JPH0512656B2 - - Google Patents

Info

Publication number
JPH0512656B2
JPH0512656B2 JP57222682A JP22268282A JPH0512656B2 JP H0512656 B2 JPH0512656 B2 JP H0512656B2 JP 57222682 A JP57222682 A JP 57222682A JP 22268282 A JP22268282 A JP 22268282A JP H0512656 B2 JPH0512656 B2 JP H0512656B2
Authority
JP
Japan
Prior art keywords
pyroelectric element
pattern
heat insulating
heat
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57222682A
Other languages
Japanese (ja)
Other versions
JPS59112236A (en
Inventor
Akira Okamoto
Shinya Nakai
Takashi Yamamoto
Masaaki Izumida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP57222682A priority Critical patent/JPS59112236A/en
Publication of JPS59112236A publication Critical patent/JPS59112236A/en
Publication of JPH0512656B2 publication Critical patent/JPH0512656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、非接触型温度センサとして、調理、
防犯または防災等の分野に使用される赤外線検出
器に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention can be used as a non-contact temperature sensor for cooking,
Related to infrared detectors used in fields such as crime prevention and disaster prevention.

赤外線検出器としてはは、光子形赤外線検出器
と熱形赤外線検出器が広く知られている。光子形
赤外線検出器は赤外線の光子エネルギーを直接電
気変換する方式に係り、PbSまたはHgCdTe等に
よつて構成される。一方、熱形赤外線検出器は赤
外線を熱源として利用し、その発熱作用による素
子の温度変化を検出する方式であり、ボロメータ
やGolayセル等がその代表例である。本発明は後
者の熱形赤外線検出器に属する焦電形赤外線検出
器の改良に関するものである。
As infrared detectors, photon infrared detectors and thermal infrared detectors are widely known. A photon-type infrared detector is a method that directly converts infrared photon energy into electricity, and is composed of PbS, HgCdTe, etc. On the other hand, thermal infrared detectors use infrared rays as a heat source and detect temperature changes in the element due to the heat generation effect, and typical examples include bolometers and Golay cells. The present invention relates to an improvement of a pyroelectric infrared detector belonging to the latter type of thermal infrared detector.

<従来の技術> 焦電形赤外線検出器は、入射赤外線により焦電
体素子を加熱或いは冷却し、その結果信号を出す
ものであるから、入射赤外線をいかに効率良く信
号発生のための熱エネルギーに変換するかが重要
な技術ポイトになる。焦電形赤外線検出器の感度
は一般に焦電体素子の板厚に反比例するから、感
度を上げるためには、焦電体素子の板厚をできる
だけ薄くする必要があり、従来より例えば2×2
×0.05(m/m)程度の極く薄い焦電体素子が使
用されている。このため、焦電体素子は、機械的
強度が非常に低く簡単に破損してしまうから、支
持台上に固定して機械的強度を補強し、動作の安
定性を確保する必要がある。この場合、入射赤外
線の熱作用で焦電体素子に発生した熱が支持台を
通して放散してしまうと、素子に対する熱作用が
有効に働かず、結果として検出感度が低下してし
まうこと、支持台の熱容量が焦電体素子に比べて
大き過ぎると、支持台の放熱作用及び蓄熱作用に
より、赤外線の急激な断続変動に対する焦電体素
子の応答が鈍くなり、検出器の応答時間特性が低
下すること等の問題点を生じる。これらの問題点
を解決する技術的手段として、従来は第1図乃至
第3図に示すような支持構造を取つていた。
<Prior art> A pyroelectric infrared detector heats or cools a pyroelectric element using incident infrared rays and outputs a signal as a result, so it is important to know how efficiently the incident infrared rays can be converted into thermal energy for signal generation. The key technical point is how to convert it. The sensitivity of a pyroelectric infrared detector is generally inversely proportional to the thickness of the pyroelectric element, so in order to increase the sensitivity, it is necessary to make the thickness of the pyroelectric element as thin as possible.
An extremely thin pyroelectric element of approximately 0.05 (m/m) is used. For this reason, the pyroelectric element has very low mechanical strength and is easily damaged, so it is necessary to reinforce the mechanical strength by fixing it on a support stand to ensure stability of operation. In this case, if the heat generated in the pyroelectric element due to the thermal effect of the incident infrared rays is dissipated through the support, the thermal effect on the element will not work effectively, resulting in a decrease in detection sensitivity. If the heat capacity of the pyroelectric element is too large compared to that of the pyroelectric element, the response of the pyroelectric element to rapid intermittent fluctuations in infrared rays will become slow due to the heat dissipation and heat storage effects of the support, and the response time characteristics of the detector will deteriorate. This causes problems such as: As a technical means to solve these problems, support structures as shown in FIGS. 1 to 3 have conventionally been used.

まず、第1図に示す従来例では、焦電体素子1
の一面にワイヤ2を接続固定し、このワイヤ2の
一端を底板3に植設したリード端子4に絡げて半
田付け固定することにより、焦電体素子1を放熱
及び蓄熱作用の大きな底板3から浮かした構造と
なつている。焦電体素子1の両面に設けた電極1
a,1bの内、表側の電極1aはリード線5によ
つてリード端子6に導通接続させ、電極1bは前
記ワイヤ2をリード線としてリード端子4に導通
接続させてある。また、底板3を金属板材等で構
成した場合は、電極1aを導通接続するリード端
子6は絶縁ガラス等の絶縁物7を会して底板3を
植設する。なお、8は底板3と共に外装ケースを
構成する蓋体であり、その中央部に赤外線入射窓
9を設けてある。
First, in the conventional example shown in FIG.
By connecting and fixing a wire 2 to one surface, and connecting one end of this wire 2 to a lead terminal 4 implanted in the bottom plate 3 and fixing it by soldering, the pyroelectric element 1 can be attached to the bottom plate 3, which has a large heat dissipation and heat storage effect. It has a floating structure. Electrodes 1 provided on both sides of the pyroelectric element 1
Among electrodes a and 1b, the front side electrode 1a is electrically connected to a lead terminal 6 through a lead wire 5, and the electrode 1b is electrically connected to a lead terminal 4 using the wire 2 as a lead wire. Further, when the bottom plate 3 is made of a metal plate material or the like, the bottom plate 3 is planted so that the lead terminals 6 for electrically connecting the electrodes 1a meet an insulating material 7 such as insulating glass. Note that 8 is a lid that constitutes an exterior case together with the bottom plate 3, and an infrared entrance window 9 is provided in the center of the lid.

次に第2図に示す従来例では、底板3上に石英
等で成る絶縁ベース10を接着等の手段によつて
固着し、この絶縁ベース10上に焦電体素子1の
一面側を接着固定した構造となつている。
Next, in the conventional example shown in FIG. 2, an insulating base 10 made of quartz or the like is fixed on the bottom plate 3 by adhesive or other means, and one side of the pyroelectric element 1 is fixed by adhesive on the insulating base 10. It has a similar structure.

次に第3図に示す従来例は、最近、最もよく用
いられている一般的な構造であつて、アルミナ磁
器等で成る比較的薄い絶縁基板11の中央部に穴
12を形成すると共に、該絶縁基板11を、底板
3から浮かした状態で、リード端子4,6上に支
持し、この絶縁基板11上に焦電体素子1の一面
側を接着固定した構造となつている。
Next, the conventional example shown in FIG. 3 has a general structure that has been most commonly used recently, in which a hole 12 is formed in the center of a relatively thin insulating substrate 11 made of alumina porcelain, etc. The insulating substrate 11 is supported on the lead terminals 4 and 6 while floating from the bottom plate 3, and one side of the pyroelectric element 1 is adhesively fixed onto the insulating substrate 11.

<発明が解決しようとする課題> しかしながら、上述した従来技術には、次のよ
うな問題点がある。
<Problems to be Solved by the Invention> However, the above-mentioned conventional technology has the following problems.

(イ) 第1図に示した従来技術の問題点 50μm程度の極薄に加工した焦電体素子1を
ワイヤ2上に一枚づつ固定するという煩雑かつ
面倒な工程を必要とするため、組立作業が困難
で、量産性に欠け、コスト高になる欠点があ
る。また、焦電体素子1の支持面が小さく、支
持強度不足や焦電体素子1の傾斜等を招き、支
持が不安定になり易いこと、機械的強度が低
く、振動、衝撃等によつて焦電体素子1がワイ
ヤ2から脱落する等の事故を生じ易いこと等の
欠点もあつた。
(b) Problems with the conventional technology shown in Figure 1: The assembly requires a complicated and troublesome process of fixing the pyroelectric element 1, which is processed to be ultra-thin with approximately 50 μm, onto the wire 2 one by one. It has the drawbacks of being difficult to work with, lacking in mass production, and being expensive. In addition, the support surface of the pyroelectric element 1 is small, leading to insufficient support strength and tilting of the pyroelectric element 1, making the support unstable. There was also a drawback that accidents such as the pyroelectric element 1 falling off the wire 2 were likely to occur.

(ロ) 第2図に示した従来技術の問題点 焦電体素子1の支持安定性が高く、機械的強
度が大である等の利点はあるが、焦電体素子1
の一方の電極1bが絶縁ベース10上に対接し
て固着されるため、電極1bの導出が困難にな
ること、絶縁ベース10の断熱作用が充分でな
い上に、熱容量が大きいため、感度及び応答性
が良くないこと、絶縁ベース10が硬い石英等
で構成されているため、リード端子4,6及び
底板3を通して与えられる振動が直接焦電体素
子1に伝わり、これが原因となつてノイズを発
生すること等の欠点がある。
(b) Problems with the prior art shown in FIG. 2 Although the pyroelectric element 1 has advantages such as high support stability and high mechanical strength, the pyroelectric element 1
Since one of the electrodes 1b is fixed to the insulating base 10 in contact with the other, it becomes difficult to lead out the electrode 1b, and the insulating base 10 does not have a sufficient heat insulation effect and has a large heat capacity, resulting in poor sensitivity and responsiveness. Since the insulating base 10 is made of hard quartz or the like, vibrations applied through the lead terminals 4, 6 and the bottom plate 3 are directly transmitted to the pyroelectric element 1, which causes noise. There are drawbacks such as:

(ハ) 第3図に示した従来技術の問題点 穴12による断熱作用により、感度を上げ、
応答性を向上させ得るという利点はあるが、前
記穴12の分だけ絶縁基板11の平面積が小さ
くなるため、インピーダンス変換用高抵抗及び
電界効果トランジスタ(以下FETと称する)
等の実装スペースが確保できなくなり、部品配
置に無理を生じるという難点がある。即ち焦電
体素子1は高抵抗素子であり、ノイズが乗り易
いという一面を有する。そこで、このノイズ防
止のため、焦電体素子1に接近した絶縁基板1
1の裏側に、インピーダンス変換用高抵抗及び
FET等で構成された増幅器を配置する必要が
ある。ところが、前記穴12による断熱効果を
得るためには、その穴径を例えば7φの絶縁基
板11に対して2φ程度にする必要があるため、
その平面積が前記高抵抗及びFETを配置する
のに充分なスペースが確保できなくなり、部品
配置に無理を生じてしまうのである。
(c) Problems with the conventional technology shown in Fig. 3 Due to the heat insulating effect of the hole 12, sensitivity is increased;
Although it has the advantage of improving responsiveness, since the planar area of the insulating substrate 11 is reduced by the hole 12, a high resistance and field effect transistor (hereinafter referred to as FET) for impedance conversion is required.
There is a problem in that it becomes impossible to secure mounting space for components, etc., and it becomes difficult to arrange the components. That is, the pyroelectric element 1 is a high-resistance element, and has the aspect of being susceptible to noise. Therefore, in order to prevent this noise, the insulating substrate 1 close to the pyroelectric element 1 is
On the back side of 1, there is a high resistance for impedance conversion and
It is necessary to install an amplifier composed of FETs, etc. However, in order to obtain the heat insulation effect of the hole 12, the diameter of the hole needs to be about 2φ for the insulating substrate 11 of 7φ, for example.
The plane area makes it impossible to secure sufficient space for arranging the high resistor and FET, making it difficult to arrange the components.

そこで本発明の課題は、上述する従来の欠点を
除去し、焦電体素子に対する断熱作用が高く、感
度及び応答特性が良好で、しかもインピーダンス
変換用高抵抗器や増幅器等を実装するのに充分な
スペースを確保することができる赤外線検出器を
提供することである。
Therefore, the object of the present invention is to eliminate the above-mentioned conventional drawbacks, to provide a high heat insulation effect for the pyroelectric element, good sensitivity and response characteristics, and a sufficient amount to mount a high resistor for impedance conversion, an amplifier, etc. An object of the present invention is to provide an infrared detector that can secure a large amount of space.

<課題を解決するための手段> 上述する課題を解決するため、本発明は、基板
の上に部分的に突出する断熱パターンを形成し、
該断熱パターンの上に焦電体素子を取付けた赤外
線検出器であつて、前記断熱パターンはチクソト
ロピツク性の高い樹脂によつて50μm以上の一定
の高さとなるように形成された硬化物でなり、こ
の断熱パターンの上に前記焦電体素子を接着剤に
よつて接着したことを特徴とする。
<Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention forms a heat insulating pattern that partially protrudes on a substrate,
An infrared detector in which a pyroelectric element is mounted on the heat insulating pattern, the heat insulating pattern being a cured product formed of a highly thixotropic resin to a constant height of 50 μm or more, It is characterized in that the pyroelectric element is bonded onto this heat insulation pattern using an adhesive.

<作用> 基板の上に部分的に突出する断熱パターンを形
成し、この断熱パターンの上に焦電体素子を取付
けると、焦電体素子に対する断熱作用が高くな
る。
<Function> When a heat insulating pattern that partially protrudes on the substrate is formed and a pyroelectric element is mounted on this heat insulating pattern, the heat insulating effect on the pyroelectric element is enhanced.

また、断熱パターンはチクソトロピツク性の高
い樹脂によつて形成された硬化物でなるので、断
熱パターンの上に焦電体素子を接着剤によつて接
着する場合、断熱パターンの変形が少なくて済
む。しかも、断熱パターンは50μm以上の一定の
高さとなるように形成されているので、焦電体素
子に対する充分な断熱作用を確保することができ
る。
Further, since the heat insulation pattern is made of a cured product made of a highly thixotropic resin, when the pyroelectric element is bonded onto the heat insulation pattern with an adhesive, the heat insulation pattern is less deformed. Moreover, since the heat insulation pattern is formed to have a constant height of 50 μm or more, it is possible to ensure a sufficient heat insulation effect on the pyroelectric element.

更に、断熱パターンをチクソトロピツク性の高
い樹脂によつて形成し、この断熱パターンの上に
焦電体素子を接着剤によつて接着したので、断熱
パターンに対する焦電体素子の接着強度が大にな
る。
Furthermore, since the heat insulating pattern is formed from a highly thixotropic resin and the pyroelectric element is bonded onto the heat insulating pattern using an adhesive, the adhesive strength of the pyroelectric element to the heat insulating pattern is increased. .

<実施例> 第4図は本発明に係る赤外線検出器の正面断面
図である。図において、第1図乃至第3図と同一
の参照富豪は同一性ある構成部分を示している。
この実施例では、アルミナ磁器等を用いて平板状
に形成した絶縁基板11の一面上に、部分的に突
出する断熱パターン13,13を形成し、該断熱
パターン13,13の上に焦電体素子1を接着剤
によつて接着してある。従つて、焦電体素子1
は、絶縁基板11から前記断熱パターン13,1
3の高さHだけ浮いた状態で支持されることとな
る。前記高さHは通常の赤外線検出器では50μm
以上の値が適当である。
<Example> FIG. 4 is a front sectional view of an infrared detector according to the present invention. In the figures, the same references as in FIGS. 1 to 3 indicate the same components.
In this embodiment, partially protruding heat insulating patterns 13, 13 are formed on one surface of an insulating substrate 11 formed into a flat plate shape using alumina porcelain or the like, and a pyroelectric material is placed on the heat insulating patterns 13, 13. The element 1 is bonded with adhesive. Therefore, the pyroelectric element 1
is the insulation pattern 13,1 from the insulating substrate 11.
It will be supported in a floating state by a height H of 3. The height H is 50 μm for a normal infrared detector.
The above values are appropriate.

上述のように、断熱パターン13,13によつ
てその高さHだけ絶縁基板11から浮かした状態
で焦電体素子1を支持する構造であると、焦電体
素子1の下面と絶縁基板11の上面との間に前記
断熱パターン13の高さHに応じた空隙14が形
成され、該空隙14が断熱層として作用するの
で、焦電体素子1の感度及び応答時間特性が向上
する。しかも、第3図に示した従来例と異なつ
て、絶縁基板11の下面の全面をインピーダンス
変換用高抵抗及びFET等の部品の実装スペース
として活用することができるから、これらの部品
実装に無理を生じることがない。
As described above, if the structure is such that the pyroelectric element 1 is supported in a state where it is suspended from the insulating substrate 11 by the height H by the heat insulating patterns 13, 13, the lower surface of the pyroelectric element 1 and the insulating substrate 11 are supported. A gap 14 corresponding to the height H of the heat insulating pattern 13 is formed between the pyroelectric element 1 and the upper surface thereof, and the gap 14 acts as a heat insulating layer, so that the sensitivity and response time characteristics of the pyroelectric element 1 are improved. Moreover, unlike the conventional example shown in FIG. 3, the entire bottom surface of the insulating substrate 11 can be used as a mounting space for components such as high resistance for impedance conversion and FET, so there is no need to overdo it when mounting these components. It never occurs.

前記断熱パターン13は、チクソトロピツク性
の高い樹脂の硬化物によつて構成する。チクソト
ロピツク性の高い樹脂の例としてはエポキシ樹脂
がある。導電性樹脂、非導電性樹脂の何れでもよ
く、用途に応じて使い分ける。チクソトロピツク
性の高い樹脂の硬化物によつて断熱パターン13
を形成すると、焦電体素子1を接着した場合の沈
み込み等による断熱パターン13の変形が少なく
て済み、焦電体素子1の高さHを、実質的に、断
熱パターン13の初期精度によつて定まる高精度
の寸法に設定でき、感度バラツキの少ない赤外線
検出器を量産できる。また、断熱パターン13は
例えばエポキシ樹脂等のチクソトロピツク性の高
い樹脂によつて形成されるので、これに対し、エ
ポキシ樹脂系接着剤を用いて焦電体素子1を接着
固定することにより、接着強度が大で、落下、衝
撃及び振動等に強く、信頼性に優れた赤外線検出
器を得ることができる。また、断熱パターン13
は例えば第5図に示すような円環状のパターン、
第6図に示すように適当な間隔をおいて部分的に
点在させたパターン或いは第7図に示すような矩
形状のパターン等、任意のパターンをとることが
できる。なお、絶縁基板11の形状も円形または
矩形等の任意の形状でよい。
The heat insulation pattern 13 is made of a cured resin having high thixotropic properties. An example of a highly thixotropic resin is an epoxy resin. Either a conductive resin or a non-conductive resin may be used, depending on the purpose. Thermal insulation pattern 13 is created by a cured product of highly thixotropic resin.
By forming , the deformation of the heat insulating pattern 13 due to sinking etc. when the pyroelectric element 1 is bonded can be reduced, and the height H of the pyroelectric element 1 can be substantially adjusted to the initial accuracy of the heat insulating pattern 13. As a result, the dimensions can be set with high precision, and infrared detectors with less variation in sensitivity can be mass-produced. In addition, since the heat insulation pattern 13 is formed of a highly thixotropic resin such as epoxy resin, the pyroelectric element 1 is bonded and fixed using an epoxy resin adhesive to increase the adhesive strength. It is possible to obtain an infrared detector that has a large resistance to damage, is resistant to drops, shocks, vibrations, etc., and has excellent reliability. In addition, the insulation pattern 13
For example, a circular pattern as shown in Fig. 5,
Any pattern can be used, such as a partially scattered pattern at appropriate intervals as shown in FIG. 6 or a rectangular pattern as shown in FIG. Note that the shape of the insulating substrate 11 may be any shape such as a circle or a rectangle.

次に実測データを上げて本発明の効果を更に具
体的に説明する。まず、第4図の構造において、
絶縁基板11の下面側にインピーダンス変換用高
抵抗Rg及びFETを実装し、これらを所定の回路
構成となるように焦電体素子1の電極に導通させ
る。焦電体素子1は3×3mmの大きさとし、受光
径2mmφとした。第8図はその電気的等価回路図
である。
Next, the effects of the present invention will be explained in more detail using actual measurement data. First, in the structure shown in Figure 4,
A high resistance Rg and FET for impedance conversion are mounted on the lower surface side of the insulating substrate 11, and these are electrically connected to the electrodes of the pyroelectric element 1 so as to form a predetermined circuit configuration. The pyroelectric element 1 had a size of 3×3 mm and a light receiving diameter of 2 mmφ. FIG. 8 is an electrical equivalent circuit diagram thereof.

次に第9図に示すように、当該赤外線検出器A
に対して黒体炉Bを対向して配置し、両者の間に
チヨツパCの挿入して黒体炉Bからの赤外線を該
チヨツパCによつて断続し、その断続出力を赤外
線検出器Aによつて検出した。ここで、黒体炉B
は500〓とし、またチヨツパCのチヨツピング周
波数は1Hzとした。
Next, as shown in FIG. 9, the infrared detector A
A blackbody furnace B is placed facing the blackbody furnace B, a chopper C is inserted between the two, and the infrared rays from the blackbody furnace B are interrupted by the chopper C, and the intermittent output is sent to an infrared detector A. I turned around and detected it. Here, blackbody furnace B
was set to 500〓, and the chopping frequency of Chippa C was set to 1 Hz.

一方、本発明の比較例として、本発明に係る検
出器Aに代えて、第3図に示した従来構造の赤外
検出器を使用し、同様の測定条件で断続赤外線を
検出した。
On the other hand, as a comparative example of the present invention, an infrared detector having a conventional structure shown in FIG. 3 was used in place of the detector A according to the present invention, and intermittent infrared rays were detected under the same measurement conditions.

第10図にその測定データを示す。曲線L1は
断熱パターン13の高さH=0、即ち断熱パター
ン13を持たない場合の特性、曲線L2は断熱パ
ターン13の高さHを50μmとした場合の特性、
曲線L3は断熱パターン13の高さHを100μm
とした場合の特性、曲線L4は断熱パターン13
の高さHを200μmとした場合の特性、曲線L5
は断熱パターン13の高さHを400μmとした場
合の特性、曲線L6は比較例の特性である。
Figure 10 shows the measurement data. Curve L1 is the characteristic when the height H of the heat insulating pattern 13 is 0, that is, there is no heat insulating pattern 13, and curve L2 is the characteristic when the height H of the heat insulating pattern 13 is 50 μm.
Curve L3 indicates that the height H of the heat insulation pattern 13 is 100 μm.
The characteristic when the curve L4 is the insulation pattern 13
Characteristics when the height H of is 200 μm, curve L5
curve L6 is the characteristic when the height H of the heat insulation pattern 13 is 400 μm, and the curve L6 is the characteristic of the comparative example.

第10図の測定データから明らかなように、本
発明に係る赤外線検出器は、断熱パターン13の
高さHを50μm以上とした場合には、第3図に示
した従来例より勝るとも劣らない高い検出感度を
有していることが分る。
As is clear from the measurement data in FIG. 10, the infrared detector according to the present invention is superior to the conventional example shown in FIG. 3 when the height H of the heat insulating pattern 13 is 50 μm or more. It can be seen that the detection sensitivity is high.

<発明の効果> 以上述べたように、本発明によれば、次のよう
な効果が得られる。
<Effects of the Invention> As described above, according to the present invention, the following effects can be obtained.

(a) 基板の上に部分的に突出する断熱パターンを
形成し、該断熱パターンの上に焦電体素子を取
付けたから、焦電体素子に対する断熱作用が高
く、感度及び応答性が良好で、しかもインピー
ダンス変換用高抵抗器や増幅器等を実装するの
に充分なスペースを確保し得る赤外線検出器を
提供できる。
(a) Since a heat insulating pattern that partially protrudes on the substrate is formed and the pyroelectric element is mounted on the heat insulating pattern, the heat insulating effect on the pyroelectric element is high, and the sensitivity and response are good. Moreover, it is possible to provide an infrared detector that can secure sufficient space for mounting a high resistor for impedance conversion, an amplifier, and the like.

(b) 断熱パターンをチクソトロピツク性の高い樹
脂の硬化物によつて形成し、この断熱パターン
の上に焦電体素子を接着剤によつて接着したか
ら、焦電体素子接着時の断熱パターンの変形が
少なくて済み、焦電体素子の高さを、断熱パタ
ーンの初期精度によつて定まる高精度の寸法に
設定でき、感度バラツキの少ない赤外線検出器
を量産できる。しかも、断熱パターンは50μm
以上の一定の高さとなるように形成されている
ので、焦電体素子に対する充分な断熱作用を確
保することができる。
(b) The heat insulation pattern was formed using a cured resin with high thixotropic properties, and the pyroelectric element was bonded on top of this heat insulation pattern using an adhesive. Less deformation is required, the height of the pyroelectric element can be set to a highly accurate dimension determined by the initial accuracy of the heat insulation pattern, and infrared detectors with less variation in sensitivity can be mass-produced. Moreover, the insulation pattern is 50μm
Since it is formed to have the above constant height, it is possible to ensure a sufficient heat insulating effect on the pyroelectric element.

(c) 断熱パターンをチクソトロピツク性の高い樹
脂の硬化物によつて形成し、この断熱パターン
の上に焦電体素子を接着剤によつて接着したか
ら、断熱パターンに対する焦電体素子の接着強
度が大で、落下、衝撃及び振動等に強く、信頼
性に優れた赤外線検出器を提供できる。
(c) Since the heat insulating pattern is formed from a cured resin with high thixotropic properties and the pyroelectric element is adhered to the heat insulating pattern using an adhesive, the adhesive strength of the pyroelectric element to the heat insulating pattern is It is possible to provide an infrared detector that has a large surface area, is resistant to drops, shocks, vibrations, etc., and has excellent reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の赤外線検出器の正面部分断面
図、第2図は同じく別の従来例の正面部分断面
図、第3図は同じく更に別の従来例の正面部分断
面図、第4図は本発明に係る赤外線検出器の正面
部分断面図、第5図は本発明に係る赤外線検出器
の絶縁基板の拡大平面図、第6図は同じく別の実
施例における拡大平面図、第7図は同じく更に別
の実施例における拡大平面図、第8図は本発明に
係る赤外線検出器の電気的等価回路図、第9図は
特性測定のための測定条件を示す図、第10図は
測定データを示す図である。 1……焦電体素子、11……基板、13……断
熱パターン。
FIG. 1 is a partial front sectional view of a conventional infrared detector, FIG. 2 is a partial front sectional view of another conventional example, FIG. 3 is a partial front sectional view of yet another conventional example, and FIG. 4 is a partial front sectional view of another conventional example. FIG. 5 is an enlarged plan view of the insulating substrate of the infrared detector according to the present invention, FIG. 6 is an enlarged plan view of another embodiment, and FIG. Similarly, an enlarged plan view of yet another embodiment, FIG. 8 is an electrical equivalent circuit diagram of an infrared detector according to the present invention, FIG. 9 is a diagram showing measurement conditions for measuring characteristics, and FIG. 10 is a diagram showing measurement data. FIG. 1... Pyroelectric element, 11... Substrate, 13... Heat insulation pattern.

Claims (1)

【特許請求の範囲】[Claims] 1 基板の上に部分的に突出する断熱パターンを
形成し、該断熱パターンの上に焦電体素子を取付
けた赤外線検出器であつて、前記断熱パターンは
チクソトロピツク性の高い樹脂によつて50μm以
上の一定の高さとなるように形成された硬化物で
なり、この断熱パターンの上に前記焦電体素子を
接着剤によつて接着したことを特徴とする赤外線
検出器。
1. An infrared detector in which a heat insulating pattern is formed partially protruding on a substrate, and a pyroelectric element is mounted on the heat insulating pattern, wherein the heat insulating pattern is made of a highly thixotropic resin and has a diameter of 50 μm or more. 1. An infrared detector characterized in that the pyroelectric element is bonded onto the heat-insulating pattern using an adhesive.
JP57222682A 1982-12-18 1982-12-18 Infrared detector Granted JPS59112236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57222682A JPS59112236A (en) 1982-12-18 1982-12-18 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57222682A JPS59112236A (en) 1982-12-18 1982-12-18 Infrared detector

Publications (2)

Publication Number Publication Date
JPS59112236A JPS59112236A (en) 1984-06-28
JPH0512656B2 true JPH0512656B2 (en) 1993-02-18

Family

ID=16786265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57222682A Granted JPS59112236A (en) 1982-12-18 1982-12-18 Infrared detector

Country Status (1)

Country Link
JP (1) JPS59112236A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370037U (en) * 1986-10-28 1988-05-11
KR100363262B1 (en) * 2001-01-18 2002-12-05 삼성전자 주식회사 Uncooled IR sensor using the pyroelectric emission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658432U (en) * 1979-10-05 1981-05-19

Also Published As

Publication number Publication date
JPS59112236A (en) 1984-06-28

Similar Documents

Publication Publication Date Title
EP0131996B1 (en) Infra-red radiation detector
US4110616A (en) Pyroelectric detectors
GB2165639A (en) Pyroelectric infra-red detector
US3568124A (en) Piezoresistive force- and pressure-measuring element
US2966646A (en) Flake thermistor
US4367408A (en) Pyroelectric type infrared radiation detecting device
EP0102101B1 (en) Pyroelectric infra-red radiation detector
JPH0512656B2 (en)
US4489238A (en) Infrared radiation detector
JPS637611B2 (en)
JP5514167B2 (en) Infrared detector
JPS61193030A (en) Infrared detector
JPH049560Y2 (en)
JPH06105791B2 (en) Photoelectric conversion device
JPS6221954Y2 (en)
WO2018168673A1 (en) Infrared sensor
JPH0645859Y2 (en) Infrared detector
GB2133615A (en) Pyroelectric infra-red radiation detector
JPH09288004A (en) Infrared detector
WO2018168663A1 (en) Infrared sensor
JPH049561Y2 (en)
JPH0635156Y2 (en) Pressure sensor
JP2628395B2 (en) Pyroelectric infrared detector
JP4925258B2 (en) Infrared detector
US3702402A (en) Method and apparatus for light detector fabrication without brazing