JPH05121145A - Misfire detecting device for gasoline engine - Google Patents

Misfire detecting device for gasoline engine

Info

Publication number
JPH05121145A
JPH05121145A JP5266092A JP5266092A JPH05121145A JP H05121145 A JPH05121145 A JP H05121145A JP 5266092 A JP5266092 A JP 5266092A JP 5266092 A JP5266092 A JP 5266092A JP H05121145 A JPH05121145 A JP H05121145A
Authority
JP
Japan
Prior art keywords
voltage
misfire
circuit
spark plug
secondary voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5266092A
Other languages
Japanese (ja)
Other versions
JP2566702B2 (en
Inventor
Shigeru Miyata
繁 宮田
Yoshihiro Matsubara
佳弘 松原
Junichi Kagawa
純一 加川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP4052660A priority Critical patent/JP2566702B2/en
Priority to US08/029,235 priority patent/US5347855A/en
Priority to EP93301842A priority patent/EP0560603B1/en
Priority to DE69310585T priority patent/DE69310585T2/en
Publication of JPH05121145A publication Critical patent/JPH05121145A/en
Application granted granted Critical
Publication of JP2566702B2 publication Critical patent/JP2566702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P2017/006Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines using a capacitive sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)

Abstract

PURPOSE:To reduce misfires in a gasoline engine by generating the misfire detecting secondary voltage at the preset timing after a spark discharge by a spark plug is completed, detecting it, and comparing the attenuation characteristic with the data obtained by measurement or calculation according to operating conditions in advance. CONSTITUTION:The pulse signal for interrupting the primary current is outputted from a signal generator 42, and the primary current is generated in a primary circuit 11. The width of the pulse signal is set to two: large and small, the pulse wave with the large width is used to generate a spark discharge on a multi-pole spark plug 3, and the pulse wave with the small width is used to charge the misfire detecting secondary voltage in the stray electrostatic capacity of the plug 3. The voltage required to break a spark discharge gap and the gentle voltage by an induction discharge are obtained by the interruption of the primary current, electric energy is accumulated in an ignition coil 1, and the misfire detecting secondary voltage is generated in a secondary circuit 12. The voltage at the reference level or above is detected by a secondary voltage detecting circuit 6 and fed to a misfire judging circuit 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ガソリン機関におい
て、正常に着火したときと着火ミス(失火)が生じたと
きとで、スパークプラグの火花放電間隙の抵抗値が相違
することを利用した失火検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a misfire in a gasoline engine utilizing the fact that the resistance value of a spark discharge gap of a spark plug is different between a normal ignition and a misfire (misfire). Regarding a detection device.

【0002】[0002]

【従来の技術】自動車エンジンなどのガソリン機関で
は、排気浄化および燃費向上の要請が増大しており、こ
のためには、機関の全ての各気筒ごとに着火状態を検出
し、失火防止対策ができることが望ましい。また失火検
出装置として、従来よりシリンダーブロックに穴を開け
燃焼光センサを装着したり、スパークプラグの取り付け
座に圧力センサを取り付けたり、点火回路のイオン電流
を測定する方法が公知である。
2. Description of the Related Art In a gasoline engine such as an automobile engine, there is an increasing demand for exhaust gas purification and fuel efficiency improvement. To this end, it is possible to detect an ignition state for every cylinder of the engine and take a misfire prevention measure. Is desirable. As a misfire detecting device, conventionally, a method of making a hole in a cylinder block and mounting a combustion optical sensor, mounting a pressure sensor on a mounting seat of a spark plug, and measuring an ionic current of an ignition circuit are known.

【0003】[0003]

【発明が解決しようとする課題】従来の方法において
は、センサの装着が面倒であり、イオン電流を検出する
ために配電器のローターギャップを迂回するための高圧
ダイオードが必要であり、機関の全ての気筒に装着する
と装着コストが増大し、メンテナンスに手間がかかるな
どの欠点があった。この発明の目的は、装着、メンテナ
ンスが容易な構成で、各気筒ごとの失火が正確に検出で
きるガソリン機関の失火検出装置の提供にある。
In the conventional method, the mounting of the sensor is troublesome, and the high voltage diode for bypassing the rotor gap of the distributor is necessary for detecting the ionic current. When it is mounted on the cylinder, the mounting cost increases and maintenance is troublesome. An object of the present invention is to provide a misfire detection device for a gasoline engine, which can be easily mounted and maintained and which can accurately detect misfire for each cylinder.

【0004】[0004]

【課題を解決するための手段】この発明のガソリン機関
の失火検出装置は、点火コイルと、その一次回路に流す
電流を断続する一次電流断続手段と、点火コイルの二次
回路に設けたシリーズギャップと、スパークプラグとを
備えたガソリン機関の点火装置に装着される失火検出装
置であって、多極スパークプラグと、該多極スパークプ
ラグでの火花放電後の所定時期に、二次回路に失火検出
用二次電圧を発生させてスパークプラグ浮遊静電容量に
充電する失火検出用二次電圧発生手段と、二次電圧の分
圧を検出する分圧器と、分圧された前記失火検出用二次
電圧の減衰特性を検出する二次電圧検出回路と、二次電
圧の減衰特性により、失火を判別する失火判別回路とか
らなる。請求項2に記載のガソリン機関の失火検出装置
の多極スパークプラグは、中心電極の先端部の外周に貴
金属層を有すると共に、外側電極の先端面に、外側電極
の母材の先端面および該先端面近傍の側面を覆う金属層
を形成した。請求項3に記載のガソリン機関の失火検出
装置は、点火コイルと、その一次回路に流す電流を断続
する一次電流断続手段と、前記点火コイルの二次回路に
設けた逆流防止ダイオードと、前記点火コイルの両端子
に接続されたスパークプラグとを備えたガソリン機関の
DLI式点火装置に装着される失火検出装置であって、
多極スパークプラグと、該多極スパークプラグでの火花
放電後の所定時期に、二次回路に失火検出用二次電圧を
発生させてスパークプラグ浮遊静電容量に充電する失火
検出用二次電圧発生手段と、二次電圧の分圧を検出する
分圧器と、分圧された前記失火検出用二次電圧の減衰特
性を検出する二次電圧検出回路と、二次電圧の減衰特性
により、失火を判別する失火判別回路とからなる。
A gasoline engine misfire detection device according to the present invention comprises an ignition coil, a primary current interrupting means for interrupting a current flowing through a primary circuit of the ignition coil, and a series gap provided in a secondary circuit of the ignition coil. And a spark plug, which is mounted on an ignition device of a gasoline engine, wherein the multi-circuit spark plug and the secondary circuit are misfired at a predetermined time after spark discharge in the multi-polar spark plug. Misfire detection secondary voltage generating means for generating a detection secondary voltage to charge the spark plug floating capacitance, a voltage divider for detecting a partial voltage of the secondary voltage, and the divided misfire detection secondary voltage. It is composed of a secondary voltage detection circuit that detects the attenuation characteristic of the next voltage, and a misfire determination circuit that determines a misfire based on the attenuation characteristic of the secondary voltage. The multipolar spark plug of the misfire detection device for a gasoline engine according to claim 2 has a noble metal layer on the outer periphery of the tip portion of the center electrode, and the tip surface of the outer electrode and the tip surface of the base material of the outer electrode A metal layer was formed to cover the side surface near the tip surface. A misfire detection device for a gasoline engine according to claim 3, wherein an ignition coil, a primary current interrupting means for interrupting a current flowing through a primary circuit thereof, a backflow prevention diode provided in a secondary circuit of the ignition coil, and the ignition. A misfire detection device mounted on a DLI type ignition device of a gasoline engine, comprising: a spark plug connected to both terminals of a coil;
Multipolar spark plug, and a secondary voltage for misfire detection that generates a secondary voltage for misfire detection in the secondary circuit and charges the floating capacitance of the spark plug at a predetermined time after spark discharge in the multipolar spark plug. Generating means, a voltage divider that detects the voltage division of the secondary voltage, a secondary voltage detection circuit that detects the attenuation characteristic of the divided secondary voltage for detecting misfire, and a damping characteristic of the secondary voltage And a misfire determination circuit for determining

【0005】[0005]

【発明の作用および効果】この発明では、スパークプラ
グでの火花放電終了後の所定時期に、失火検出のための
二次電圧を発生させる。この失火検出用二次電圧のレベ
ルは、配電器のローターギャップなどシリーズギャップ
の絶縁破壊が可能な大きさ(4〜5キロボルト)にコン
トロールする。これによりスパークプラグに電圧が印加
され、スパークプラグの浮遊静電容量(10〜20ピコ
ファラッド)に充電される。この充電電荷の減衰特性
は、スパークプラグの火花放電間隙に、燃焼により生成
した燃料分子のイオンが高密度で存在するか否かで大き
く異なる。従って、火花放電の終了後にスパークプラグ
の静電容量に充電された失火検出用二次電圧の減衰特性
を検出し、この減衰特性と、あらかじめ運転条件に応じ
て測定又は計算により求めたデータと比較することによ
り、失火の有無が判別できる。
According to the present invention, the secondary voltage for detecting misfire is generated at a predetermined time after the spark discharge in the spark plug is completed. The level of the secondary voltage for detecting the misfire is controlled to a value (4 to 5 kilovolts) that allows dielectric breakdown of the series gap such as the rotor gap of the distributor. As a result, a voltage is applied to the spark plug, and the floating capacitance of the spark plug (10 to 20 picofarads) is charged. The decay characteristics of the charged electric charge differ greatly depending on whether or not the ions of the fuel molecules generated by the combustion exist in high density in the spark discharge gap of the spark plug. Therefore, after the spark discharge is completed, the attenuation characteristic of the misfire detection secondary voltage charged in the capacitance of the spark plug is detected, and this attenuation characteristic is compared with the data obtained by measurement or calculation in advance according to the operating conditions. By doing so, the presence or absence of misfire can be determined.

【0006】また、イオンが存在する場合においても、
燃焼室内に均一に分布しているのではなく、気筒内の燃
焼流の状態や燃焼の進行状況によってイオン電流の流れ
易さにばらつきが生じるため、イオン電流は放電電極と
なるスパークプラグの電極の面積により左右され、面積
が大きいほどイオン電流がスムーズに流れる確率が高く
なる。このとき、外側電極を複数有する多極スパークプ
ラグを用いるとイオン電流が円滑に流れ、気筒内の燃焼
気流の状態によるイオン電流の導通不良が低減でき、失
火検出精度が向上できる。この発明では燃焼光センサ、
圧力センサ、高圧ダイオードは不要であり、構成が簡潔
で機関への装着性に優れ、各気筒ごとに正確な失火の検
出ができる実用性の高い失火検出装置が得られる。
Further, even when ions are present,
Rather than being evenly distributed in the combustion chamber, the ionic current flow varies depending on the state of the combustion flow in the cylinder and the progress of combustion. The larger the area, the higher the probability that the ionic current will flow smoothly. At this time, if a multipolar spark plug having a plurality of outer electrodes is used, the ion current smoothly flows, conduction failure of the ion current due to the state of the combustion air flow in the cylinder can be reduced, and misfire detection accuracy can be improved. In this invention, a combustion light sensor,
A pressure sensor and a high-voltage diode are not required, and a highly practical misfire detection device that has a simple structure and is easily mounted on an engine and that can accurately detect misfire for each cylinder can be obtained.

【0007】請求項3のディストリビュータ・レス・イ
グナイタ(DLI)の場合は、イグニションコイルの両
端が、それぞれの多極スパークプラグの中心電極に接続
されるために、マイナス極性の中心電極と、プラス極性
の中心電極とがある。このとき、プラス極性の中心電極
は、二次電圧の減衰特性検出に優れるが、マイナス極性
の中心電極は、その露出面積を大きくすることで、イオ
ン電流をスムーズに流すことができ、プラス極性の中心
電極と同程度の二次電圧の減衰特性検出精度を維持する
ことができる。この発明の多極スパークプラグのDLI
式点火装置は、プラス極性の中心電極であっても、マイ
ナス極性の中心電極であっても減衰特性が明確とするこ
とができる。
In the case of the distributorless igniter (DLI) of claim 3, since both ends of the ignition coil are connected to the center electrodes of the respective multi-pole spark plugs, the center electrode of the negative polarity and the positive polarity are connected. There is a center electrode of. At this time, the positive polarity center electrode is excellent in detecting secondary voltage attenuation characteristics, but the negative polarity center electrode can smoothly flow an ionic current by increasing the exposed area of the negative polarity center electrode. It is possible to maintain the secondary-voltage attenuation characteristic detection accuracy as high as that of the center electrode. DLI of the multipolar spark plug of the present invention
The damping characteristic of the positive ignition device can be made clear whether it is a positive polarity center electrode or a negative polarity center electrode.

【0008】[0008]

【実施例】図1は、点火コイル1、配電器(デストリビ
ュータ)2、多極スパークプラグ3を備えた内燃機関の
点火装置100を示す。点火コイル1の一次回路11
は、車載電源Vと、一次電流断続手段4とに接続され、
二次回路12は、前記配電器2を介して多極スパークプ
ラグ3に接続されている。配電器2のローターギャップ
21と多極スパークプラグ3の火花放電間隙31との間
の二次回路12には、分圧器5と、二次電圧検出回路6
と、失火判別回路7とが接続されている。この実施例で
は、一次電流断続手段4が多極スパークプラグ3での火
花放電後に多極スパークプラグ3の浮遊静電容量に充電
する失火検出用二次電圧発生手段を兼ねている。
1 shows an ignition device 100 for an internal combustion engine equipped with an ignition coil 1, a distributor (distributor) 2, and a multipolar spark plug 3. Primary circuit 11 of ignition coil 1
Is connected to the vehicle-mounted power source V and the primary current interrupting means 4,
The secondary circuit 12 is connected to the multipolar spark plug 3 via the distributor 2. In the secondary circuit 12 between the rotor gap 21 of the distributor 2 and the spark discharge gap 31 of the multipolar spark plug 3, the voltage divider 5 and the secondary voltage detection circuit 6 are provided.
And the misfire discrimination circuit 7 are connected. In this embodiment, the primary current interrupting means 4 also functions as a misfire detecting secondary voltage generating means for charging the floating electrostatic capacitance of the multipolar spark plug 3 after spark discharge in the multipolar spark plug 3.

【0009】多極スパークプラグ3は、図2および図3
に示す如く、先端面に2つの略L字形の外側電極32が
対向して溶接された筒状の主体金具33内に、軸穴付き
絶縁碍子34を嵌め込んでなる。絶縁碍子34の軸穴の
先端側部には絶縁碍子34の先端より突出した中心電極
35が挿入されている。2つの外側電極32、32は、
それぞれ基部3Aが前記主体金具33の先端面の対向位
置に溶接され、その先端面3B、3Bは、中心電極35
の先端部方向に曲げられ、火花放電間隙31を形成して
いる。
The multipolar spark plug 3 is shown in FIGS.
As shown in FIG. 3, an insulator 34 with a shaft hole is fitted in a tubular metal shell 33 having two substantially L-shaped outer electrodes 32 welded to each other so as to face each other. A center electrode 35 protruding from the tip of the insulator 34 is inserted into the tip end side portion of the shaft hole of the insulator 34. The two outer electrodes 32, 32 are
Each of the base portions 3A is welded to a position opposite to the tip end surface of the metal shell 33, and the tip end surfaces 3B and 3B are respectively attached to the center electrode 35.
Of the spark discharge gap 31 is formed by bending in the direction of the tip.

【0010】外側電極32は、15.0重量%のクロム
(Cr)を含むニッケル(Ni)合金製母材の軸芯部に
銅(Cu)芯を配した複合母材36の先端面、および該
先端面近傍の側面に20.0重量%のイリジウム(I
r)又はNiを含む白金(Pt)合金製貴金属層37を
被せてなる。貴金属層37は、厚さが0.1〜0.5m
m、側面の巾は、1.0〜2.0mmに設定されてい
る。中心電極35は、図3に示すごとく、20.0重量
%のCrを含むNi合金製で、円柱状を呈する母材と、
母材の軸心部に埋め込まれたCu又は銀(Ag)を主体
とする良熱伝導金属製の芯とからなる複合母材38の先
端部外周に被せられて溶接された貴金属層39とからな
る。この実施例の如く、外側電極32の先端面、および
その近傍の外周面を耐火花消耗性に優れた貴金属層37
で被覆すると、中心電極35の先端部との間で最も火花
放電が生じ易く、火花消耗が起きやすい外側電極32の
角Eは確実に保護されている。これにより、耐火花消耗
性に優れるという利点がある。
The outer electrode 32 has a tip surface of a composite base material 36 in which a copper (Cu) core is arranged on a shaft portion of a nickel (Ni) alloy base material containing 15.0% by weight of chromium (Cr), and 20.0% by weight of iridium (I
r) or a platinum (Pt) alloy noble metal layer 37 containing Ni is covered. The noble metal layer 37 has a thickness of 0.1 to 0.5 m.
m, and the width of the side surface is set to 1.0 to 2.0 mm. As shown in FIG. 3, the center electrode 35 is made of a Ni alloy containing 20.0% by weight of Cr, and has a columnar base material,
From the noble metal layer 39 which is covered and welded on the outer periphery of the tip end portion of the composite base material 38 which is composed of a core made of a good heat conductive metal mainly composed of Cu or silver (Ag) embedded in the axial center portion of the base material. Become. As in this embodiment, the noble metal layer 37 excellent in spark wear resistance is provided on the tip surface of the outer electrode 32 and the outer peripheral surface in the vicinity thereof.
When covered with, the corner E of the outer electrode 32 where the spark discharge is most likely to occur between the tip of the center electrode 35 and the spark consumption is likely to occur is surely protected. Thereby, there is an advantage that the spark wear resistance is excellent.

【0011】一次電流断続手段4は、スイッチ素子41
およびシグナルジェネレータ42からなり、エンジンの
クランク角およびスロットル開度を検出し、火花放電時
期がエンジンの負荷および回転速度に適応した点火進角
となるよう一次電流を断続する。
The primary current interrupting means 4 comprises a switching element 41.
And a signal generator 42, which detects the crank angle and throttle opening of the engine, and interrupts the primary current so that the spark discharge timing becomes an ignition advance angle adapted to the load and rotation speed of the engine.

【0012】この実施例では、分圧器5は、二次回路1
2の高電圧リードとの間に1pF(ピコファラッド)静
電容量を生じるよう配設された導電体からなるセンサ5
1が使用され、低インピーダンス素子52として300
0pFの静電容量のコンデンサを用い、二次回路12に
生じた二次電圧を1/3000程度に分圧する。この場
合、コンデンサ(52)に放電回路を形成する2メガオ
ームの抵抗53を並列接続すると、分圧器5の時定数が
9ms(ミリ秒)となり、後記する3msという比較的
長い減衰時間の判別が確実にできる。これにより最高3
万ボルト前後の高電圧波形が10ボルトのレベルに下げ
られ二次電圧検出回路6に入力する。
In this embodiment, the voltage divider 5 comprises a secondary circuit 1
A sensor 5 made of a conductor arranged to generate a capacitance of 1 pF (picofarad) between the high voltage lead 2 and the high voltage lead 2.
1 is used, and 300 is used as the low impedance element 52.
The secondary voltage generated in the secondary circuit 12 is divided into about 1/3000 using a capacitor having a capacitance of 0 pF. In this case, if a 2 mega ohm resistor 53 forming a discharge circuit is connected in parallel to the capacitor (52), the time constant of the voltage divider 5 becomes 9 ms (milliseconds), and the relatively long decay time of 3 ms described later can be reliably determined. You can With this, up to 3
The high voltage waveform around 10,000 volts is lowered to the level of 10 volts and input to the secondary voltage detection circuit 6.

【0013】二次電圧検出回路6は、図4に示す如く、
分圧器5の分圧と、シグナルジェネレータ42の入力信
号を入力とするピークホールド回路61、ピークホール
ドされた電圧の分圧回路62、および前記分圧器5の出
力と分圧回路62の出力とを比較する比較回路63とか
らなり、失火検出用二次電圧のうち分圧回路62で設定
した基準レベルv(たとえばピークホールド値の1/3
のレベル)以上の電圧の持続時間を検出し、パルスとし
て失火判別回路7に出力する。失火判別回路7は、前記
持続時間(パルスの巾)が設定値以上のとき失火と判別
する。
The secondary voltage detection circuit 6 is, as shown in FIG.
The voltage division of the voltage divider 5, the peak hold circuit 61 that receives the input signal of the signal generator 42, the voltage division circuit 62 of the voltage that has been peak-held, and the output of the voltage divider 5 and the output of the voltage division circuit 62. And a reference level v (for example, 1/3 of the peak hold value) set by the voltage dividing circuit 62 in the secondary voltage for detecting misfire.
The voltage is detected as a pulse duration and output to the misfire discrimination circuit 7 as a pulse. The misfire determination circuit 7 determines a misfire when the duration (pulse width) is equal to or greater than a set value.

【0014】作用を図5と共に説明する。シグナルジェ
ネレータ42でに示す一次電流断続のためのパルス信
号を出力し、の如き一次電流を一次回路11に生じさ
せる。巾hの大きいパルス波a、は多極スパークプラグ
3で火花放電を発生させるための信号であり、パルス波
aの終了後、1.0〜2.5ms程度の遅延時間iだけ
遅延した巾の小さいパルス波bは多極スパークプラグ3
の浮遊静電容量に失火検出用二次電圧を充電するための
信号である。ローターギャップ21では、配電器2のロ
ータとサイドエレクトロードとの近接時間が、エンジン
回転速度により変化する。このため、エンジンの高速運
転時は、パルス巾hおよび遅延時間iは短く設定され
る。
The operation will be described with reference to FIG. A pulse signal for interrupting the primary current indicated by the signal generator 42 is output to generate the primary current in the primary circuit 11 as follows. The pulse wave a having a large width h is a signal for generating a spark discharge in the multipolar spark plug 3, and has a width delayed by a delay time i of about 1.0 to 2.5 ms after the end of the pulse wave a. Small pulse wave b is multi-pole spark plug 3
Is a signal for charging the stray capacitance of the secondary voltage for detecting misfire. In the rotor gap 21, the proximity time between the rotor of the distributor 2 and the side electrode varies depending on the engine speed. Therefore, when the engine is operating at high speed, the pulse width h and the delay time i are set short.

【0015】上記一次電流の断続により、二次回路12
の点火コイル1にはに示す二次電圧が生じる。前記パ
ルス波aの終了時点で発生した高電圧(火花放電間隙の
絶縁破壊に必要な要求電圧)pにより火花放電が開始
し、これにつづき誘導放電によるなだらかな電圧波形q
が生じる。つぎに、前記パルス波bの立ち上がりに対応
し、二次回路12には逆起電力によるプラス波形rが生
じる。この一次コイルへの通電において点火コイル1に
は電気エネルギーが蓄積されるため、通電の停止後、二
次回路12には失火検出用二次電圧(波形s)が生じ
る。この失火検出用二次電圧のレベルは、前記遅延時間
iとパルス波bの巾により所望に設定することができ
る。この発明では波形sのレベルは、ローターギャップ
21の絶縁破壊が可能であり、多極スパークプラグ3の
火花放電間隙31に燃焼中の燃料イオンが存在しない場
合には放電が不可能となるよう、4〜5キロボルトに設
定される。
Due to the interruption of the primary current, the secondary circuit 12
In the ignition coil 1, the secondary voltage shown in is generated. The high voltage (required voltage required for the dielectric breakdown of the spark discharge gap) p generated at the end of the pulse wave a causes the spark discharge to start, followed by the gentle voltage waveform q due to the induction discharge.
Occurs. Next, in response to the rising of the pulse wave b, a positive waveform r due to the back electromotive force is generated in the secondary circuit 12. Since electric energy is accumulated in the ignition coil 1 when the primary coil is energized, a misfire detection secondary voltage (waveform s) is generated in the secondary circuit 12 after the energization is stopped. The level of the secondary voltage for detecting misfire can be set as desired by the delay time i and the width of the pulse wave b. In the present invention, the level of the waveform s is such that the dielectric breakdown of the rotor gap 21 is possible, and the discharge becomes impossible when the burning fuel ions do not exist in the spark discharge gap 31 of the multipolar spark plug 3, Set to 4-5 kilovolts.

【0016】これにより、配電器2のローターギャップ
21と多極スパークプラグ3の火花放電間隙31との間
の、主に多極スパークプラグ3の静電容量(通常10〜
20pF)に前記失火検出用二次電圧が充電され、この
二次電圧はに示す如く、正常に着火した場合と、失火
したときとで減衰時間に差が生じる。すなわち、失火し
たときは、s1 の如く緩やかに降圧する電圧波形とな
り、正常着火したときは、s2 の如く急速に減衰する二
次電圧波形となる。二次電圧検出回路6は、に示す如
く、基準レベルv以上の二次電圧の時間を検出し、パル
ス波t1 〜t4 を失火判別回路7に出力する。失火判別
回路7は、この減衰時間が、たとえばエンジン回転速度
が1000rpmのときは、3ms以上で、6000r
pmのときは、1ms以上で、この中間の運転条件の場
合は、その比例値以上で失火が生じたと判別する。
As a result, mainly the capacitance of the multipolar spark plug 3 (usually 10 to 10) between the rotor gap 21 of the distributor 2 and the spark discharge gap 31 of the multipolar spark plug 3.
The secondary voltage for misfire detection is charged to 20 pF), and this secondary voltage has a difference in decay time between the case of normal ignition and the case of misfire, as indicated by. That is, when there is a misfire, it has a voltage waveform that gradually drops as in s 1 , and when it has a normal ignition, it has a secondary voltage waveform that decays rapidly as in s 2 . The secondary voltage detection circuit 6 detects the time of the secondary voltage equal to or higher than the reference level v and outputs the pulse waves t 1 to t 4 to the misfire determination circuit 7, as indicated by. The misfire determination circuit 7 determines that the decay time is 6000 r or more when the engine speed is 1000 rpm and is 3 ms or more.
When pm, it is determined that the misfire has occurred for 1 ms or more, and for the intermediate operating condition, the misfire occurs at the proportional value or more.

【0017】上記実施例においては、シリーズギャップ
として配電器2のローターギャップ21を用いている
が、配電器2を備えない、ディストリビュータ・レス・
イグナイタ(DLI)においては、通常二次回路に挿入
されている逆流防止用のダイオードが同様の機能を奏す
る。また失火検出用二次電圧発生手段は、一次電流断続
手段4とは別に設けられた点火コイル1の一次電流断続
手段であっても良く、点火コイル1とは別に設けた昇圧
コイルで4〜5キロボルトの電圧を発生させ、二次回路
12に印加してもよい。この昇圧コイルは、多極スパー
クプラグ3の中心電極35の露出面積が小さい場合はプ
ラスの電位であるときの方が、マイナスのときと比較し
てイオン電流がスムーズに流れるので減衰特性が明確と
なる。このため、点火コイル1と逆に接続するなどによ
り、失火検出用二次電圧はプラスの電位に設定しておく
ことが望ましい。
In the above embodiment, the rotor gap 21 of the distributor 2 is used as the series gap, but the distributor-less type without the distributor 2 is used.
In an igniter (DLI), a backflow prevention diode that is usually inserted in a secondary circuit has a similar function. The misfire detecting secondary voltage generating means may be a primary current interrupting means of the ignition coil 1 provided separately from the primary current interrupting means 4, and a boosting coil provided separately from the ignition coil 1 may be used as a booster coil. A voltage of kilovolts may be generated and applied to the secondary circuit 12. When the exposed area of the center electrode 35 of the multipolar spark plug 3 is small, the boosting coil has a clear attenuation characteristic because the ionic current flows more smoothly when the potential is positive than when it is negative. Become. Therefore, it is desirable to set the misfire detection secondary voltage to a positive potential by connecting the ignition coil 1 in the reverse direction.

【0018】中心電極35がプラス極性の場合、動きの
遅いプラスイオンは、中心電極34と比べ表面積の大き
な複数の外側電極32に引き寄せられるため、電荷の交
換スピードは、外側電極32と中心電極34との表面積
比程度早くなる。プラスイオン比べて十分軽い電子は素
早く中心電極34側へ移動できるため、律速はプラスイ
オン側のスピードになると考えられる。しかし、中心電
極35がマイナス極性の場合であっても、絶縁碍子34
の先端より突出した中心電極35の露出面積が十分大き
い時は(望ましくは25mm2 以上)、多くのプラスイ
オンが中心電極35に引き寄せられ、電荷の交換するこ
とによって、イオン電流が流れ、二次電圧の明確な減衰
特性が観測される。
When the center electrode 35 has a positive polarity, slow-moving positive ions are attracted to the plurality of outer electrodes 32 having a larger surface area than the center electrode 34, and therefore the charge exchange speed is the same as that of the outer electrodes 32 and the center electrode 34. And the surface area ratio becomes faster. Electrons that are sufficiently lighter than positive ions can move to the center electrode 34 side quickly, so it is considered that the rate-controlling speed is on the positive ion side. However, even if the center electrode 35 has a negative polarity, the insulator 34
When the exposed area of the center electrode 35 protruding from the tip of the electrode is sufficiently large (preferably 25 mm 2 or more), many positive ions are attracted to the center electrode 35, and by exchanging charges, an ionic current flows and a secondary ion flows. A clear damping characteristic of the voltage is observed.

【0019】特に、前述したDLIでは、イグニション
コイルの両端が、それぞれの多極スパークプラグの中心
電極に接続されるために、マイナス極性の中心電極と、
プラス極性の中心電極とがある。このとき、プラス極性
の中心電極は、減衰特性が明確となり、マイナス極性の
中心電極と比べて失火検出用の二次電圧の減衰特性検出
に優れる。しかし、マイナス極性の中心電極は、その露
出面積を大きくすることで、前述のようにイオン電流を
スムーズに流すことができ、プラス極性の中心電極と同
程度の二次電圧の減衰特性検出精度を維持することがで
きる。
Particularly, in the above-mentioned DLI, since both ends of the ignition coil are connected to the center electrodes of the respective multi-pole spark plugs, a negative polarity center electrode,
There is a positive polarity center electrode. At this time, the positive polarity center electrode has a clear attenuation characteristic, and is superior in detecting the secondary voltage attenuation characteristic for misfire detection as compared with the negative polarity center electrode. However, by increasing the exposed area of the negative polarity center electrode, the ion current can be made to flow smoothly as described above, and the secondary voltage attenuation characteristic detection accuracy similar to that of the positive polarity center electrode can be obtained. Can be maintained.

【0020】この発明の他の実施例を図6および図7を
用いて説明する。この実施例のガソリン機関の検出装置
は、点火コイル1と、配電器2のローターギャップ21
との間の二次回路12に逆流防止用ダイオード13を挿
入する。一次電流の断続により、に示す一次電流断続
のためのパルス信号を出力する。そして二次回路12の
点火コイル1には二次電圧が生じ、つぎの一次電流の断
続により二次回路12は、前述のごとく再昇圧し、多極
スパークプラグ3の浮遊静電容量を充電する。このと
き、点火コイル1側と多極スパークプラグ3側の電位差
が生じて、ロータギャップ21を飛び越えて火花放電と
逆方向に電流が流れようとする。この逆方向への放電が
生じると5〜7キロボルトの電荷は、3〜4キロボルト
に降圧し、失火検出用二次電圧の減衰時間の測定精度が
低下する。この実施例では、点火コイル1と配電器2間
の逆流防止用ダイオード13により阻止される。このた
め、電圧波形s1 のようにピークの後の急激な変化を伴
うことなく電圧波形s3 は、徐々に降圧することによっ
て測定精度が向上できる。
Another embodiment of the present invention will be described with reference to FIGS. 6 and 7. The gasoline engine detection apparatus of this embodiment includes an ignition coil 1 and a rotor gap 21 of a distributor 2.
A backflow prevention diode 13 is inserted in the secondary circuit 12 between the and. When the primary current is interrupted, a pulse signal for interrupting the primary current is output as indicated by. Then, a secondary voltage is generated in the ignition coil 1 of the secondary circuit 12, and the secondary circuit 12 re-boosts as described above due to the interruption of the next primary current to charge the floating electrostatic capacitance of the multipolar spark plug 3. .. At this time, a potential difference occurs between the ignition coil 1 side and the multipolar spark plug 3 side, jumping over the rotor gap 21 and attempting to flow a current in the direction opposite to the spark discharge. When this discharge in the reverse direction occurs, the electric charge of 5 to 7 kilovolts drops to 3 to 4 kilovolts, and the accuracy of measuring the decay time of the secondary voltage for detecting misfire decreases. In this embodiment, it is blocked by the backflow prevention diode 13 between the ignition coil 1 and the distributor 2. Therefore, the measurement accuracy can be improved by gradually lowering the voltage waveform s 3 without abrupt change after the peak like the voltage waveform s 1 .

【0021】図8は、2000cc、4サイクル、4気
筒のガソリン機関に装着した、1極スパークプラグ、2
極スパークプラグ、3極スパークプラグの各多極スパー
クプラグ(1)と、火花放電終了直後に各多極スパーク
プラグ(1)を流れるイオン電流波形(2)の形状との
測定結果を示す。この測定結果から、多極化の度合いが
増大につれて、イオン電流が増大すると共に、電流波形
のピークが明確になり、ノイズとの識別が明確にでき、
イオン電流の検出が容易になることが分かる。
FIG. 8 is a 2000-cc, 4-cycle, 4-cylinder, 4-cylinder gasoline engine mounted 1-pole spark plug, 2
The measurement result of each multipolar spark plug (1) of a polar spark plug and a three-pole spark plug, and the shape of the ion current waveform (2) which flows through each multipolar spark plug (1) immediately after the end of spark discharge is shown. From this measurement result, as the degree of multipole increases, the ion current increases, the peak of the current waveform becomes clear, and it can be clearly distinguished from noise.
It can be seen that the ion current can be easily detected.

【0022】図9は、上記ガソリン機関における多極ス
パークプラグ3の外側電極32の極数nと、火花放電終
了直後多極スパークプラグ3に流れるイオン電流のピー
クレベルの平均値との関係を示すグラフである。極数n
が2以上の多極スパークプラグ3においては、8マイク
ロアンペア(μA)以上のイオン電流が流れる。イオン
電流検出回路のノイズレベルは数μAであるため、極数
nが2以上の多極スパークプラグ3では、イオン電流の
検出精度が高い。
FIG. 9 shows the relationship between the number of poles n of the outer electrode 32 of the multipolar spark plug 3 in the gasoline engine and the average value of the peak level of the ionic current flowing in the multipolar spark plug 3 immediately after the end of the spark discharge. It is a graph. Number of poles n
In the multipolar spark plug 3 having a value of 2 or more, an ion current of 8 microamperes (μA) or more flows. Since the noise level of the ionic current detection circuit is several μA, the ionic current detection accuracy is high in the multipolar spark plug 3 having the number of poles n of 2 or more.

【0023】図10は、上記ガソリン機関において、多
極スパークプラグ3の外側電極32の極数nをパラメー
タとし、該多極スパークプラグ3を流れるイオン電流を
測定し、失火を検出した実験における失火検出精度を示
す。図示の如く、極数1では、イオン電流のピークレベ
ルが低く、ノイズとの区別がされにくいため、失火検出
率が急速に低下する。
FIG. 10 shows the misfire in the above-mentioned gasoline engine, in which the ion current flowing through the multipolar spark plug 3 was measured with the number n of poles of the outer electrode 32 of the multipolar spark plug 3 as a parameter to detect misfire. Indicates the detection accuracy. As shown in the figure, when the number of poles is 1, the peak level of the ionic current is low and it is difficult to distinguish it from noise, so the misfire detection rate rapidly decreases.

【0024】図11に中心電極35をプラス極性に接続
した場合と、マイナス極性に接続した場合の放電間隙増
加量との関係を示す。グラフに示すように、中心電極3
5と外側電極32は、形状の違いから、中心電極35を
マイナス極性となるように接続したほうが、単極のスパ
ークプラグであっても、多極スパークプラグであっても
放電間隙増加量が少ない。しかし、単極のスパークプラ
グと比べて、多極スパークプラグのでは電極消耗を少な
くすることができる。
FIG. 11 shows the relationship between the amount of increase in the discharge gap when the center electrode 35 is connected to the positive polarity and when it is connected to the negative polarity. As shown in the graph, the center electrode 3
Because of the difference in shape between the outer electrode 5 and the outer electrode 5, the increase in the discharge gap is smaller when the center electrode 35 is connected so as to have a negative polarity, regardless of whether it is a single-pole spark plug or a multi-pole spark plug. .. However, as compared with the single-pole spark plug, the electrode consumption can be reduced in the multi-pole spark plug.

【0025】図12に中心電極35をプラス極性に接続
した場合と、マイナス極性に接続した場合のスパークプ
ラグ要求電圧との関係を示す。外側電極32の極数が増
えるに連れて、要求電圧を低くすることができる。ま
た、中心電極35をプラス極性とした場合でもスパーク
プラグの要求電圧を低く維持することができる。
FIG. 12 shows the relationship between the spark plug required voltage when the center electrode 35 is connected to the positive polarity and when it is connected to the negative polarity. The required voltage can be lowered as the number of poles of the outer electrode 32 increases. Further, even when the center electrode 35 has a positive polarity, the required voltage of the spark plug can be kept low.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の失火検出装置を装着した火花点火機
関の点火回路図である。
FIG. 1 is an ignition circuit diagram of a spark ignition engine equipped with a misfire detection device of the present invention.

【図2】多極スパークプラグの要部断面図である。FIG. 2 is a sectional view of an essential part of a multipolar spark plug.

【図3】図2の要部断面図である。3 is a cross-sectional view of a main part of FIG.

【図4】二次電圧検出回路のブロック図である。FIG. 4 is a block diagram of a secondary voltage detection circuit.

【図5】作動説明のための波形図である。FIG. 5 is a waveform diagram for explaining the operation.

【図6】他の実施例の失火検出装置を装着した火花点火
機関の点火回路図である。
FIG. 6 is an ignition circuit diagram of a spark ignition engine equipped with a misfire detection device according to another embodiment.

【図7】図6に示す失火検出装置の作動説明のための波
形図である。
FIG. 7 is a waveform diagram for explaining an operation of the misfire detection device shown in FIG.

【図8】外側電極の極数とイオン電流波形との関係を示
す表である。
FIG. 8 is a table showing the relationship between the number of poles of the outer electrode and the ion current waveform.

【図9】外側電極の極数とイオン電流のレベルとの関係
を示すグラフである。
FIG. 9 is a graph showing the relationship between the number of poles of the outer electrode and the level of ionic current.

【図10】外側電極の極数と失火検出精度との関係を示
すグラフである。
FIG. 10 is a graph showing the relationship between the number of poles of the outer electrode and misfire detection accuracy.

【図11】中心電極の極性と放電間隙増加量との関係を
示すグラフである。
FIG. 11 is a graph showing the relationship between the polarity of the center electrode and the amount of increase in the discharge gap.

【図12】中心電極の極性とスパークプラグ要求電圧と
の関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the polarity of the center electrode and the spark plug required voltage.

【符号の説明】[Explanation of symbols]

1 点火コイル 2 配電器 3 多極スパークプラグ 4 一次電流断続手段(失火検出用二次電圧発生手段) 5 分圧器 6 二次電圧検出回路 7 失火判別回路 32 外側電極 33 主体金具 34 絶縁碍子 35 中心電極 1 Ignition coil 2 Distributor 3 Multipolar spark plug 4 Primary current interrupting means (secondary voltage generating means for misfire detection) 5 Voltage divider 6 Secondary voltage detection circuit 7 Misfire determination circuit 32 Outer electrode 33 Main metal shell 34 Insulator 35 Center electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 点火コイルと、その一次回路に流す電流
を断続する一次電流断続手段と、前記点火コイルの二次
回路に設けたシリーズギャップと、スパークプラグとを
備えたガソリン機関の点火装置に装着される失火検出装
置であって、 多極スパークプラグと、該多極スパークプラグでの火花
放電後の所定時期に、二次回路に失火検出用二次電圧を
発生させてスパークプラグ浮遊静電容量に充電する失火
検出用二次電圧発生手段と、二次電圧の分圧を検出する
分圧器と、分圧された前記失火検出用二次電圧の減衰特
性を検出する二次電圧検出回路と、二次電圧の減衰特性
により、失火を判別する失火判別回路とからなるガソリ
ン機関の失火検出装置。
1. An ignition device for a gasoline engine including an ignition coil, a primary current interrupting device for interrupting a current flowing through a primary circuit thereof, a series gap provided in a secondary circuit of the ignition coil, and a spark plug. A misfire detection device to be mounted, comprising: a multipolar spark plug, and a secondary voltage for misfire detection generated in a secondary circuit in a secondary circuit at a predetermined time after spark discharge in the multipolar spark plug. Misfire detection secondary voltage generating means for charging the capacity, a voltage divider for detecting the voltage division of the secondary voltage, and a secondary voltage detection circuit for detecting the attenuation characteristic of the divided misfire detection secondary voltage. , A misfire detection device for a gasoline engine, which comprises a misfire discrimination circuit for discriminating misfire based on a secondary voltage attenuation characteristic.
【請求項2】 請求項1において、多極スパークプラグ
は、中心電極の先端部の外周に貴金属層を有すると共
に、外側電極の先端面に、外側電極の母材の先端面およ
び該先端面近傍の側面を覆う金属層を形成したガソリン
機関の失火検出装置。
2. The multi-pole spark plug according to claim 1, wherein the multi-electrode spark plug has a noble metal layer on the outer periphery of the tip portion of the center electrode, and the tip surface of the outer electrode and the tip surface of the base material of the outer electrode and the vicinity of the tip surface. Misfire detection device for a gasoline engine, which has a metal layer that covers the side surface of the engine.
【請求項3】 点火コイルと、その一次回路に流す電流
を断続する一次電流断続手段と、前記点火コイルの二次
回路に設けた逆流防止ダイオードと、前記点火コイルの
両端子に接続されたスパークプラグとを備えたガソリン
機関のDLI式点火装置に装着される失火検出装置であ
って、 多極スパークプラグと、該多極スパークプラグでの火花
放電後の所定時期に、二次回路に失火検出用二次電圧を
発生させてスパークプラグ浮遊静電容量に充電する失火
検出用二次電圧発生手段と、二次電圧の分圧を検出する
分圧器と、分圧された前記失火検出用二次電圧の減衰特
性を検出する二次電圧検出回路と、二次電圧の減衰特性
により、失火を判別する失火判別回路とからなるガソリ
ン機関の失火検出装置。
3. An ignition coil, a primary current interrupting device for interrupting a current flowing through the primary circuit thereof, a backflow prevention diode provided in a secondary circuit of the ignition coil, and a spark connected to both terminals of the ignition coil. A misfire detection device mounted on a DLI type ignition device of a gasoline engine including a plug, comprising: a multipolar spark plug and a misfire detection in a secondary circuit at a predetermined time after spark discharge in the multipolar spark plug. Secondary voltage generating means for generating a secondary voltage for charging to charge the spark plug floating capacitance, a voltage divider for detecting a partial voltage of the secondary voltage, and the divided secondary for detecting a misfire. A misfire detection device for a gasoline engine, which includes a secondary voltage detection circuit that detects a voltage attenuation characteristic and a misfire determination circuit that determines a misfire based on the secondary voltage attenuation characteristic.
JP4052660A 1991-09-02 1992-03-11 Misfire detection device for gasoline engine Expired - Fee Related JP2566702B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4052660A JP2566702B2 (en) 1991-09-02 1992-03-11 Misfire detection device for gasoline engine
US08/029,235 US5347855A (en) 1992-03-11 1993-03-10 Misfire detector device for use in an internal combustion engine
EP93301842A EP0560603B1 (en) 1992-03-11 1993-03-11 A misfire detector device for use in internal combustion engine
DE69310585T DE69310585T2 (en) 1992-03-11 1993-03-11 Misfire detection device for an internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22185991 1991-09-02
JP3-221859 1991-09-02
JP4052660A JP2566702B2 (en) 1991-09-02 1992-03-11 Misfire detection device for gasoline engine

Publications (2)

Publication Number Publication Date
JPH05121145A true JPH05121145A (en) 1993-05-18
JP2566702B2 JP2566702B2 (en) 1996-12-25

Family

ID=26393292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052660A Expired - Fee Related JP2566702B2 (en) 1991-09-02 1992-03-11 Misfire detection device for gasoline engine

Country Status (1)

Country Link
JP (1) JP2566702B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747595A2 (en) * 1995-06-08 1996-12-11 VOGT electronic AG Device and method for detection of ignition
US6617706B2 (en) 1998-11-09 2003-09-09 Ngk Spark Plug Co., Ltd. Ignition system
KR101024250B1 (en) * 2002-07-13 2011-03-29 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Ignition device having an electrode formed from an iridium-based alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747595A2 (en) * 1995-06-08 1996-12-11 VOGT electronic AG Device and method for detection of ignition
EP0747595A3 (en) * 1995-06-08 1998-05-20 VOGT electronic AG Device and method for detection of ignition
US6617706B2 (en) 1998-11-09 2003-09-09 Ngk Spark Plug Co., Ltd. Ignition system
KR101024250B1 (en) * 2002-07-13 2011-03-29 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Ignition device having an electrode formed from an iridium-based alloy

Also Published As

Publication number Publication date
JP2566702B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
JPH063406B2 (en) Device for detecting pressure fluctuations in the combustion chamber of an internal combustion engine
US6418785B1 (en) Misfire detecting apparatus for internal combustion engine
US5365910A (en) Misfire detector for use in internal combustion engine
EP0519588B1 (en) A misfire detector for use in an internal combustion engine
US5271268A (en) Ionic current sensing apparatus
US5347855A (en) Misfire detector device for use in an internal combustion engine
JP5375711B2 (en) Spark plug for internal combustion engine
JP2566702B2 (en) Misfire detection device for gasoline engine
US5347856A (en) Misfire detector device for use in an internal combustion engine
JP3790875B2 (en) Spark plug
JP2535700B2 (en) Misfire detection device for gasoline engine
JP3068274B2 (en) Gasoline engine misfire detector
JP2535699B2 (en) Misfire detection device for gasoline engine
JP2564070B2 (en) Misfire detection device for gasoline engine
JP3449972B2 (en) Misfire detection device for internal combustion engine
EP0627622B1 (en) An ion current detector device for use in an internal combustion engine
JP2564058B2 (en) Misfire detection device for spark ignition engine
JP3031764B2 (en) Gasoline engine misfire detector
JP3100426B2 (en) Gasoline engine ion current detector
JP2914772B2 (en) Sensor for secondary circuit of ignition circuit of internal combustion engine
JP4069487B2 (en) Spark plug and ignition / ion current detector
JPH09144641A (en) Ion current detecting circuit for internal combustion engine
US20030168050A1 (en) Inductive ignition device comprising a device for measuring an ionic current
JP2000068031A (en) Spark plug, and ignition system having ion current detection function using spark plug
JP2525971B2 (en) Misfire detection device for spark ignition engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees