JPH05126477A - Filler of heat exchanger for taking out cold heat - Google Patents

Filler of heat exchanger for taking out cold heat

Info

Publication number
JPH05126477A
JPH05126477A JP4094052A JP9405292A JPH05126477A JP H05126477 A JPH05126477 A JP H05126477A JP 4094052 A JP4094052 A JP 4094052A JP 9405292 A JP9405292 A JP 9405292A JP H05126477 A JPH05126477 A JP H05126477A
Authority
JP
Japan
Prior art keywords
moisture
filler
heat
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4094052A
Other languages
Japanese (ja)
Other versions
JP3200946B2 (en
Inventor
Masanori Inoue
正則 井上
Kunio Sugiura
邦雄 杉浦
Fumitaka Kaneko
文孝 金子
Nobuhito Yamashita
暢人 山下
Masakazu Okubo
正和 大久保
Shoshichi Yoshitome
正七 吉留
Takahiro Kimura
隆廣 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP09405292A priority Critical patent/JP3200946B2/en
Publication of JPH05126477A publication Critical patent/JPH05126477A/en
Application granted granted Critical
Publication of JP3200946B2 publication Critical patent/JP3200946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To enhance the heat conductivity, reduce the shrinkage rate due to the lowering of a temperature and improve the performance of filler by a method wherein the filler for a heat exchanger for taking out cold heat of low-temperature liquefied gas is formed of viscous mud containing moisture. CONSTITUTION:A gap between a low-temperature liquefied gas tube 2 and the refrigerant tubes 1a, 1b of a cold heat taking out heat exchanger 1, arranged around the outside of the gas tube 2, is filled with viscous mud 6. The viscous mud, containing moisture, is utilized as filler 6. In this case, the relation between a moisture content % and a heat conductivity W/mk if shown in the diagram with respect to various saturating degrees S=Vw/VpX100% (Vw is the volume of moisture, Vp is total volume of air and moisture) when the moisture content W of mud consisting of the constituents of phases of air, moisture and mud particles is shown by Mw/MsX100% (Mw is the weight of moisture, Ms is the weight of mud particles). The relation between the temperature of viscous mud 6 saturated by water and a heat conductivity K of the same is increased in accordance with the increase of the moisture containing ratio W. The heat conductivity at a low temperature can be improved by utilizing the moisture containing viscous mud 6 as a filler in such a manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温液化ガス配管の外
側に冷媒管を抱かせてなる冷熱取出用熱交換器の低温液
化ガス配管と冷媒管との間に詰める充填材に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filling material to be packed between a low temperature liquefied gas pipe and a refrigerant pipe of a heat exchanger for cold heat extraction in which a refrigerant pipe is held outside a low temperature liquefied gas pipe. ..

【0002】[0002]

【従来の技術】LNG(液化天然ガス)の冷熱を簡便に
取り出す方法として、特開平03−70959号公報に
示すように、LNG母管を直接竹輪型熱交換器で包み、
熱交換器にフロン等の冷媒を流すことにより冷熱を取り
出すものがある。
2. Description of the Related Art As a method for easily extracting cold heat of LNG (liquefied natural gas), as shown in Japanese Patent Laid-Open No. 03-70959, an LNG mother tube is directly wrapped with a bamboo ring heat exchanger,
There is a type in which cold heat is taken out by flowing a refrigerant such as Freon into a heat exchanger.

【0003】図2はこの熱交換装置の側面図である。図
3は図2のB−B断面の拡大図である。これらの図にお
いて、1は竹輪型熱交換器、2はLNG母管、3は冷媒
管である。竹輪型熱交換器1は二つ割りの構造で、器体
1a,器体1bに分割されており、それぞれの両端に設
けられたフランジをボルト締めすることにより、LNG
母管2を包み込んで一体に構成されている。なお、器体
1a,器体1b,はそれぞれ隔壁4a,4b,により隔
てられる二重構造となっており、この隔壁には交通孔が
開けられていて、器体1a,器体1bはそれぞれが単体
の容器状の管路を形成している。冷媒管3は冷媒入管3
a,冷媒出管3d,連結管3b,3cとから成り、冷媒
は入管3aから器体1a内へ送り込まれ、器体1aから
連結管3bへ入り、連結管3bに直結された連結管3c
を通り抜けて器体1bへ入り、器体1bを通り冷媒出管
3dを抜けて戻るようになっている。
FIG. 2 is a side view of this heat exchange device. FIG. 3 is an enlarged view of the BB cross section of FIG. In these figures, 1 is a bamboo ring heat exchanger, 2 is an LNG mother tube, and 3 is a refrigerant tube. The bamboo ring heat exchanger 1 has a two-part structure and is divided into a body 1a and a body 1b. By tightening flanges provided at both ends of each, the LNG
The mother tube 2 is wrapped and integrally formed. The body 1a and the body 1b have a double structure in which they are separated by partition walls 4a and 4b, respectively. A traffic hole is formed in this partition, and the body 1a and the body 1b are respectively separated. It forms a single container-shaped conduit. The refrigerant pipe 3 is the refrigerant inlet pipe 3
a, a refrigerant outlet pipe 3d, and connecting pipes 3b and 3c. The refrigerant is sent from the inlet pipe 3a into the container 1a, enters the connecting pipe 3b from the container 1a, and is directly connected to the connecting pipe 3b.
After passing through the container body 1b, it passes through the container body 1b, passes through the refrigerant outlet pipe 3d, and returns.

【0004】このような構成であるから、LNG母管2
内に液化天然ガスを流しながら、冷媒管3を通して竹輪
型熱交換器1内にフロン等の冷媒を循環させることによ
り、冷熱を取り出すことができる。
Due to this structure, the LNG mother tube 2
Cold heat can be taken out by circulating a refrigerant such as CFC through the refrigerant pipe 3 into the bamboo ring heat exchanger 1 while flowing liquefied natural gas inside.

【0005】この場合、竹輪型熱交換器1とLNG母管
2の製作精度の関係から、竹輪型熱交換器1の内径はL
NG母管2の外径より少し大きめにしてある。この隙間
はおよそ5mmであり、この隙間に熱伝導率の高い充填材
5を充填し、熱交換性能を高めるようにしてある。この
充填材5として伝熱セメントが一般的に使用される。伝
熱セメントは、グラファイトと高分子バインダーとを混
練したもので、常温で半固体の性状を示すものである。
In this case, due to the manufacturing precision of the bamboo ring heat exchanger 1 and the LNG mother tube 2, the inner diameter of the bamboo ring heat exchanger 1 is L.
It is slightly larger than the outer diameter of the NG mother tube 2. This gap is approximately 5 mm, and the gap 5 is filled with the filler 5 having high thermal conductivity to enhance the heat exchange performance. Heat transfer cement is generally used as the filler 5. The heat transfer cement is a mixture of graphite and a polymer binder, and has a semisolid property at room temperature.

【0006】[0006]

【発明が解決しようとする課題】伝熱セメントに含まれ
るグラファイトは、高い熱伝導率を示すものであるが、
混練する高分子バインダーの熱伝導率が極めて低いた
め、混練物の伝導セメントの熱伝導率は総体的に低いも
のとなり、更に温度の低下による収縮率が大きいので、
空気の混入量が多くなりLNGの冷熱取り出し性能が悪
くなるという問題がある。
The graphite contained in the heat transfer cement has a high thermal conductivity,
Since the thermal conductivity of the polymer binder to be kneaded is extremely low, the thermal conductivity of the conductive cement of the kneaded product is generally low, and since the shrinkage rate due to the decrease in temperature is large,
There is a problem that the amount of air mixed in increases and the cold heat extraction performance of LNG deteriorates.

【0007】本発明は、このような問題点を解決する為
になされたもので、熱伝導率が高く且つ温度の低下によ
る収縮率が小さく、冷熱取り出し性能の高い充填材を得
ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a filler having a high thermal conductivity, a small shrinkage ratio due to a temperature decrease, and a high cold heat extraction performance. To do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、低温液化ガス配管の外側に冷媒管を抱か
せてなる冷熱取出用熱交換器の低温液化ガス配管と冷媒
管との間に詰める充填材を、水分を含む粘性土、水を結
氷させたもの、又は水と銅粉との混合物を結氷させたも
のとしたことを特徴とするものである。
In order to achieve the above object, the present invention provides a low temperature liquefied gas pipe and a refrigerant pipe of a heat exchanger for cold heat extraction in which a refrigerant pipe is held outside a low temperature liquefied gas pipe. It is characterized in that the filler to be filled in between is made of cohesive soil containing water, water frozen, or a mixture of water and copper powder frozen.

【0009】[0009]

【作用】粘性土は、土の成分の中で本発明の目的に適す
る物性値を有する物である。図4は土の三相成分を体積
および重量の比率で解析する場合の構成図であるが、こ
の図の記号を使つて粘性土の物性値を示すと、 (1)含水比(W)=Mw/Ms×100(%) (2)飽和度(S)=Vw/Vp×100(%) (3)乾燥密度(γd )=Ms/V 今、密度をρ(M/V),土粒子の比重をG(Ms/V
s)とすると、S=ρGW/〔G(1+W)−ρ〕×1
00(%)と表現できる。
The cohesive soil is a soil material having physical properties suitable for the purpose of the present invention. Fig. 4 is a configuration diagram when the three-phase component of soil is analyzed by the ratio of volume and weight. The physical properties of cohesive soil are shown using the symbols in this figure: (1) Water content (W) = Mw / Ms × 100 (%) (2) Saturation (S) = Vw / Vp × 100 (%) (3) Dry density (γ d ) = Ms / V Now, the density is ρ (M / V), soil The specific gravity of particles is G (Ms / V
s), S = ρGW / [G (1 + W) −ρ] × 1
It can be expressed as 00 (%).

【0010】水を含む粘性土の熱伝導率の変化は図5に
示される。図5は、Andersland and A
ndersonによる粘性土(凍結)の熱伝導率と含水
比・乾燥密度の関係を示す曲線図で、Geotechn
ical engineering for cold
regions 1978 に発表されている。これ
は温度が約−10℃の凍結状態における測定結果であ
る。これによれば、熱伝導率は含水比と乾燥密度に依存
し、水飽和条件の下で最大値は、2W/mKを示すこと
が証明されている。
The change in thermal conductivity of cohesive soil containing water is shown in FIG. FIG. 5 shows Andersland and A
A graph showing the relationship between the thermal conductivity of cohesive soil (freezing) and the water content ratio / dry density by nderson.
ical engineering for cold
published in regions 1978. This is a measurement result in a frozen state where the temperature is about -10 ° C. According to this, it is proved that the thermal conductivity depends on the water content ratio and the dry density, and the maximum value shows 2 W / mK under the water saturation condition.

【0011】次に図6は、Temperature d
ependence of frozen soil
1977 に発表された粘性土の熱伝導率と温度の関係
を示す曲線図である。これによれば、温度の低下につれ
て水飽和した粘性土の熱伝導率は増大して、LNG温度
−162℃では3.3W/mKの値となる。他方、従来
の充填材の熱伝導率は、−162℃で0.9W/mKで
あるから、水飽和した粘性土を使うことにより熱伝導性
能は、約3.7倍となることが示されている。
Next, FIG. 6 shows the Temperature d
ependence of frozen soil
FIG. 3 is a curve diagram showing the relationship between thermal conductivity and temperature of cohesive soil announced in 1977. According to this, the thermal conductivity of the water-saturated cohesive soil increases as the temperature decreases, and reaches a value of 3.3 W / mK at the LNG temperature of -162 ° C. On the other hand, since the thermal conductivity of the conventional filler is 0.9 W / mK at -162 ° C, it is shown that the thermal conductivity is about 3.7 times by using the water-saturated cohesive soil. ing.

【0012】更に、従来の充填材では温度が低下するに
つれての収縮量が大きく、この為に隙間が生じて熱交換
性能が低くなる問題があるが、これに対し水飽和した粘
性土は、ほぼ0℃で凍結する際に体積が膨張するので、
隙間が生じることがなく密着性が保たれ、熱交換性能を
良好に保つことが出来る。また、従来の充填材に比べ、
粘性土の場合は粘着性があるので、熱交換器に付着し易
く施工が容易である。
Further, the conventional filler has a problem that the shrinkage amount is large as the temperature is lowered, which causes a gap to reduce the heat exchange performance, whereas the water-saturated cohesive soil is almost Since the volume expands when frozen at 0 ° C,
Adhesion is maintained without gaps, and good heat exchange performance can be maintained. Also, compared to conventional fillers,
Since cohesive soil is sticky, it easily adheres to the heat exchanger and is easy to install.

【0013】次に、図8氷の熱伝導率と温度の関係曲線
図(S.Sawada,Temperature de
pendence of thermal condu
ctivity of frozen soil,19
77)に示されるように、氷の伝導率は温度の低下と共
に増大し、LNG温度−162℃では、4.9W/m・
k(=4.2kcal/m・h℃)となる。これに対
し、従来の充填材である伝熱セメントの熱伝導率は、−
162℃で0.76kcal/m・h℃であるから、氷
は伝熱セメントの5.5倍の熱伝導性能を有しているこ
とを示す。又従来の充填材では、温度が低下するにつれ
て収縮して隙間を生じるため、益々熱伝導性能が低下す
るが、氷は結氷する際に体積が膨張するので、周囲との
密着性が保たれ、熱伝導性能が低下することはない。な
お、銅粉を混入すると熱伝導性能がさらに増大すること
が明らかになった。
Next, FIG. 8 is a relational curve diagram of the thermal conductivity and temperature of ice (S. Sawada, Temperature de
pendence of thermal condu
activity of frozen soil, 19
77), the conductivity of ice increases with decreasing temperature, and at LNG temperature of -162 ° C, 4.9 W / m ·
k (= 4.2 kcal / m · h ° C.). On the other hand, the thermal conductivity of heat transfer cement which is a conventional filler is −
Since it is 0.76 kcal / m · h ° C. at 162 ° C., it shows that ice has 5.5 times the thermal conductivity of heat transfer cement. Further, in the conventional filler, since the heat shrinks more and more because the gap shrinks to form a gap as the temperature decreases, the volume of ice expands when it freezes, so the adhesion with the surroundings is maintained, The heat transfer performance does not deteriorate. In addition, it was clarified that the heat conduction performance was further increased by mixing the copper powder.

【0014】[0014]

【実施例】図1は本発明の一実施例を示す熱交換装置の
断面図である。図において6は粘性土を示す。その他の
符号において、図2,図3と同一の符号は同一又は相当
部分を示す。図によって明らかのように、本発明は図
2,図3に示したものと同様の熱交換器に用いられる充
填材として、伝熱セメントの代わりに粘性土6を用いた
ものである。即ちその方法は、従来の伝熱セメントの場
合と同じく、竹輪型熱交換器1の器体1a,1bの内面
へ粘性土6を5mm程度の厚さに均一に塗り付け、この器
体1a,1bでLNG母管2を包んだ後フランジをボル
トで締めつけ、その後冷媒管3をそれぞれ連結した。
FIG. 1 is a sectional view of a heat exchange device showing an embodiment of the present invention. In the figure, 6 indicates cohesive soil. Among the other reference numerals, the same reference numerals as those in FIGS. 2 and 3 indicate the same or corresponding portions. As is clear from the drawings, the present invention uses cohesive soil 6 instead of heat transfer cement as a filler used in a heat exchanger similar to that shown in FIGS. That is, the method is the same as in the case of the conventional heat transfer cement, and the cohesive soil 6 is uniformly applied to the inner surface of the body 1a, 1b of the bamboo ring type heat exchanger 1 to a thickness of about 5 mm. After wrapping the LNG mother tube 2 with 1b, the flanges were tightened with bolts, and then the refrigerant tubes 3 were connected.

【0015】次に竹輪型熱交換器1内にフロン22を満
たし、ポンプを駆動させて冷媒管3を通じてフロン22
を循環させた。このように従来と同様に通常の運転を行
なって後熱交換性能を計測し、従来のものと比較した
所、次の様な結果が得られた。 (1)水分を含む粘性土(含水比=50%)を用いた場
合、熱交換量(Kcal/m2・h)は伝熱セメントの
場合より約40%良好であった。 (2)水飽和した粘性土(含水比=60%)を用いた場
合、熱交換量(Kcal/m2・h)は伝熱セメントの場
合より約60%良好であった。
Next, the bamboo ring heat exchanger 1 is filled with CFC 22 and the pump is driven to flow CFC 22 through the refrigerant pipe 3.
Circulated. In this way, the normal operation was performed in the same manner as the conventional one, the post-heat exchange performance was measured, and compared with the conventional one, the following results were obtained. (1) When cohesive soil containing water (water content ratio = 50%) was used, the heat exchange amount (Kcal / m 2 · h) was about 40% better than that of heat transfer cement. (2) When water-saturated cohesive soil (water content = 60%) was used, the heat exchange amount (Kcal / m 2 · h) was about 60% better than that of heat transfer cement.

【0016】図7は本発明の他の実施例の熱交換装置図
で、図7(a)は側面図、図7(b)は図7(a)のA
−A断面図である。図において6はボッチ、7は注水
口、8はオーバーフロー口、5aは竹輪型熱交換器1と
LNG母管2との間隙を示す。その他、図3と同一の符
号は同一又は相当部分を示す。 図によって明らかのよ
うに、本発明は図3に示した従来型と同様であるが、熱
交換器1の内面に、半球状の突起のボッチ6aを取付
け、かつ熱交換器1を貫通して注水口7、オーバーフロ
ー口8が設けられている。このボッチ6aは、竹輪型熱
交換器1の器体1a,1bを組み合わせてLNG母管2
を包み、フランジをボルトで締めつけた時、LNG母管
2の外周全体にわたり両者の間隙5aをほぼ均一にする
為のもので、高さ5〜10mmの硬質ゴム製である。注水
口7、オーバーフロー口8は径が20 mm程度のもので、
注水口7から水を注ぎ、間隙5aに水を満たし、間隙5
aが水で満たされた後、オーバーフロー口8から水が溢
れ出るようになっている。間隙5aを満たした水は、L
NGの冷熱により凍結して氷に変わるので、ここに氷を
充填材とした竹輪型熱交換器が形成される。
FIG. 7 is a heat exchange device diagram of another embodiment of the present invention.
7 (a) is a side view and FIG. 7 (b) is A in FIG. 7 (a).
FIG. In the figure, 6 is a botchi and 7 is water injection.
Port, 8 is an overflow port, 5a is a bamboo ring heat exchanger 1
The gap with the LNG mother tube 2 is shown. Others, the same symbols as in FIG.
The numbers indicate the same or corresponding parts. It's clear from the figure
As described above, the present invention is similar to the conventional type shown in FIG.
Attach a hemispherical boss 6a to the inner surface of the exchanger 1.
And through the heat exchanger 1, the water inlet 7, the overflow
-A mouth 8 is provided. This bocchi 6a is a bamboo ring type heat
The LNG mother tube 2 by combining the bodies 1a and 1b of the exchanger 1
LNG mother tube when wrapping the product and tightening the flange with bolts
The gap 5a between the two is made substantially uniform over the entire outer circumference of
For the purpose of height 5-10mmMade of hard rubber. Water injection
Port 7 and overflow port 8 have a diameter of 20 mmIt ’s about
Pour water from the water injection port 7 and fill the gap 5a with water.
After a is filled with water, water overflows from the overflow port 8.
It is supposed to come out. The water filling the gap 5a is L
It will freeze into ice due to the cold heat of NG.
A bamboo ring heat exchanger as a filling material is formed.

【0017】この実施例について説明する。竹輪型熱交
換器1をLNG母管2の外周に間隙5aが5mmになるよ
うに取付け、間隙5aから水が漏れないように止水処理
を行なった後、水を90℃の温度に加熱し、注水口7よ
り間隙5aに注入する。オーバーフロー口8より温水が
溢れた時点で注水を停止し、注水口7、オーバーフロー
口8に栓をする。この様にすることで温水はLNG母管
2の冷温で氷結し、間隙5aは氷で充填されたものとな
る。次に竹輪型熱交換器1の器体1a,1b内をフロン
22で満たした後、ポンプを駆動してフロンを循環させ
て熱交換性能を計測した所、熱交換量(kcal/m2
・h)は従来の伝熱セメントより80%増大した。
This embodiment will be described. The bamboo ring type heat exchanger 1 was attached to the outer circumference of the LNG mother tube 2 so that the gap 5a was 5 mm , water-stop treatment was performed to prevent water from leaking from the gap 5a, and then the water was heated to a temperature of 90 ° C. Then, the water is injected into the gap 5a through the water injection port 7. When hot water overflows from the overflow port 8, water injection is stopped and the water injection port 7 and the overflow port 8 are plugged. By doing so, the hot water is frozen at the cold temperature of the LNG mother tube 2, and the gap 5a is filled with ice. Next, after filling the insides 1a and 1b of the bamboo ring type heat exchanger 1 with freon 22, the pump was driven to circulate freon to measure the heat exchange performance, and the heat exchange amount (kcal / m 2
-H) increased by 80% over conventional heat transfer cement.

【0018】更にまた、充填材の伝熱率を高める為に5
00μ程度の銅粉を水と共に間隙5に注入し、前記と同
様に水と銅粉の混合物をLNG母管2の冷温で氷結させ
て充填材とし、熱交換性能を計測した所、熱交換量(k
cal/m2 ・h)は伝熱セメントの場合の2倍の値が
得られた。
Furthermore, in order to increase the heat transfer coefficient of the filler, 5
About 100μ of copper powder was poured into the gap 5 together with water, and a mixture of water and copper powder was frozen at the cold temperature of the LNG mother tube 2 to form a filler, and heat exchange performance was measured. (K
cal / m 2 · h) was twice as high as that in the case of heat transfer cement.

【0019】[0019]

【発明の効果】本発明によれば、低温液化ガス配管の外
周に取付けられる熱交換器との間隙の充填材を、水分を
含む粘性土、水又は水と銅粉の混合物を凍結させること
により、熱伝導率が高く且つ密着性の良い充填材が得ら
れ、LNGの冷熱を効率よく取り出すことができる。こ
のため同じ冷熱量を取り出す場合、従来に比べて熱交換
器を小型化出来る上、充填材の水、粘性土は極めて安価
であるため、総合的に冷熱取出装置の設備費を大巾に低
減することが可能となる。
According to the present invention, the filling material in the gap between the heat exchanger attached to the outer periphery of the low temperature liquefied gas pipe is frozen by freezing viscous soil containing water, water or a mixture of water and copper powder. A filler having high thermal conductivity and good adhesion can be obtained, and the cold heat of LNG can be efficiently taken out. For this reason, when extracting the same amount of cold heat, the heat exchanger can be made smaller than before, and since the filler water and cohesive soil are extremely inexpensive, the equipment cost of the cold heat extractor can be greatly reduced. It becomes possible to do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の熱交換装置の断面図である。FIG. 1 is a sectional view of a heat exchange device according to an embodiment of the present invention.

【図2】熱交換装置の側面図である。FIG. 2 is a side view of the heat exchange device.

【図3】図2のB−B断面の拡大図である。FIG. 3 is an enlarged view of a BB cross section of FIG.

【図4】土の三相成分の構成図である。FIG. 4 is a configuration diagram of a three-phase component of soil.

【図5】粘性土の熱伝導率と含水比・乾燥密度の関係を
示す曲線図である。
FIG. 5 is a curve diagram showing the relationship between the thermal conductivity of cohesive soil and the water content ratio / dry density.

【図6】粘性土の熱伝導率と温度の関係を示す曲線図で
ある。
FIG. 6 is a curve diagram showing a relationship between thermal conductivity of cohesive soil and temperature.

【図7】本発明他の実施例の熱交換装置図で、図7
(a)は側面図であり、図7(b)は図7(a)のA−
A断面の拡大図である。
FIG. 7 is a heat exchange device diagram of another embodiment of the present invention.
7A is a side view, and FIG. 7B is A- in FIG. 7A.
It is an enlarged view of the A section.

【図8】氷の熱伝導率と温度の関係曲線図である。FIG. 8 is a relational curve diagram of thermal conductivity of ice and temperature.

【符号の説明】[Explanation of symbols]

1.竹輪型熱交換器 2.LNG母管 3.冷媒管 4.隔壁 5.充填材 5a.間隙 6.粘性土 6a.ボッチ 7.注水口 8.オーバーフロー口 1. Bamboo heat exchanger 2. LNG mother tube 3. Refrigerant tube 4. Partition wall 5. Filler 5a. Gap 6. Cohesive soil 6a. Botchi 7. Water injection port 8. Overflow mouth

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 暢人 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 大久保 正和 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 吉留 正七 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 木村 隆廣 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Nobuto Yamashita 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Masakazu Okubo 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Shochika Shochiru 1-2, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Takahiro Kimura 1-2, Marunouchi, Chiyoda-ku, Tokyo Nihon Inside Steel Pipe Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 低温液化ガス配管の外側に冷媒管を抱か
せてなる冷熱取出用熱交換器の低温液化ガス配管と冷媒
管との間に詰める充填材において、該充填材を水分を含
む粘性土としたことを特徴とする冷熱取出用熱交換器の
充填材。
1. A filling material to be packed between a low temperature liquefied gas pipe and a refrigerant pipe of a heat exchanger for cold and heat extraction in which a refrigerant pipe is held outside a low temperature liquefied gas pipe, wherein the filling material has a viscosity including water. A filling material for a heat exchanger for cold heat extraction, which is characterized by being soil.
【請求項2】 充填材を水分を含む粘性土で水飽和した
粘性土としたことを特徴とする請求項1記載の冷熱取出
用熱交換器の充填材。
2. The filling material for a heat exchanger for cold heat extraction according to claim 1, wherein the filling material is a clay soil saturated with water by a clay soil containing water.
【請求項3】 充填材を水を結氷させたものとしたこと
を特徴とする請求項1記載の冷熱取出用熱交換器の充填
材。
3. The filling material for a heat exchanger for cold heat extraction according to claim 1, wherein the filling material is formed by freezing water.
【請求項4】 充填材を水と銅粉の混合物を結氷させた
ものとしたことを特徴とする請求項1記載の冷熱取出用
熱交換器の充填材。
4. The filling material for a heat exchanger for extracting cold heat according to claim 1, wherein the filling material is a mixture of water and copper powder that is frozen.
JP09405292A 1991-09-13 1992-04-14 Filler for heat exchanger for cold extraction Expired - Fee Related JP3200946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09405292A JP3200946B2 (en) 1991-09-13 1992-04-14 Filler for heat exchanger for cold extraction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-233603 1991-09-13
JP23360391 1991-09-13
JP09405292A JP3200946B2 (en) 1991-09-13 1992-04-14 Filler for heat exchanger for cold extraction

Publications (2)

Publication Number Publication Date
JPH05126477A true JPH05126477A (en) 1993-05-21
JP3200946B2 JP3200946B2 (en) 2001-08-20

Family

ID=26435363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09405292A Expired - Fee Related JP3200946B2 (en) 1991-09-13 1992-04-14 Filler for heat exchanger for cold extraction

Country Status (1)

Country Link
JP (1) JP3200946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118008B1 (en) * 2016-10-07 2017-04-19 住友精密工業株式会社 Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118008B1 (en) * 2016-10-07 2017-04-19 住友精密工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP3200946B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
CN1610955A (en) Cooling method of super-conducting cable line
JPS61500036A (en) Pressurized ice storage chiller
JPH05126477A (en) Filler of heat exchanger for taking out cold heat
CN104179353B (en) Concrete pumping pipe heat sink and cool-down method thereof under high temperature
JP2581379B2 (en) Heat exchanger for extracting cold heat
US1195830A (en) James r
CN109354803A (en) A kind of anti-icing blocking package covers cladding material, casing and its manufacture craft
CN213393927U (en) PE pipe with explosion-proof function
CN206891233U (en) Double-pipe heat exchanger
CN109918844B (en) Calculation method for tunnel cold-proof door temperature field in severe cold region
CN102538242B (en) Superconducting heat pipe-type heat exchanger and liquid filling method thereof
US2645093A (en) Apparatus for congelation of ground
CN207936817U (en) Impregnate sandstone heat-storing device
US2435034A (en) Liquid cooler
CN216815618U (en) Thing networking water gauge with rust-resistant function that loses
CN113124254A (en) Oil and gas pipeline plugging method
CN213873938U (en) Energy storage device for improving heat exchange efficiency
CN212530354U (en) Asphalt emulsifier filling cooling device
CN219955059U (en) Thermal insulation assembly for epoxy resin material injection pipeline and material injection system thereof
CN218582425U (en) Anti-freezing water tap
CN114562902B (en) Automatic gravity low-temperature heat pipe working condition adjusting device and method based on stm32
CN212274355U (en) Phase change cold accumulation ice ball and phase change cold accumulation device
SU1435886A1 (en) Method of heat insulation of low-temperature objects
CN216383633U (en) Thick oil low temperature pipe conveying inner wall blockage testing device
CN220683439U (en) Low-temperature transportation and storage device for resin sand-fixing agent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees