JPH05124813A - Refining method of gaseous ammonia - Google Patents

Refining method of gaseous ammonia

Info

Publication number
JPH05124813A
JPH05124813A JP3289867A JP28986791A JPH05124813A JP H05124813 A JPH05124813 A JP H05124813A JP 3289867 A JP3289867 A JP 3289867A JP 28986791 A JP28986791 A JP 28986791A JP H05124813 A JPH05124813 A JP H05124813A
Authority
JP
Japan
Prior art keywords
ammonia
nickel
catalyst
oxygen
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3289867A
Other languages
Japanese (ja)
Other versions
JP3359928B2 (en
Inventor
Yasusada Miyano
安定 宮野
Takashi Shimada
孝 島田
Keiichi Iwata
恵一 岩田
Masako Yasuda
雅子 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP28986791A priority Critical patent/JP3359928B2/en
Publication of JPH05124813A publication Critical patent/JPH05124813A/en
Application granted granted Critical
Publication of JP3359928B2 publication Critical patent/JP3359928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/024Purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain a high purity refined ammonia gas by removing oxygen as an impurity contained in gaseous NH3 or in a gas containing gaseous NH3. CONSTITUTION:Gaseous NH3 or diluted gaseous NH3 with a base gas such as hydrogen, nitrogen, argon, etc., is allowed to contact with a catalyst essentially consisting of nickel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアンモニアの精製方法に
関し、さらに詳細にはアンモニア中に不純物として含ま
れる酸素を極低濃度まで除去しうるアンモニアの精製方
法に関する。アンモニアは、シリコン半導体製造プロセ
スにおいて窒化珪素膜生成のためにシランとともに使用
され、また、トリエチルガリウムなどとともに窒化ガリ
ウムなどの化合物半導体製造に使用されており、成膜技
術の進歩とともに不純物の極めて少ないものが要求され
ている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying ammonia, and more particularly to a method for purifying ammonia capable of removing oxygen contained as an impurity in ammonia to an extremely low concentration. Ammonia is used together with silane to form a silicon nitride film in the silicon semiconductor manufacturing process, and is also used along with triethylgallium and the like to manufacture compound semiconductors such as gallium nitride. Is required.

【0002】[0002]

【従来の技術】半導体製造時に使用されるアンモニアは
一般的には純アンモニアの他、水素ガスまたは不活性ガ
スで希釈された形態で市販されており、通常はガスの状
態で半導体製造装置に供給される。これらのアンモニア
中には不純物として酸素および水分などが含有され、通
常は原料アンモニアの蒸留などによって精製される。ま
た、水分についてはこの他に合成ゼオライトなどの脱湿
剤により除去することが可能である。市販の精製アンモ
ニア中の酸素含有量は通常は10ppm以下であるが、
最近のボンベ入りのアンモニアでは、その酸素含有量
0.5〜1.0ppmと比較的低いものも市販されてい
る。
2. Description of the Related Art Ammonia used in semiconductor manufacturing is generally marketed in a form diluted with hydrogen gas or an inert gas in addition to pure ammonia, and is usually supplied to a semiconductor manufacturing apparatus in a gas state. To be done. Oxygen and water are contained in these ammonia as impurities, and are usually purified by distillation of raw material ammonia. In addition, water can be removed by a dehumidifying agent such as synthetic zeolite. The oxygen content in commercially available purified ammonia is usually 10 ppm or less,
Recent cylinder-filled ammonia has a relatively low oxygen content of 0.5 to 1.0 ppm and is commercially available.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、酸素含
有量が1ppmを切る程度では最近の半導体製造プロセ
スにおける要求に充分に対応することはできず、0.1
ppm以下、さらには、0.01ppm以下とすること
が強く望まれている。また、最近、半導体製造時にアン
モニアと同時に使用されるシランなどは高純度に精製す
ることが可能となり、例えば不純物として含有する酸素
は0.01ppm以下まで除去することが可能となって
いる。このため、アンモニアについても酸素含有量の極
めて低いものが要望されつつある。また、これらアンモ
ニアはボンベの接続時や配管の切替時など半導体装置へ
の供給過程において空気など不純物の混入による汚染も
あるため、装置の直前で不純物を最終的に除去すること
が望ましい。しかしながら、このように高純度アンモニ
アに対する需要は年々増加しているが、アンモニア中に
含有される酸素を効率よく除去して高純度のアンモニア
系のガスを半導体製造プロセスなどに供給する方法につ
いての公知技術はほとんど見あたらない。
However, if the oxygen content is less than 1 ppm, it is not possible to sufficiently meet the demands in the recent semiconductor manufacturing process.
It is strongly desired that the content be ppm or less, further 0.01 ppm or less. Further, recently, silane and the like used together with ammonia during semiconductor manufacturing can be purified to high purity, and for example, oxygen contained as impurities can be removed to 0.01 ppm or less. For this reason, ammonia is also required to have an extremely low oxygen content. Further, these ammonias may be contaminated by the inclusion of impurities such as air during the supply process to the semiconductor device, such as when connecting the cylinder or switching the pipes, so it is desirable to finally remove the impurities immediately before the device. However, although the demand for high-purity ammonia has been increasing year by year, publicly known methods for efficiently removing oxygen contained in ammonia to supply a high-purity ammonia-based gas to a semiconductor manufacturing process or the like. Almost no technology is found.

【0004】[0004]

【課題を解決するための手段】本発明者らは、アンモニ
ア中に含有される酸素を極低濃度まで効率よく除去する
べく鋭意研究を重ねた結果、アンモニアをニッケルを主
成分とする触媒と接触させることにより、酸素濃度を
0.1ppm以下、さらには0.01ppm以下まで除
去しうることを見いだし、本発明を完成した。すなわち
本発明は、粗アンモニアをニッケルを主成分とする触媒
と接触させて該粗アンモニア中に含有される酸素を除去
することを特徴とするアンモニアの精製方法である。本
発明はアンモニア単独、水素(水素ガスベース)および
窒素、アルゴンなどの不活性ガス(不活性ガスベース)
で希釈されたアンモニア(以下総称して粗アンモニアと
記す)中に含有される酸素の除去に適用される。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors to efficiently remove oxygen contained in ammonia to an extremely low concentration, ammonia was contacted with a catalyst containing nickel as a main component. By doing so, it was found that the oxygen concentration can be reduced to 0.1 ppm or less, further 0.01 ppm or less, and the present invention was completed. That is, the present invention is a method for purifying ammonia, which comprises contacting crude ammonia with a catalyst containing nickel as a main component to remove oxygen contained in the crude ammonia. The present invention includes ammonia alone, hydrogen (hydrogen gas base) and inert gases such as nitrogen and argon (inert gas base).
It is applied to remove oxygen contained in ammonia diluted with (hereinafter collectively referred to as crude ammonia).

【0005】本発明において用いられる触媒は金属ニッ
ケルまたはニッケルの酸化物など還元され易いニッケル
化合物を主成分とするものである。また、ニッケル以外
の金属成分としてクロム、鉄、コバルト、銅などの金属
が少量含まれているものであってもよい。これらのニッ
ケルは単独で用いられてもよく、また、触媒担体などに
担持させた形体で用いてもよいが、ニッケルの表面とガ
スとの接触効率を高める目的などから、通常は触媒担体
などに担持させた形態で使用することが好ましい。ニッ
ケルを担体に担持させる方法としては、例えば、ニッケ
ル塩の水溶液中に珪藻土、アルミナ、シリカアルミナ、
アルミノシリケートおよびカルシウムシリケートなどの
担体粉末を分散させ、さらにアルカリを添加して担体の
粉末上にニッケル成分を沈澱させ、次いで濾過し必要に
応じて水洗して得たケーキを120〜150℃で乾燥
後、300℃以上で焼成し、この焼成物を粉砕する、あ
るいはNiCO3 、Ni(OH)2 、Ni(NO3 2
などの無機塩、NiC2 4、Ni(CH3 COO)2
などの有機塩を焼成し、粉砕した後、これに耐熱性セメ
ントを混合し、焼成するなどが挙げられる。これらは、
通常は、押出成型、打錠成型などで成型体とされ、その
まま、あるいは必要に応じて適当な大きさに破砕して使
用される。成型方法としては乾式法あるいは湿式法を用
いることができ、その際、少量の水、滑剤などを使用し
てもよい。また、ニッケル系触媒として例えば水蒸気変
成触媒、C11−2−03(NiO−セメント)、C1
1−2−06(NiO−耐火物)、C11−2(Ni−
カルシウムアルミネート)、C11−9(Ni−アルミ
ナ);水素化触媒、C46−7(Ni−珪藻土)、C4
6−8(Ni−シリカ)、C36(Ni−Co−Cr−
アルミナ);ガス化触媒、XC99(NiO);水素化
変成触媒、C20−7(Ni−Mo−アルミナ)〔以
上、東洋CCI(株)製〕および水素化触媒、N−11
1(Ni−珪藻土);ガス化変成触媒、N−174(N
iO);ガス化触媒、N−185(NiO)〔以上、日
揮(株)製〕など種々なものがあるのでそれらから選択
したものを使用してもよい。要は、還元ニッケル、酸化
ニッケルなどが微細に分散されて、その表面積が大きく
ガスとの接触効率の高い形態のものであればよい。
The catalyst used in the present invention contains a nickel compound such as metallic nickel or nickel oxide, which is easily reduced, as a main component. Also, a small amount of a metal such as chromium, iron, cobalt, or copper may be contained as a metal component other than nickel. These nickels may be used alone, or may be used in the form of being supported on a catalyst carrier, but for the purpose of improving the contact efficiency between the surface of nickel and a gas, etc., they are usually used as a catalyst carrier. It is preferably used in a supported form. As a method of supporting nickel on a carrier, for example, diatomaceous earth in an aqueous solution of nickel salt, alumina, silica alumina,
A carrier powder such as aluminosilicate and calcium silicate is dispersed, and an alkali is further added to precipitate the nickel component on the powder of the carrier, which is then filtered and washed with water if necessary, and the cake obtained is dried at 120 to 150 ° C. Then, it is fired at 300 ° C. or higher, and the fired product is crushed, or NiCO 3 , Ni (OH) 2 , Ni (NO 3 ) 2
Inorganic salts such as NiC 2 O 4 , Ni (CH 3 COO) 2
Examples of the method include firing an organic salt such as the above, pulverizing it, mixing it with heat resistant cement, and firing. They are,
Usually, a molded body is formed by extrusion molding, tablet molding or the like, and is used as it is or crushed to an appropriate size as needed. As a molding method, a dry method or a wet method can be used, in which case a small amount of water, a lubricant or the like may be used. Further, as the nickel-based catalyst, for example, a steam conversion catalyst, C11-2-03 (NiO-cement), C1
1-2-06 (NiO-refractory), C11-2 (Ni-
Calcium aluminate), C11-9 (Ni-alumina); hydrogenation catalyst, C46-7 (Ni-diatomaceous earth), C4
6-8 (Ni-silica), C36 (Ni-Co-Cr-
Alumina); gasification catalyst, XC99 (NiO); hydrogenation shift catalyst, C20-7 (Ni-Mo-alumina) [above, Toyo CCI Co., Ltd.] and hydrogenation catalyst, N-11
1 (Ni-diatomaceous earth); gasification shift catalyst, N-174 (N
iO); various catalysts such as gasification catalyst, N-185 (NiO) [above, manufactured by JGC Corporation], so that one selected from them may be used. The point is that reduced nickel, nickel oxide, etc. are finely dispersed and have a large surface area and high contact efficiency with gas.

【0006】触媒の比表面積としては通常は、BET法
で10〜300m2 /gの範囲のもの、好ましくは30
〜250m2 /gの範囲のものである。また、ニッケル
の含有量は金属ニッケル換算で通常は、5〜95wt
%、好ましくは20〜95wt%である。ニッケルの含
有量が5wt%よりも少なくなると脱酸素能力が低くな
り、また95wt%よりも高くなると水素による還元の
際にシンタリングが生じて活性が低下する恐れがある。
触媒を活性化するためには通常は水素還元を行う。水素
還元に際しては、例えば350℃以下程度で水素−窒素
の混合ガスを空筒線速度(LV)5cm/sec程度で
通すことによっておこなうことができるが、発熱反応で
あるため温度が急上昇しないよう注意が必要である。
The specific surface area of the catalyst is usually in the range of 10 to 300 m 2 / g by the BET method, preferably 30.
In the range of up to 250 m 2 / g. The content of nickel is usually 5 to 95 wt% in terms of metallic nickel.
%, Preferably 20 to 95 wt%. If the nickel content is less than 5 wt%, the deoxidizing ability will be low, and if it is higher than 95 wt%, sintering will occur during reduction with hydrogen and the activity may be reduced.
Hydrogen reduction is usually performed to activate the catalyst. The hydrogen reduction can be performed by passing a hydrogen-nitrogen mixed gas at a hollow cylinder linear velocity (LV) of about 5 cm / sec at about 350 ° C. or less, but be careful not to raise the temperature suddenly because it is an exothermic reaction. is necessary.

【0007】アンモニアの精製は、通常は、還元処理し
たニッケルを主成分とする触媒が充填された精製筒に粗
アンモニアを通すことによって行われ、粗アンモニアが
ニッケル触媒と接触することによって粗アンモニア中に
不純物として含有される酸素が除去される。本発明に適
用される粗アンモニア中の酸素濃度は通常は100pp
m以下である。酸素濃度がこれよりも高くなると発熱量
が増加するため条件によっては除熱手段が必要となる。
精製筒に充填されるニッケル触媒の充填長は、実用上通
常は50〜1500mmとされる。充填長が50mmよ
りも短くなると酸素除去率が低下する恐れがあり、ま
た、1500mmよりも長くなると圧力損失が大きくな
り過ぎる恐れが生ずる。精製時の粗アンモニアの空筒線
速度(LV)は供給されるアンモニア中の酸素濃度およ
び操作条件などによって異なり一概に特定できないが、
通常は100cm/sec以下、好ましくは30cm/
sec以下である。アンモニアとニッケル触媒の接触温
度は精製筒の入口に供給されるガスの温度で、200℃
以下、好ましくは100℃以下であり、通常は常温でよ
く、特に加熱や冷却を必要としない。触媒との接触時の
圧力にも特に制限はなく常圧、減圧、加圧のいずれでも
処理が可能であるが、通常は20kg/cm2 abs以
下、好ましくは0.1〜10kg/cm2 absであ
る。また、アンモニア中に少量の水分が含有されていて
も脱酸素能力には特に悪影響を及ぼすことはなく、さら
に触媒に担体などを用いている場合には、その種類によ
っては水分も同時に除去される。本発明においてニッケ
ル触媒による酸素除去工程に、必要に応じて合成ゼオラ
イトなどの脱湿剤による水分除去工程を適宜組み合わせ
ることも可能であり、これによって水分も完全に除去さ
れ、極めて高純度のアンモニアを得ることができる。
Purification of ammonia is usually carried out by passing crude ammonia through a purifying column filled with a reduced nickel-based catalyst, and by contacting the crude ammonia with the nickel catalyst, Oxygen contained as an impurity is removed. The oxygen concentration in the crude ammonia applied to the present invention is usually 100 pp.
m or less. If the oxygen concentration is higher than this, the amount of heat generated increases, so heat removal means is required depending on the conditions.
In practice, the filling length of the nickel catalyst filled in the purification column is usually 50 to 1500 mm. If the filling length is shorter than 50 mm, the oxygen removal rate may be reduced, and if it is longer than 1500 mm, the pressure loss may be too large. The empty cylinder linear velocity (LV) of crude ammonia at the time of purification varies depending on the oxygen concentration in the supplied ammonia and the operating conditions, and cannot be specified unconditionally.
Usually 100 cm / sec or less, preferably 30 cm /
It is less than or equal to sec. The contact temperature between the ammonia and the nickel catalyst is the temperature of the gas supplied to the inlet of the purification column, which is 200 ° C.
Hereafter, the temperature is preferably 100 ° C. or lower, usually room temperature, and heating or cooling is not particularly required. The pressure at the time of contact with the catalyst is not particularly limited, and the treatment can be carried out under any of normal pressure, reduced pressure and increased pressure, but it is usually 20 kg / cm 2 abs or less, preferably 0.1-10 kg / cm 2 abs. Is. In addition, even if a small amount of water is contained in ammonia, it does not particularly affect the deoxidizing ability, and when a carrier is used as the catalyst, the water is also removed at the same time depending on the type. .. In the present invention, the oxygen removal step using a nickel catalyst can be appropriately combined with a water removal step using a dehumidifying agent such as synthetic zeolite, if necessary, whereby water is also completely removed and extremely high-purity ammonia is obtained. Obtainable.

【0008】[0008]

【実施例】【Example】

実施例1 (ニッケルの還元処理)市販のニッケル触媒(日揮
(株)製、N−111)を用いた。このものの組成はN
i+NiOの形であり、Niとして45〜47wt%、
Cr2〜3wt%、Cu2〜3wt%、珪藻土27〜2
9wt%および黒鉛4〜5wt%、比表面積が150m
2 /gであり、直径5mm、高さ4.5mmの成型体で
ある。このニッケル触媒を8〜10meshに破砕した
もの63mlを内径16.4mm、長さ400mmのス
テンレス製の精製筒に充填長300mm(充填密度:
1.0g/ml)に充填した。これに水素を常圧で温度
150℃、流量595ml/min(LV=3.6cm
/sec)で3時間還元処理を行った後、常温に冷却し
た。 (アンモニアの精製)引き続き、この精製筒にアンモニ
ア10vol%および不純物として0.53ppmの酸
素を含有する水素ベースの粗アンモニアを、常温(20
℃)において633ml/min(LV=5cm/se
c)の速度で流して黄燐発光式酸素分析計(測定下限濃
度0.01ppm)を用いて出口ガス中の酸素濃度を測
定した結果、酸素は検出されず0.01ppm以下であ
った。また、ガスを流し始めてから100分後において
も出口ガス中の酸素濃度は、0.01ppm以下であっ
た。、
Example 1 (Reduction treatment of nickel) A commercially available nickel catalyst (N-111, manufactured by JGC Corporation) was used. The composition of this product is N
i + NiO form, 45-47 wt% as Ni,
Cr 2-3 wt%, Cu 2-3 wt%, diatomaceous earth 27-2
9 wt% and graphite 4-5 wt%, specific surface area 150 m
2 / g, which is a molded body having a diameter of 5 mm and a height of 4.5 mm. 63 ml of this nickel catalyst crushed to 8 to 10 mesh was filled in a stainless steel purification cylinder having an inner diameter of 16.4 mm and a length of 400 mm with a filling length of 300 mm (filling density:
1.0 g / ml). Hydrogen was added to this at atmospheric pressure at a temperature of 150 ° C. and a flow rate of 595 ml / min (LV = 3.6 cm).
/ Sec) for 3 hours and then cooled to room temperature. (Ammonia purification) Subsequently, hydrogen-based crude ammonia containing 10 vol% ammonia and 0.53 ppm oxygen as an impurity was charged to this purification cylinder at room temperature (20
633 ml / min (LV = 5 cm / se)
As a result of measuring the oxygen concentration in the outlet gas using a yellow phosphorus luminescence type oxygen analyzer (lower limit concentration of 0.01 ppm), oxygen was not detected and was 0.01 ppm or less. In addition, the oxygen concentration in the outlet gas was 0.01 ppm or less even 100 minutes after the gas started to flow. ,

【0009】実施例2 (ニッケル触媒の調製)3Lの水にAl(NO3 3
2 O、454gを溶解し、氷浴で5〜10℃に冷却し
た。激しくかき混ぜながら、これにNaOH、200g
を1Lの水に溶解して5〜10℃に冷却した溶液を2時
間かけて滴下し、アルミン酸ナトリウムとした。次に、
Ni(NO3 2 ・6H2 O、101gを600mlの
水に溶解し、これに45mlの濃硝酸を加えて5〜10
℃に冷却したものを、アルミン酸ナトリウム溶液に激し
くかき混ぜながら1時間かけて加えた。生じた沈澱を濾
過し、得られた沈澱を2Lの水中で15分間かき混ぜて
洗う操作を6回繰り返して中性とした。得られた沈澱物
を細分して空気浴中で105℃で16時間乾燥してから
粉砕し、これをふるい分けて12〜24meshのもの
を集めた。このものは29.5wt%の酸化ニッケル
(NiO)を含有していた。 (ニッケルの還元処理)このものを、実施例1で使用し
たと同じ精製筒に63ml充填し(充填密度:0.77
g/ml)、これに水素を常圧で温度350℃、流量1
65cc/min(LV=1cm/sec)で16時間
流して還元処理をおこなった後、常温に冷却した。 (アンモニアの精製)引き続いて、アンモニアの精製を
おこなった。実施例1で使用した約0.53ppmの酸
素を含む10vol%のアンモニア(水素ベース)を、
常温(20℃)において精製筒に633ml/min
(LV=5cm/sec)の速度で流して出口ガス中の
酸素濃度を測定した結果、0.01ppm以下であっ
た。精製を始めてから100分後においても出口ガスの
酸素濃度は0.01ppm以下であった。
Example 2 (Preparation of nickel catalyst) Al (NO 3 ) 3 9 in 3 L of water
H 2 O (454 g) was dissolved and cooled to 5 to 10 ° C. in an ice bath. Add 200g of NaOH to this while stirring vigorously.
Was dissolved in 1 L of water and cooled to 5 to 10 ° C, and the solution was added dropwise over 2 hours to obtain sodium aluminate. next,
Ni (NO 3) 2 · 6H 2 O, the 101g was dissolved in water of 600 ml, this was added concentrated nitric acid 45 ml 5 to 10
What was cooled to 0 ° C was added to the sodium aluminate solution over 1 hour with vigorous stirring. The resulting precipitate was filtered, and the precipitate thus obtained was stirred in 2 L of water for 15 minutes and washed to obtain neutrality by repeating 6 times. The resulting precipitate was subdivided, dried in an air bath at 105 ° C. for 16 hours, then ground, and sieved to collect 12 to 24 mesh. This contained 29.5 wt% nickel oxide (NiO). (Reduction treatment of nickel) 63 ml of this was packed in the same purification cylinder as used in Example 1 (packing density: 0.77).
g / ml), and hydrogen at atmospheric pressure at a temperature of 350 ° C. and a flow rate of 1
The mixture was allowed to flow for 16 hours at 65 cc / min (LV = 1 cm / sec) to carry out the reduction treatment, and then cooled to room temperature. (Purification of Ammonia) Subsequently, purification of ammonia was performed. 10 vol% ammonia (hydrogen basis) containing about 0.53 ppm oxygen used in Example 1,
633ml / min in the purifying cylinder at room temperature (20 ℃)
As a result of measuring the oxygen concentration in the outlet gas by flowing at a velocity of (LV = 5 cm / sec), it was 0.01 ppm or less. Even after 100 minutes from the start of purification, the oxygen concentration of the outlet gas was 0.01 ppm or less.

【0010】比較例 活性炭(椰子殻炭)を8〜24meshに破砕したもの
48gを実施例1に置けると同じ精製筒に300mm
(充填密度0.57g/ml)充填し、ヘリウム気流中
270〜290℃で時間加熱処理した後、室温に冷却し
た。この精製筒に実施例1で用いたと同じ約0.53p
pmの酸素を含む10vol%のアンモニア(水素ベー
ス)を精製筒に633ml/min(LV=5cm/s
ec)で流して出口ガス中の酸素濃度を測定した結果、
0.53ppmであり、この状態で2時間流し続けたが
酸素濃度の変化は見られなかった。
Comparative Example 48 g of activated carbon (coconut shell charcoal) crushed into 8 to 24 mesh was placed in Example 1 in the same purifying cylinder of 300 mm.
(Filling density 0.57 g / ml) was filled, and after heat treatment in a helium gas stream at 270 to 290 ° C. for an hour, it was cooled to room temperature. About 0.53 p, which is the same as that used in Example 1, in this purification cylinder
10 vol% ammonia (hydrogen base) containing pm oxygen was put into the purifying cylinder at 633 ml / min (LV = 5 cm / s).
As a result of measuring the oxygen concentration in the outlet gas by flowing in step ec),
It was 0.53 ppm, and in this state, the oxygen concentration was not changed although the flow was continued for 2 hours.

【0011】[0011]

【発明の効果】本発明によって、従来除去が困難であっ
たアンモニア中の酸素を0.1ppm以下、さらには
0.01ppm以下のような極低濃度まで除去すること
ができ、超高純度のアンモニアを得ることが可能となっ
た。
EFFECTS OF THE INVENTION According to the present invention, it is possible to remove oxygen in ammonia, which has been difficult to remove in the past, to an extremely low concentration of 0.1 ppm or less, further 0.01 ppm or less, and to obtain ultra-high purity ammonia. It became possible to obtain.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 雅子 神奈川県平塚市田村5181番地 日本パイオ ニクス株式会社平塚工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masako Yasuda 5181 Tamura, Hiratsuka-shi, Kanagawa Japan Pionics Co., Ltd. Hiratsuka factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】粗アンモニアをニッケルを主成分とする触
媒と接触させて、該粗アンモニアに含有される酸素を除
去することを特徴とするアンモニアの精製方法。
1. A method for purifying ammonia, which comprises contacting crude ammonia with a catalyst containing nickel as a main component to remove oxygen contained in the crude ammonia.
【請求項2】触媒が、金属換算で5〜95wt%のニッ
ケルを含有し、かつ比表面積がBET法で10〜300
2 /gである請求項1に記載のアンモニアの精製方
法。
2. The catalyst contains nickel in an amount of 5 to 95 wt% in terms of metal, and has a specific surface area of 10 to 300 by the BET method.
The method for purifying ammonia according to claim 1, wherein the method is m 2 / g.
【請求項3】アンモニアと触媒との接触温度が200℃
以下である請求項1に記載のアンモニアの精製方法。
3. The contact temperature between ammonia and the catalyst is 200 ° C.
The method for purifying ammonia according to claim 1, wherein:
JP28986791A 1991-11-06 1991-11-06 Ammonia purification method Expired - Fee Related JP3359928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28986791A JP3359928B2 (en) 1991-11-06 1991-11-06 Ammonia purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28986791A JP3359928B2 (en) 1991-11-06 1991-11-06 Ammonia purification method

Publications (2)

Publication Number Publication Date
JPH05124813A true JPH05124813A (en) 1993-05-21
JP3359928B2 JP3359928B2 (en) 2002-12-24

Family

ID=17748791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28986791A Expired - Fee Related JP3359928B2 (en) 1991-11-06 1991-11-06 Ammonia purification method

Country Status (1)

Country Link
JP (1) JP3359928B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037624A (en) * 2000-07-28 2002-02-06 Japan Pionics Co Ltd Method for purifying ammonia
JP2002037623A (en) * 2000-07-28 2002-02-06 Japan Pionics Co Ltd Method for purifying ammonia
JP2008132475A (en) * 2006-10-27 2008-06-12 Japan Pionics Co Ltd Gas treatment method
JP2014047089A (en) * 2012-08-30 2014-03-17 Japan Pionics Co Ltd Apparatus for feeding purified ammonia
JP2015519192A (en) * 2012-04-24 2015-07-09 サエス・ゲッターズ・エッセ・ピ・ア Renewable room temperature purification apparatus and method for nitrous oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037624A (en) * 2000-07-28 2002-02-06 Japan Pionics Co Ltd Method for purifying ammonia
JP2002037623A (en) * 2000-07-28 2002-02-06 Japan Pionics Co Ltd Method for purifying ammonia
JP2008132475A (en) * 2006-10-27 2008-06-12 Japan Pionics Co Ltd Gas treatment method
JP2015519192A (en) * 2012-04-24 2015-07-09 サエス・ゲッターズ・エッセ・ピ・ア Renewable room temperature purification apparatus and method for nitrous oxide
JP2014047089A (en) * 2012-08-30 2014-03-17 Japan Pionics Co Ltd Apparatus for feeding purified ammonia

Also Published As

Publication number Publication date
JP3359928B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
US4976942A (en) Method for purifying gaseous hydrides
JP2732262B2 (en) How to purify arsine
JP3410121B2 (en) Ammonia purification method
JPH05124813A (en) Refining method of gaseous ammonia
JP3522785B2 (en) Purification method of carbon dioxide
JP3154340B2 (en) Method for purifying germanium hydride
JP2700412B2 (en) Hydride gas purification method
JP2640521B2 (en) Hydrogen sulfide purification method
JP3279608B2 (en) Steam purification method
JP2700396B2 (en) Purification method of diborane
JP2640517B2 (en) Purification method of hydrogen selenide
JP3154339B2 (en) Method for purifying germanium hydride
JP3292251B2 (en) Steam purification method
JP3217854B2 (en) Organic metal purification method
JP2627324B2 (en) Silane purification method
JP3260786B2 (en) Steam purification method
JP3150788B2 (en) Purification method of halogenated hydrocarbon
JP2700399B2 (en) Hydride gas purification method
JP2700398B2 (en) Hydride gas purification method
JP2592312B2 (en) Phosphine purification method
JP2700401B2 (en) Hydride gas purification method
JP2700400B2 (en) Hydride gas purification method
JP2700402B2 (en) Hydride gas purification method
JP2732277B2 (en) Hydride gas purification method
JPH04144910A (en) Purification of disilane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees