CN100376847C (en) * 2004-12-22 2008-03-26 日立空调·家用电器株式会社 Air conditioner
CN102192150A (en) * 2010-03-02 2011-09-21 三菱电机株式会社 Two-stage compressor and heat pump device
JP2013002326A (en) * 2011-06-14 2013-01-07 Nippon Soken Inc Rolling piston-type compressor
US8790097B2 (en) 2009-06-11 2014-07-29 Mitsubishi Electric Corporation Refrigerant compressor and heat pump apparatus
CN103967790A (en) * 2013-02-04 2014-08-06 珠海格力节能环保制冷技术研究中心有限公司 Compressor and heat pump system with compressor
CN105065272A (en) * 2015-08-24 2015-11-18 广东美芝制冷设备有限公司 Rotary compressor
WO2019171508A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Rotary compressor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057696A1 (en) * 2000-12-22 2002-07-25 Biocryos Co., Ltd. Apparatus for making hexagonal cold water and ice with hot water
EP1344938A3 (en) * 2002-03-13 2004-06-09 Sanyo Electric Co., Ltd. Multistage rotary compressor and refrigeration circuit system
EP2241758A3 (en) * 2002-03-13 2012-08-29 Sanyo Electric Co., Ltd. Multistage rotary compressor and refrigeration circuit system
JP2006177226A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary compressor and air conditioner using the same
CN100376847C (en) * 2004-12-22 2008-03-26 日立空调·家用电器株式会社 Air conditioner
US9011121B2 (en) 2009-06-11 2015-04-21 Mitsubishi Electric Corporation Refrigerant compressor and heat pump apparatus
US8790097B2 (en) 2009-06-11 2014-07-29 Mitsubishi Electric Corporation Refrigerant compressor and heat pump apparatus
CN102192150A (en) * 2010-03-02 2011-09-21 三菱电机株式会社 Two-stage compressor and heat pump device
JP2013002326A (en) * 2011-06-14 2013-01-07 Nippon Soken Inc Rolling piston-type compressor
CN103967790A (en) * 2013-02-04 2014-08-06 珠海格力节能环保制冷技术研究中心有限公司 Compressor and heat pump system with compressor
CN103967790B (en) * 2013-02-04 2016-10-05 珠海格力节能环保制冷技术研究中心有限公司 Compressor and there is the heat pump of this compressor
CN105065272A (en) * 2015-08-24 2015-11-18 广东美芝制冷设备有限公司 Rotary compressor
CN105065272B (en) * 2015-08-24 2018-03-23 广东美芝制冷设备有限公司 Rotary compressor
WO2019171508A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Rotary compressor
CN111788391A (en) * 2018-03-07 2020-10-16 三菱电机株式会社 Rotary compressor
CN111788391B (en) * 2018-03-07 2022-10-04 三菱电机株式会社 Rotary compressor

Also Published As

Publication number Publication date
JP2699723B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
JP2812022B2 (en) Multi-stage gas compressor with bypass valve device
JP2699724B2 (en) Two-stage gas compressor
JP2768004B2 (en) Rotary multi-stage gas compressor
JP2782858B2 (en) Scroll gas compressor
US7914267B2 (en) Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
US8769982B2 (en) Injection system and method for refrigeration system compressor
US7647790B2 (en) Injection system and method for refrigeration system compressor
US10378539B2 (en) System including high-side and low-side compressors
US7931453B2 (en) Capacity variable device for rotary compressor and driving method of air conditioner having the same
JP2001165073A (en) Scroll compressor and air conditioner
EP2497955A1 (en) Heat pump device, two-stage compressor, and method of operating heat pump device
WO2018096823A1 (en) Asymmetrical scroll compressor
JP2699723B2 (en) Two-stage compression refrigeration system with check valve device
US20060150670A1 (en) Freezer device
JPH10141270A (en) Two stage gas compressor
WO2020067196A1 (en) Multistage compression system
JP5414811B2 (en) Positive displacement expander and refrigeration cycle apparatus using the positive displacement expander
JPH1037868A (en) Scroll compressor
JP6702401B1 (en) Multi-stage compression system
US11371505B2 (en) Scroll compressor with economizer injection
JPS6187988A (en) Scroll compressor
JP2001207983A (en) Gas compressor
JP2020094761A (en) Multi-stage compression system
US20220146171A1 (en) Compressor and refrigeration cycle device having the same
JPH06300368A (en) Freezing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees