JPH0512288B2 - - Google Patents

Info

Publication number
JPH0512288B2
JPH0512288B2 JP63245064A JP24506488A JPH0512288B2 JP H0512288 B2 JPH0512288 B2 JP H0512288B2 JP 63245064 A JP63245064 A JP 63245064A JP 24506488 A JP24506488 A JP 24506488A JP H0512288 B2 JPH0512288 B2 JP H0512288B2
Authority
JP
Japan
Prior art keywords
superconducting
temperature
materials
oxide
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63245064A
Other languages
Japanese (ja)
Other versions
JPH0292821A (en
Inventor
Takashi Masako
Juichi Shimakawa
Yoshimi Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP63245064A priority Critical patent/JPH0292821A/en
Priority to EP89117902A priority patent/EP0362685B1/en
Priority to DE8989117902T priority patent/DE68904858T2/en
Priority to US07/413,237 priority patent/US5328892A/en
Publication of JPH0292821A publication Critical patent/JPH0292821A/en
Publication of JPH0512288B2 publication Critical patent/JPH0512288B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、各種の超伝導応用装置や超伝導素子
に使用される酸化物超伝導材料に関するものであ
る。 (従来の技術) 現在、超伝導材料としては、すでに金属・合金
系超伝導材料、化合物超伝導材料などが実用化さ
れている。超伝導材料は超伝導磁石用のコイルや
ジヨセフソン素子などのエレクトロニクスデバイ
スなどを作るのに用いられ、特にジヨセフソン接
合の高感度性、高精度性、低雑音性を利用した
SQUIDや精密計測への応用の他、ジヨセフソン
接合の高速応答性と低消費電力性に着目した電子
計算機への応用が期待されている。 超伝導材料の超伝導転移温度Tcは、できるだ
け高いことが望まれるが、30KのTcを持つLa−
Ba−Cu−O系酸化物超伝導体の発見以来、90K
級のBa−Y−Cu−O系、110K級のBi−Sr−Ca
−Cu−O系、120K級のTl−Ba−Ca−Cu−O系
などが相次いで発見されてきた。液体窒素温度を
はるかに越えたTcをもつ材料の発見は、実用材
料として期待をますます高めている。 (発明が解決しようとする問題点) 超伝導材料をエレクトロニクスデバイスに応用
する際にはプロセス中の最高温度が低いことが望
ましい。また臨界電流密度Jcが大きいことも配線
材料を考える上で重要である。Tl−Ba−Ca−Cu
系超伝導体は、100K以上の超伝導転移温度を有
する材料である。しかし焼成は890〜910℃の温度
は必要なため、この温度で長時間焼成するとTl
が蒸発しやすく、超伝導体相の割合が減つてしま
うという問題があり、また、それよりも低い温度
で焼成した場合には、焼結が進まないためにJcが
小さくなつてしまう問題があつた。そこで本発明
の目的は、従来のものよりも低い最適焼成温度を
持ち、かつ高いJcを持つ超伝導体を提供すること
にある。 (問題を解決するための手段) 本発明は酸化物超伝導材料、特に従来のTl2
Ba2Cao-1CuoOv(n=1、2、3)とは異なる
TlSr3-xYxCu2Ovなる組成式で0.1≦x≦1.0なる組
成を従来より低温で焼結しても高いJcを持つ焼結
体が得られることを見いだしたものである。 (作用) Tl2Ba2CaCu2Ovでは870℃で1時間焼結した時
の、77KにおけるJcは100A/cm2であつた。し
かるにTlSr2YCu2Ovでは同一焼成条件で、
800A/cm2のJcを持つ緻密な焼結体が得られた。
この焼結体は85Kで、シヤープに超伝導転移を起
こし、移転後は全体積が超伝導状態になつている
ことが確認された。 (実施例) 以下実施例により、本発明を具体的に説明す
る。出発原料として純度99%以上の酸化タリウム
(Tl2O3)、酸化ストロンチウム(SrO)、酸化イツ
トリウム(Y2O3)酸化第2銅(CuO)を使用し
第1表に配合比になるように夫々秤量した、次に
秤量した各材料を乳鉢でよく混合した後、プレス
して5mm×10mm×1mmのプレス体を作成した。こ
のプレス体を酸素雰囲気中で850℃〜870℃で1〜
10時間焼結した。 第1表の範囲の焼結体について抵抗率、臨界電
流密度、超伝導体積分率の測定を行い超伝導特性
を評価した。 抵抗率は直流4端子法によつて行つた。電極は
金をスパツタリング法にて取付けリードとして錫
メツキ銅線を用いた。 臨界電流密度も直流4端子法により求めた。電
圧端子間に0.1μV以上の電圧が生じたときの電流
をJcとした。 超伝導体積分率は交流帯磁率測定より求めた。 交流帯磁率はコイルの中にサンプルをいれコイ
ルのLの変化を測定することによつて行つた。体
積分率は、同体積、同じ形状の鉛の4.2Kにおけ
るΔLを100として算出した。抵抗測定は室温から
抵抗が0になる温度まで、帯磁率測定は室温から
4.2Kまで行つた。 第1表に配合比と抵抗が0になる臨界温度、
77Kでの臨界電流密度を示す。 本発明の組成はTcが81K以上、Jcが470(A/
cm2)以上の優れた特性を示した。ただしxが
0.1未満では、超伝導特性を示さず本発明の目的
には不適当である。またxが1.0を越えると体積
分率が減り、Jcも小さくなつてしまう。
(Field of Industrial Application) The present invention relates to oxide superconducting materials used in various superconducting application devices and superconducting elements. (Prior Art) Currently, as superconducting materials, metal/alloy superconducting materials, compound superconducting materials, etc. have already been put into practical use. Superconducting materials are used to make electronic devices such as coils for superconducting magnets and Josephson elements, and are particularly useful for making use of the high sensitivity, high precision, and low noise properties of Josephson junctions.
In addition to applications in SQUIDs and precision measurements, it is expected to be applied to electronic computers that take advantage of the Josephson junction's high-speed response and low power consumption. The superconducting transition temperature Tc of superconducting materials is desired to be as high as possible, but La−
Since the discovery of Ba-Cu-O based oxide superconductor, 90K
grade Ba-Y-Cu-O system, 110K grade Bi-Sr-Ca
-Cu-O system, 120K class Tl-Ba-Ca-Cu-O system, etc. have been discovered one after another. The discovery of a material with a Tc that far exceeds the temperature of liquid nitrogen has raised expectations as a practical material. (Problems to be Solved by the Invention) When applying superconducting materials to electronic devices, it is desirable that the maximum temperature during the process be low. It is also important when considering wiring materials that the critical current density Jc is large. Tl−Ba−Ca−Cu
A system superconductor is a material with a superconducting transition temperature of 100K or higher. However, firing requires a temperature of 890 to 910℃, so if you bake at this temperature for a long time, Tl
There is a problem that the superconductor phase tends to evaporate and the proportion of the superconductor phase decreases.Also, if sintering is performed at a lower temperature, there is a problem that Jc becomes small because sintering does not proceed. Ta. Therefore, an object of the present invention is to provide a superconductor that has an optimum sintering temperature lower than that of conventional superconductors and has a high Jc. (Means for Solving the Problem) The present invention relates to oxide superconducting materials, particularly conventional Tl 2
Different from Ba 2 Ca o-1 Cu o O v (n=1, 2, 3)
It was discovered that a sintered body with a high Jc can be obtained even if a composition with the composition formula TlSr 3-x Y x Cu 2 O v with a composition of 0.1≦x≦1.0 is sintered at a lower temperature than conventionally. (Function) When Tl 2 Ba 2 CaCu 2 O v was sintered at 870° C. for 1 hour, Jc at 77 K was 100 A/cm 2 . However, for TlSr 2 YCu 2 O v under the same firing conditions,
A dense sintered body with a Jc of 800 A/cm 2 was obtained.
It was confirmed that this sintered body underwent a sharp superconducting transition at 85K, and that the entire volume became superconducting after the transition. (Example) The present invention will be specifically described below with reference to Examples. Thallium oxide (Tl 2 O 3 ), strontium oxide (SrO), yttrium oxide (Y 2 O 3 ), and cupric oxide (CuO) with a purity of 99% or higher were used as starting materials, and the mixing ratios were as shown in Table 1. The weighed materials were mixed well in a mortar and then pressed to create a pressed body of 5 mm x 10 mm x 1 mm. This pressed body was heated at 850℃ to 870℃ in an oxygen atmosphere for 1 to 30 minutes.
Sintered for 10 hours. The resistivity, critical current density, and superconducting volume fraction of the sintered bodies in the range shown in Table 1 were measured to evaluate the superconducting properties. Resistivity was measured by the DC 4-terminal method. The electrodes were attached with gold by sputtering, and tin-plated copper wire was used as the lead. The critical current density was also determined by the DC four-terminal method. The current when a voltage of 0.1 μV or more was generated between the voltage terminals was defined as Jc. The superconducting volume fraction was determined by AC magnetic susceptibility measurement. AC magnetic susceptibility was measured by placing a sample in a coil and measuring the change in L of the coil. The volume fraction was calculated by setting ΔL at 4.2K of lead of the same volume and shape as 100. Resistance measurement is from room temperature to the temperature where resistance becomes 0. Magnetic susceptibility measurement is from room temperature.
I made it to 4.2K. Table 1 shows the compounding ratio and the critical temperature at which resistance becomes 0.
Critical current density at 77K is shown. The composition of the present invention has a Tc of 81K or more and a Jc of 470 (A/
cm 2 ) or more. However, x
If it is less than 0.1, it does not exhibit superconducting properties and is inappropriate for the purpose of the present invention. Moreover, when x exceeds 1.0, the volume fraction decreases and Jc also becomes small.

【表】 (発明の効果) 本発明の組成物は、低温で焼成を行つても高い
臨界電流密度を持つため、超伝導材料として非常
に実用性の高いものである。
[Table] (Effects of the Invention) The composition of the present invention has a high critical current density even when fired at a low temperature, so it is highly practical as a superconducting material.

Claims (1)

【特許請求の範囲】[Claims] 1 TlSr3-XYxCu2Ovと表した酸化物超伝導体組
成物において0.1≦x≦1.0なる範囲にあることを
特徴とする酸化物超伝導体組成物。
1. An oxide superconductor composition characterized in that the oxide superconductor composition expressed as TlSr 3-X Y x Cu 2 O v is in the range of 0.1≦x≦1.0.
JP63245064A 1988-09-28 1988-09-28 Oxide superconductor composition Granted JPH0292821A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63245064A JPH0292821A (en) 1988-09-28 1988-09-28 Oxide superconductor composition
EP89117902A EP0362685B1 (en) 1988-09-28 1989-09-27 An oxide superconductor composition and a process for the production thereof
DE8989117902T DE68904858T2 (en) 1988-09-28 1989-09-27 OXIDIC SUPER LADDER AND METHOD FOR THE PRODUCTION THEREOF.
US07/413,237 US5328892A (en) 1988-09-28 1989-09-27 Oxide superconductor composition and a process for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245064A JPH0292821A (en) 1988-09-28 1988-09-28 Oxide superconductor composition

Publications (2)

Publication Number Publication Date
JPH0292821A JPH0292821A (en) 1990-04-03
JPH0512288B2 true JPH0512288B2 (en) 1993-02-17

Family

ID=17128053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245064A Granted JPH0292821A (en) 1988-09-28 1988-09-28 Oxide superconductor composition

Country Status (1)

Country Link
JP (1) JPH0292821A (en)

Also Published As

Publication number Publication date
JPH0292821A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
Junod et al. Structure, resistivity, critical field, specific-Heat jump at Tc, meissner effect, ac and dc susceptibility of the high-Tc superconductor YBa2Cu3O7
JPS63232208A (en) Manufacture of conductive or superconductive thin film
JPH0512288B2 (en)
EP0362685B1 (en) An oxide superconductor composition and a process for the production thereof
Supadanaison et al. Determination of Cu2+ and Cu3+ by titration in Y134 and Y145 superconductor
Yokoyama et al. Low resistivity contacts to YBa2Cu3O7− y superconductors using Ag2O powder
JPH07115922B2 (en) Oxide superconductor composition and method for producing the same
EP0368210B1 (en) An oxide superconductor composition and a process for the production thereof
JPH0521848B2 (en)
JP2679124B2 (en) Oxide superconductor composition
JP2819883B2 (en) Method for producing thallium-based oxide superconductor
JPH07102971B2 (en) Oxide superconductor composition and method for producing the same
JPH02107556A (en) Production of oxide superconductor composition
JPH0662333B2 (en) Method for producing oxide superconductor composition
JPH07102970B2 (en) Oxide superconductor composition and method for producing the same
JPH038755A (en) Oxide superconductor composition and production thereof
JPH0521849B2 (en)
JPH0521850B2 (en)
JPH0521851B2 (en)
JPH04317411A (en) Production of oxide superconductor composition
JP2913996B2 (en) Iodine-inserted oxide superconductor and method for producing the same
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2745888B2 (en) Manufacturing method of oxide superconductor
JPH04317457A (en) Production of oxide superconductor composition
JPH038719A (en) Oxide superconductor composition and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees