JPH05125713A - Controller for reverse regulating gate for flow rate of dam - Google Patents

Controller for reverse regulating gate for flow rate of dam

Info

Publication number
JPH05125713A
JPH05125713A JP28525391A JP28525391A JPH05125713A JP H05125713 A JPH05125713 A JP H05125713A JP 28525391 A JP28525391 A JP 28525391A JP 28525391 A JP28525391 A JP 28525391A JP H05125713 A JPH05125713 A JP H05125713A
Authority
JP
Japan
Prior art keywords
water level
value
discharge
inflow
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28525391A
Other languages
Japanese (ja)
Inventor
Kazumasa Aizawa
一雅 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP28525391A priority Critical patent/JPH05125713A/en
Publication of JPH05125713A publication Critical patent/JPH05125713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Barrages (AREA)
  • Feedback Control In General (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE:To permit real-time control flow rate of water by shortening the time of treatment by a method in which a fuzzy ratiocination is introduced to estimate the inflow rate to plan water level and effluent amount, and on the bases of the plan values, the opening degree of the reverse regulating gate is controlled. CONSTITUTION:In a housing section 10 for data on inflow amount-predicting knowledge, membership functions, correcting coefficients, and fuzzy rules are housed, and in an inflow amount predicting section 11, an inflow amounts are predicted on the basis of these data. Also, in a water level and effluent planning section 13, the water level and effluent amount in dam are planned on the basis of the inflow amount predicted valued. Then, on the basis of the deviation-between the planned values and the water level in dam measured by the water level measuring section 15, the effluent plan value is corrected in an effluent target value arithmetic unit 17 to obtain an effluent target valued. In the opening degree target arithmetic unit, an opening degree target value for the reverse regulating gate 2 is calculated from the effluent target value, and in the correcting coefficient setter, the correcting coefficients are set and altered on the basis of the ratio between the water level measured value and the water level plan value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水力発電設備の制御
に係わり、特にダム流量逆調整ゲートの制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of hydraulic power generation equipment, and more particularly to a control device for a dam flow reverse adjustment gate.

【0002】[0002]

【従来の技術】ダム水系において、流出量の平滑化を図
る場合、ダムの下流に逆調整ダムを設ける方式がとられ
る。
2. Description of the Related Art In a dam water system, in order to smooth the outflow amount, a method of providing a reverse adjustment dam downstream of the dam is adopted.

【0003】図4は、ダム流量の逆調整ダムの概要を示
す。この逆調整ダム1では、上流のダム水系からの流入
水を貯留し、その流入量に基づいてゲート2の開度を調
節して放流量を一定制御することにより、ダム水系の放
流量を平滑化する。
FIG. 4 shows an outline of a dam flow reverse adjustment dam. In this reverse adjustment dam 1, the inflow water from the upstream dam water system is stored, and the opening amount of the gate 2 is adjusted based on the inflow amount to control the discharge amount constantly, thereby smoothing the discharge amount of the dam water system. Turn into.

【0004】ゲート2の開度を制御するにあたっては、
逆調整ダム1への流入量負荷を予測し、逆調整ダム1の
貯水量が貯水容量の制限範囲内となるように計画をたて
る。上流の発電所(ダム)における流入量をQi,流出
量をQo,貯水量Vとすると、これらの値は次の式で表
される。ただし、dv/dtは貯水量変化,Pは発電出
力,Hはダムの水位である。
In controlling the opening of the gate 2,
Predict the inflow rate load to the reverse adjustment dam 1 and make a plan so that the water storage amount of the reverse adjustment dam 1 is within the limit range of the storage capacity. Letting the inflow amount at the upstream power plant (dam) be Q i , the outflow amount be Q o , and the stored water amount V, these values are expressed by the following equations. However, dv / dt is the change in water storage amount, P is the power generation output, and H is the water level of the dam.

【0005】Qi=Qo+dv/dt……(1) Qo=f(P,H) ……(2) V=g(H) ……(3) また、逆調整ダム1の流出量QoGは、次の式で表され
る。ただし、Zはゲート開度,HGはゲート水位であ
る。
Q i = Q o + dv / dt (1) Q o = f (P, H) (2) V = g (H) (3) Also, the outflow amount of the reverse adjustment dam 1 QoG is represented by the following equation. However, Z is the gate opening and H G is the gate water level.

【0006】QoG=h(Z,HG)……(4) また、逆調整ゲートの流入量については、流量と時間遅れ
の特性や、時間と流量到達量の特性等をデータから導き
出し、経験的に算出する。リアルタイムで制御を行う場
合、計画と実測との間に生じた変動誤差に基づいて、プ
ロセスのモデル化に使用した予測計算式の係数やパラメ
ータを適時、適合修正することにより、実測を計画に追
従させるように制御する。
Qo G = h (Z, H G ) ... (4) Further, for the inflow amount of the reverse adjustment gate, the characteristics of the flow rate and the time delay, the characteristics of the time and the flow rate arrival amount, etc. are derived from the data, Calculate empirically. When controlling in real time, the actual measurement follows the plan by timely adapting and correcting the coefficients and parameters of the prediction calculation formula used for modeling the process based on the fluctuation error between the plan and the actual measurement. Control to let.

【0007】一般に、ダム水系の環境は、長期にわたる
時間の経過により変化する。このため、環境の変化に追
従して、予測計算式の係数やパラメータを修正する必要
がある。従来は、課せられた前提条件のもとで評価関数
(モデル)を最適にする操作量を最適制御理論により求
めていた。
[0007] In general, the environment of a dam water system changes over a long period of time. For this reason, it is necessary to correct the coefficients and parameters of the prediction calculation formula in accordance with changes in the environment. In the past, the amount of operation that optimizes the evaluation function (model) under the imposed preconditions was found by the optimal control theory.

【0008】また、ダム水系は、季節や天候などの自然
要因により状況が変化する。これに対応するために従来
は、実績データを長期にわたって保存してデータ解析等
により自然要因を示すデータを作成し、このデータを使
用して上記の自然要因による状況変化を制御に反映させ
ていた。
The condition of the dam water system changes due to natural factors such as seasons and weather. In order to deal with this, in the past, actual data was stored for a long period of time, data showing natural factors was created by data analysis, etc., and this data was used to reflect the situation changes due to the above natural factors in control. ..

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記し
た従来の技術では、操作量を修正する場合、プロセスモデ
ルを再検討する必要があり、前記した非線的な関数に基
づいて複雑な演算を行うことが要求され、しかも解の収
束性の問題もあった。特に、リアルタイムで処理する場
合、計算時間が長くかかる点も問題となり、またメモリの
大容量化も問題となってくる。この発明は、このような事
情に鑑み、ダム流量逆調整ゲートの制御装置において、
簡素な手順により制御に必要な演算を行うことができ、
しかも流入量の予測等に影響を与える要因の変化への追
従を容易に行うことができる装置を提供することを目的
とする。
However, in the above-mentioned conventional technique, it is necessary to reexamine the process model when the manipulated variable is corrected, and a complicated calculation is performed based on the above-mentioned nonlinear function. However, there was also a problem of solution convergence. In particular, in the case of processing in real time, there is a problem in that it takes a long time to calculate, and an increase in memory capacity also becomes a problem. In view of such circumstances, the present invention provides a control device for a dam flow rate reverse adjustment gate,
The calculation required for control can be performed by a simple procedure.
Moreover, it is an object of the present invention to provide a device that can easily follow changes in factors that affect the prediction of the inflow amount.

【0010】[0010]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、次の手段を備えたダム流量逆調整ゲ
ートの制御装置を提供するものである。
In order to achieve the above object, the present invention provides a control device for a dam flow rate reverse adjustment gate, which is provided with the following means.

【0011】(1)流入量予測用のメンバシップ関数,
補正係数およびファジィルールを格納する流入量予測用
知識データ格納部。
(1) Membership function for inflow prediction,
Knowledge data storage for predicting inflow, which stores correction factors and fuzzy rules.

【0012】(2)流入量予測用のメンバシップ関数お
よびファジィルールを使用して流入量予測値の推論を行
うものであって、メンバシップ関数の自変数を補正係数
により補正したうえで推論を行う流入量予測部。
(2) The inflow forecast value is inferred using the membership function for inflow forecast and the fuzzy rule, and the inference is performed after the own variable of the membership function is corrected by the correction coefficient. Inflow prediction section.

【0013】(3)流入量予測値に基づいてダムの水位
および放流量を計画する水位・放流量計画部。
(3) A water level and discharge planning section that plans the water level and discharge of the dam based on the predicted inflow.

【0014】(4)ダムの水位を計測する水位計測部。(4) A water level measuring unit for measuring the water level of the dam.

【0015】(5)水位計測値および水位計画値の偏差
に基づいて放流計画値を補正して放流量目標値を求める
放流量目標値演算部。
(5) A discharge target value calculating unit for correcting the discharge planned value based on the deviation between the water level measured value and the water level planned value to obtain the discharge target value.

【0016】(6)放流量目標値から逆調整ゲートの開
度目標値を演算する開度目標値演算部。
(6) A target opening value calculation unit for calculating a target opening value of the reverse adjustment gate from the target discharge value.

【0017】(7)水位計測値および水位計画値の比率
に基づいて前記補正係数を設定変更する補正係数設定
部。
(7) A correction coefficient setting unit for changing the setting of the correction coefficient based on the ratio between the measured water level and the planned water level.

【0018】また、次の手段を備えた制御装置であって
もよい。
Further, the control device may include the following means.

【0019】(1)流入量を予測する流入量予測部。(1) An inflow amount predicting unit for predicting the inflow amount.

【0020】(2)流入量予測値に基づいて水位および
放流量を計画する水位・放流量計画部。
(2) A water level / discharge planning section that plans the water level and discharge based on the predicted inflow.

【0021】(3)ダムの水位を計測する水位計測部。(3) A water level measuring unit for measuring the water level of the dam.

【0022】(4)水位計測値および水位計画値の偏差
に基づいて、放流量計画値を補正して放流量目標値を求
める放流量目標値演算部。
(4) A discharge target value calculating unit for correcting the discharge planned value to obtain the discharge target value based on the deviation between the measured water level and the planned water level.

【0023】(5)開度制御用のメンバシップ関数、補
正係数およびファジィルールを格納する開度制御用知識
データ格納部。
(5) A knowledge data storage unit for opening control, which stores a membership function for opening control, a correction coefficient and a fuzzy rule.

【0024】(6)開度制御用のメンバシップ関数およ
びファジィルールを使用し、放流量目標値から逆調整ゲ
ートの開度目標値の推論を行うものであって、メンバシ
ップ関数の自変数を補正係数により補正したうえで推論
を行う開度推論部。
(6) The membership function for opening control and the fuzzy rule are used to infer the opening target value of the reverse adjustment gate from the target value of the discharge amount. An opening inference unit that makes inferences after making corrections using a correction coefficient.

【0025】(7)水位計測値および水位計画値の比率
に基づいて、補正係数を設定変更する補正係数設定部。
(7) A correction coefficient setting unit for changing the setting of the correction coefficient based on the ratio between the measured water level and the planned water level.

【0026】[0026]

【作用】逆調整ダムでは、流入量を予測して水位および
放流量を計画し、その水位計画値および放流量計画値に
基づいて放流量目標値を求め、この放流量目標値に基づ
いて逆調整ゲートの開度を制御する。この発明では、流
入量の予測または開度の制御にファジィ推論を導入して
いる。
[Operation] In the reverse adjustment dam, the water level and discharge amount are planned by predicting the inflow amount, the discharge amount target value is calculated based on the water level planned value and discharge amount planned value, and the reverse amount is calculated based on this discharge amount target value. Controls the opening of the adjustment gate. In this invention, fuzzy inference is introduced to predict the inflow or control the opening.

【0027】ここで、前記のように、ダム水系の環境や
季節・天候などの要因の変化を制御に反映させる必要が
ある。この発明では、メンバシップ関数の自変数のスケ
ールを補正することにより、各種の要因の変化に対応す
る。すなわち、流入量予測部または開度推論部が推論を
行うにあたり、補正係数によりメンバシップ関数の自変
数を補正したうえで推論値を求めることとしている。そ
して、補正係数設定部により、水位計測値および水位計
画値の比率に基づいて、補正係数を設定変更することに
よって、実際の水位および放流量を計画に追従させるこ
とができる。
Here, as described above, it is necessary to reflect in the control the changes in factors such as the environment of the dam water system and the season and weather. According to the present invention, the scale of the own variable of the membership function is corrected to cope with changes in various factors. That is, when the inflow amount prediction unit or the opening inference unit makes an inference, the inference value is obtained after correcting the own variable of the membership function with the correction coefficient. Then, the correction coefficient setting unit can change the setting of the correction coefficient based on the ratio of the measured water level value and the planned water level value, so that the actual water level and discharge amount can follow the plan.

【0028】[0028]

【実施例】以下、図面を用いて、この発明の実施例を説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0029】図2は、この発明の一実施例に係る逆調整
ゲート制御装置のシステム構成を示す。プロセス監視機
器制御部3はシステムの主制御を行うものであり、入出
力装置3ー1,データベース3ー2やCPU(中央処理
装置)3ー3等を備えている。プロセスI/O(入出力
部)4は、水系プロセス5との間でプロセス値や各種指
令の入出力を行うものである。ファジィ推論部6は、各
種の演算をファジィ推論より実行するものであり、入出
力装置6ー1,ルールベース6ー2やCPU6ー3を備
えている。プロセス監視機器制御部3,プロセスI/O
4およびファジィ推論部6は、LAN(ローカル・エリ
ア、ネットワーク)7により接続されている。
FIG. 2 shows the system configuration of an inverse adjustment gate control device according to an embodiment of the present invention. The process monitoring device control unit 3 performs the main control of the system and includes an input / output device 3-1, a database 3-2, a CPU (central processing unit) 3-3, and the like. The process I / O (input / output unit) 4 inputs / outputs process values and various commands from / to the water-based process 5. The fuzzy inference unit 6 executes various operations by fuzzy inference, and includes an input / output device 6-1, a rule base 6-2, and a CPU 6-3. Process monitoring device controller 3, process I / O
4 and the fuzzy inference unit 6 are connected by a LAN (local area, network) 7.

【0030】プロセス監視機器制御部3は、プロセスI
/O4を介して、水系プロセスの監視や計測値の表示、
現場機器の制御などを行う。ファジィ推論を行う必要が
ある場合、プロセス監視機器制御部3は、推論に必要な
データをファジィ推論部6に伝送して推論を実行させ
る。そして、ファジィ推論部6から受け取った推論結果
を用いてリアルタイムで逆調整ゲート2などの水系プロ
セス5を制御する。図1は、この実施例に係る装置の機
能ブロック図である。この装置は、その機能上、図1に
示す各ブロックから構成されると考えてよい。
The process monitoring device control unit 3 uses the process I
/ O4 to monitor water-based processes and display measured values,
Controls field equipment. When it is necessary to perform fuzzy inference, the process monitoring device control unit 3 transmits data necessary for inference to the fuzzy inference unit 6 to execute inference. Then, by using the inference result received from the fuzzy inference unit 6, the water system process 5 such as the reverse adjustment gate 2 is controlled in real time. FIG. 1 is a functional block diagram of an apparatus according to this embodiment. In terms of its function, this device may be considered to be composed of the blocks shown in FIG.

【0031】まず、データ設定部8により、上流の水力
発電所の発電出力等,流入予測に必要なデータが設定さ
れる。設定されたデータ(設定データ)は、設定データ
格納部9に格納・保存される。この装置では、流入量予
測にファジィ推論を導入している。すなわち、流入量予
測用知識データ格納部10は、流入量予測のためのメン
バシップ関数やファジィルールを格納している。この知
識データを使用してファジィ推論を行うことによって、
流入量推論部11にて設定データから流入量が演算され
る。求められた流入量(流入量予測値)は、流入量格納
部12に格納される。
First, the data setting unit 8 sets data required for inflow prediction, such as the power generation output of the upstream hydroelectric power station. The set data (setting data) is stored / saved in the setting data storage unit 9. In this device, fuzzy inference is introduced for inflow prediction. That is, the inflow amount prediction knowledge data storage unit 10 stores membership functions and fuzzy rules for inflow amount prediction. By performing fuzzy inference using this knowledge data,
The inflow amount inference unit 11 calculates the inflow amount from the setting data. The obtained inflow amount (inflow amount predicted value) is stored in the inflow amount storage unit 12.

【0032】水位・放流量計画部13は、流入量予測値
に基づいて、貯水量が貯水容量の範囲内となるように水
位・放流量を計画する。求められた水位・放流量(水位
計画値・放流量計画値)は、水位・放流量格納部14に
格納される。一方、逆調整ダム1の水位は、水位計測部
15により計測される。偏差演算部15は、計測された
水位(水位計測値)と水位計画値との水位差を演算し、
この値に基づいて放流量計画値の補正量を求める。放流
量目標値演算部17は、放流量計画値を補正量に基づい
て補正し、この値を放流量目標値として出力する。
The water level / discharge amount planning unit 13 plans the water level / discharge amount so that the stored water amount is within the range of the stored water amount, based on the predicted inflow amount. The calculated water level / discharge amount (water level planned value / discharge amount planned value) is stored in the water level / discharge amount storage unit 14. On the other hand, the water level of the reverse adjustment dam 1 is measured by the water level measuring unit 15. The deviation calculator 15 calculates the water level difference between the measured water level (water level measurement value) and the water level plan value,
Based on this value, the correction amount for the planned discharge value is calculated. The target discharge value calculation unit 17 corrects the planned discharge value based on the correction amount, and outputs this value as the target discharge value.

【0033】流入量の予測の手法の一例を説明すると、
流入量の予測は、上流の発電所の放流量を求め、この放
流量を遅延させることにより行われる。まず、入出力装
置3−1(図2参照)により発電所の発電パターンを入
力する。さらに、プロセス入出力部4から発電所側のダ
ム水位を取り込む。そして、この発電パターンおよびダ
ム水位を用いてファジィ推論を行い、発電所の放流量を
求める。そして、求めた放流量や発電パターンから発電
時間および発電停止時間がわかるので、これらのデータ
を用いてファジィ推論を行い、放流量を遅延させてゲー
ト側のダムの流入量を求める。
Explaining an example of the method of predicting the inflow,
Prediction of inflow is performed by finding the discharge of the upstream power plant and delaying this discharge. First, the power generation pattern of the power plant is input by the input / output device 3-1 (see FIG. 2). Further, the dam water level on the power plant side is taken in from the process input / output unit 4. Then, fuzzy inference is performed using this power generation pattern and dam water level to obtain the discharge of the power plant. Then, since the power generation time and the power generation stop time can be known from the calculated discharge amount and power generation pattern, fuzzy inference is performed using these data, and the discharge amount is delayed to determine the inflow amount of the dam on the gate side.

【0034】この装置は、逆調整ゲート2の開度制御に
もファジィ推論を導入している。すなわち、開度推論用
知識データ格納部18は、開度推論のためのメンバシッ
プ関数やファジィルールを格納している。この知識デー
タを使用してファジィ推論を行うことによって、開度推
論部19にて放流量目標値や水位計測値などから開度目
標値を演算する。一方、開度計測部20は、逆調整ゲー
ト2の開度を計測する。ゲート操作部21により、開度
目標値および開度計測値に基づいて、ゲート操作(開度
調節)を行う。
This device also introduces fuzzy inference for controlling the opening degree of the reverse adjustment gate 2. That is, the opening reasoning knowledge data storage unit 18 stores membership functions and fuzzy rules for opening reasoning. By performing fuzzy inference using this knowledge data, the opening degree inference unit 19 calculates the opening degree target value from the discharge target value and the water level measured value. On the other hand, the opening degree measurement unit 20 measures the opening degree of the reverse adjustment gate 2. The gate operation unit 21 performs gate operation (adjustment of the opening) based on the opening target value and the opening measurement value.

【0035】この装置は、逆調整ゲート2を実際に運転
するために動作する他シミュレーションのために動作す
る必要がある。それ故、流入量予測用知識データ格納部
10および開度推論用知識データ格納部18には、運転
用およびシミュレーション用の知識データが格納されて
おり、さらに流入量格納部12および水位・放流量格納
部14には運転用およびシミュレーション用のデータの
格納領域が設定されている。
This device operates to actually operate the reverse adjustment gate 2 and also needs to operate for simulation. Therefore, knowledge data for operation and simulation are stored in the inflow amount prediction knowledge data storage unit 10 and the opening degree inference knowledge data storage unit 18, and the inflow amount storage unit 12 and the water level / discharge amount are further stored. A storage area for driving and simulation data is set in the storage unit 14.

【0036】この装置によれば、流入量の予測および開
度の算出にファジィ推論を使用しているので、多数のパ
ラメータや設定値を用いた複雑な演算が不要となり、し
かもファジィ推論の性質上、従来のような解が求まらな
いという問題を生じることがない利点がある。さらに、
この装置では、ダム水系の長期的な環境の変化や天候な
どの自然要因に対処するために、メンバシップ関数の横
軸(演算用パラメータ)をシフトする方式をとってい
る。すなわち、ファジィ推論にあたって補正係数kなる
値を導入し、この補正係数kによりメンバシップ関数の
横軸のスケールを補正したうえで推論を行うものとして
いる。この補正係数kとして、水位計画値と水位測定値
の比率rを比率演算部22により求め、k=rとして使
用する態様をとることができる。この補正係数は、流入
量予測または開度推論の一方、あるいはその両方に導入
する方式が考えられる。
According to this apparatus, since the fuzzy inference is used for predicting the inflow amount and calculating the opening, complicated calculation using a large number of parameters and set values becomes unnecessary, and the fuzzy inference is characteristic. However, there is an advantage that a problem that a conventional solution cannot be obtained does not occur. further,
This device employs a method of shifting the horizontal axis (calculation parameter) of the membership function in order to deal with long-term environmental changes in the dam water system and natural factors such as weather. That is, a value of the correction coefficient k is introduced in the fuzzy inference, and the inference is performed after correcting the scale of the membership function on the horizontal axis. As the correction coefficient k, a ratio r between the planned water level value and the measured water level value may be obtained by the ratio calculation unit 22 and used as k = r. A method of introducing this correction coefficient into either one of the inflow rate prediction and the opening degree inference, or both of them can be considered.

【0037】ここで、補正係数の設定変更の手法の一例
を説明する。図3は、水位計画値および水位計測値のず
れを示す。まず、水位計画値と水位計測値との水位差△
hについて、不感帯D(水位により決定される)に対す
る偏差△eを検出する。そして、この偏差△eが大きい
と判断した場合、補正係数の設定変更を実行する。
Here, an example of a method of changing the setting of the correction coefficient will be described. FIG. 3 shows the deviation between the planned water level and the measured water level. First, the water level difference between the planned water level and the measured water level △
For h, the deviation Δe with respect to the dead zone D (determined by the water level) is detected. If it is determined that the deviation Δe is large, the correction coefficient setting is changed.

【0038】水位差△h(=水位計画値−水位計測値)
が正である場合、流入量を多めに予測しているか、ある
いはゲート開度を大きめに調節している傾向があると考
えられる。この場合、水位計画値および水位計測値の比
率(=水位計測値/水位計画値)を求めて補正係数kと
し、この補正係数kを水位流入量予測用の演算パラメー
タに乗じる(あるいは除する)ことにより演算パラメー
タを流入量縮少方向に補正するか、あるいは開度推論用
の演算パラメータを開度減少方向に補正することにな
る。水位差△hが負である場合、k<1となるので上記
と逆の方向に演算パラメータが補正される。このよう
に、演算パラメータを補正したうえで推論を行うことに
より、水位計画値と水位測定値の間にずれる傾向が生じ
ても、その傾向を収束させることが可能となる。またこ
の実施例では、演算結果をシミュレーションしているの
で、補正係数kの設定変更時にモニタできる利点があ
る。
Water level difference Δh (= water level planned value-water level measured value)
Is positive, it is considered that there is a tendency that the inflow amount is predicted to be large or the gate opening is adjusted to a large amount. In this case, the ratio of the water level plan value and the water level measurement value (= water level measurement value / water level plan value) is calculated as the correction coefficient k, and this correction coefficient k is multiplied (or divided) by the calculation parameter for water level inflow prediction. As a result, the calculation parameter is corrected in the direction of decreasing the inflow amount, or the calculation parameter for inferring the opening is corrected in the direction of decreasing the opening. When the water level difference Δh is negative, k <1 and therefore the calculation parameter is corrected in the opposite direction. In this way, by performing the inference after correcting the calculation parameters, even if there is a tendency to shift between the planned water level value and the measured water level value, the tendency can be converged. Further, in this embodiment, since the calculation result is simulated, there is an advantage that it can be monitored when the setting of the correction coefficient k is changed.

【0039】[0039]

【発明の効果】以上、説明したように、この発明によれ
ば、流入量の予測や開度の制御にファジィ推論を導入す
ることとしているので、非線形的な関数による複雑な演
算が不要となり、リアルタイム制御で重要である処理時
間の短縮を実現でき、解の収束性の問題も解消できる。
また、メモリ容量が小さくて済む利点もある。
As described above, according to the present invention, since the fuzzy inference is introduced in the prediction of the inflow amount and the control of the opening, the complicated calculation by the non-linear function becomes unnecessary, It is possible to reduce the processing time, which is important for real-time control, and solve the problem of solution convergence.
There is also an advantage that the memory capacity is small.

【0040】また、ダム水系の環境や季節・天候などの
要因の変化に対応して制御系を調整するにあたって、従
来は各種の設定値やパラメータを設定・修正する煩雑な
作業が必要であったのに対し、水位計画値および水位計
測値の比率に基づいて補正係数を設定変更するだけで済
む利点があり、しかも制御系の調整工程の自動化に有利
である。
Further, in adjusting the control system in response to changes in factors such as the dam water system environment, season, and weather, conventionally, complicated work of setting / correcting various set values and parameters was required. On the other hand, there is an advantage that it is only necessary to change the setting of the correction coefficient based on the ratio of the planned water level value and the measured water level value, and it is also advantageous in automating the adjustment process of the control system.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る逆調整ゲート制御装
置の機能ブロック図。
FIG. 1 is a functional block diagram of a reverse adjustment gate control device according to an embodiment of the present invention.

【図2】図1の装置のシステム構成ブロック図。FIG. 2 is a system configuration block diagram of the apparatus of FIG.

【図3】水位計画値および水位計測値のずれを示す線
図。
FIG. 3 is a diagram showing a deviation between a planned water level value and a measured water level value.

【図4】ダム流量の逆調整ダムの概要を示す説明図。FIG. 4 is an explanatory diagram showing an outline of a dam flow reverse adjustment dam.

【符号の説明】[Explanation of symbols]

2…逆調整ゲート 15…水位計測部 16…補正量演算部 18…開度推論用知識データ格納部 19…開度推論部 22…比率演算部 2 ... Reverse adjustment gate 15 ... Water level measurement unit 16 ... Correction amount calculation unit 18 ... Opening inference knowledge data storage unit 19 ... Opening inference unit 22 ... Ratio calculation unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流入量予測用のメンバシップ関数,補正
係数およびファジィルールを格納する流入量予測用知識
データ格納部と、 流入量予測用のメンバシップ関数およびファジィルール
を使用して流入量予測値の推論を行うものであって、メ
ンバシップ関数の自変数スケールを補正係数により補正
したうえで推論を行う流入量予測部と、 流入量予測値に基づいてダムの水位および放流量を計画
する水位・放流量計画部と、 ダムの水位を計測する水位計測部と、 水位計測値および水位計画値の偏差に基づいて放流計画
値を補正して放流量目標値を求める放流量目標値演算部
と、 放流量目標値から逆調整ゲートの開度目標値を演算する
開度目標値演算部と、 水位計測値および水位計画値の比率に基づいて前記補正
係数を設定変更する補正係数設定部と、 を備えたことを特徴とするダム流量逆調整ゲートの制御
装置。
1. An inflow prediction knowledge data storage unit that stores a membership function for inflow prediction, a correction coefficient, and a fuzzy rule, and an inflow prediction using a membership function and a fuzzy rule for inflow prediction. The inflow rate predictor, which estimates the value and corrects the own variable scale of the membership function with a correction coefficient, and plans the dam water level and discharge based on the estimated inflow rate. Water level and discharge planning unit, water level measuring unit that measures the water level of the dam, discharge target value calculation unit that corrects the discharge planned value based on the deviation between the measured water level and the planned water level and calculates the discharge target value And a target opening value calculation unit that calculates the target opening value of the reverse adjustment gate from the target discharge value, and a correction coefficient setting unit that changes and sets the correction coefficient based on the ratio of the measured water level and the planned water level. A control unit for a dam flow reverse adjustment gate, which is provided with a constant section and.
【請求項2】 流入量を予測する流入量予測部と、 流入量予測値に基づいて水位および放流量を計画する水
位・放流量計画部と、 ダムの水位を計測する水位計測部と、 水位計測値および水位計画値の偏差に基づいて、放流量
計画値を補正して放流量目標値を求める放流量目標値演
算部と、 開度制御用のメンバシップ関数、補正係数およびファジ
ィルールを格納する開度制御用知識データ格納部と、 開度制御用のメンバシップ関数およびファジィルールを
使用し、放流量目標値から逆調整ゲートの開度目標値の
推論を行うものであって、メンバシップ関数の自変数ス
ケールを補正係数により補正したうえで推論を行う開度
推論部と、 水位計測値および水位計画値の比率に基づいて、補正係
数を設定変更する補正係数設定部とを備えたことを特徴
とするダム流量逆調整ゲートの制御装置。
2. An inflow prediction unit for predicting inflow, a water level / discharge planning unit for planning water level and discharge based on the predicted inflow value, a water level measurement unit for measuring dam water level, and a water level. Stores the discharge target value calculation unit that calculates the discharge target value by correcting the discharge planned value based on the deviation between the measured value and the planned water level, and the membership function for opening control, the correction coefficient and the fuzzy rule. It uses the knowledge data storage for opening control, the membership function for opening control and the fuzzy rules to infer the opening target value of the reverse adjustment gate from the target value of the discharge rate. An opening inference unit that makes an inference after correcting the self-variable scale of the function with a correction coefficient, and a correction coefficient setting unit that changes the setting of the correction coefficient based on the ratio of the measured water level and the planned water level were provided. Special Control device for dam flow reverse adjustment gate.
JP28525391A 1991-10-31 1991-10-31 Controller for reverse regulating gate for flow rate of dam Pending JPH05125713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28525391A JPH05125713A (en) 1991-10-31 1991-10-31 Controller for reverse regulating gate for flow rate of dam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28525391A JPH05125713A (en) 1991-10-31 1991-10-31 Controller for reverse regulating gate for flow rate of dam

Publications (1)

Publication Number Publication Date
JPH05125713A true JPH05125713A (en) 1993-05-21

Family

ID=17689107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28525391A Pending JPH05125713A (en) 1991-10-31 1991-10-31 Controller for reverse regulating gate for flow rate of dam

Country Status (1)

Country Link
JP (1) JPH05125713A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127073A (en) * 2010-12-14 2012-07-05 Chugoku Electric Power Co Inc:The Water intake control method and device
CN104714566A (en) * 2015-01-08 2015-06-17 华北电力大学 Condensation water throttle control system and safety control method thereof
JP2019213381A (en) * 2018-06-06 2019-12-12 中国電力株式会社 Operation support system for hydroelectric power plant
CN113807745A (en) * 2021-10-14 2021-12-17 珠江水利委员会珠江水利科学研究院 Method for determining total annual planned water consumption of power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127073A (en) * 2010-12-14 2012-07-05 Chugoku Electric Power Co Inc:The Water intake control method and device
CN104714566A (en) * 2015-01-08 2015-06-17 华北电力大学 Condensation water throttle control system and safety control method thereof
JP2019213381A (en) * 2018-06-06 2019-12-12 中国電力株式会社 Operation support system for hydroelectric power plant
CN113807745A (en) * 2021-10-14 2021-12-17 珠江水利委员会珠江水利科学研究院 Method for determining total annual planned water consumption of power plant

Similar Documents

Publication Publication Date Title
JP6357027B2 (en) Online adaptive model predictive control in process control systems.
JP3949164B2 (en) A feedback method for controlling nonlinear processes.
EP1321836B1 (en) Controller, temperature controller and heat processor using same
EP0710901A1 (en) Multivariable nonlinear process controller
Feliu-Batlle et al. Fractional order controller robust to time delay variations for water distribution in an irrigation main canal pool
Litrico et al. Robust continuous-time and discrete-time flow control of a dam–river system.(II) Controller design
Gao et al. Design of PID controller for greenhouse temperature based on Kalman
CN105867138A (en) Stable platform control method and device based on PID controller
CN110673482B (en) Power station coal-fired boiler intelligent control method and system based on neural network prediction
CN113325696B (en) Single neuron PID and model prediction combined hybrid control method applied to crosslinked cable production equipment
JPH05125713A (en) Controller for reverse regulating gate for flow rate of dam
Liu et al. Dynamic threshold finite-time prescribed performance control for nonlinear systems with dead-zone output
US6597958B1 (en) Method for measuring the control performance provided by an industrial process control system
JP3373269B2 (en) Valve control device
JPH04143801A (en) Controller for dam flow rate adverse adjusting gate
CN113655816B (en) Ladle bottom argon blowing system flow control method and computer readable storage medium
JPH05317643A (en) Method for controlling circulating flow rate of liquid absorbent for wet flue gas desulfurizer and device therefor
Nevado et al. A new control strategy for IKN-type coolers
JP2004293199A (en) Method for controlling water level and method for supporting control of water level
CN113550273A (en) Gate opening control method and device and electronic equipment
CN113110034A (en) DCS-based fuzzy PID control system for induced draft fan
Ramond et al. Direct adaptive predictive control of an hydro-electric plant
CN104122878A (en) Industrial energy conservation and emission reduction control device and method
Bolea et al. LPV vs multi-model PI (D) gain-scheduling applied to canal control
KR940007133B1 (en) Water pipe network controller