JPH05118990A - Quantitative analysis method for lanthanum in fuel cell solid electrolyte - Google Patents

Quantitative analysis method for lanthanum in fuel cell solid electrolyte

Info

Publication number
JPH05118990A
JPH05118990A JP3280244A JP28024491A JPH05118990A JP H05118990 A JPH05118990 A JP H05118990A JP 3280244 A JP3280244 A JP 3280244A JP 28024491 A JP28024491 A JP 28024491A JP H05118990 A JPH05118990 A JP H05118990A
Authority
JP
Japan
Prior art keywords
lanthanum
solution
sample
solid electrolyte
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3280244A
Other languages
Japanese (ja)
Inventor
Hideo Hara
秀夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3280244A priority Critical patent/JPH05118990A/en
Publication of JPH05118990A publication Critical patent/JPH05118990A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To provide an ICP method for highly sensitively determining lanthanum in a solid electrolyte to quantitatively grasp the relation between the blending composition and characteristic of the solid electrolyte having a composition of LaSrF. CONSTITUTION:A sample is put in a pressurizing crucible, chloric acid, hydrogen fluoride and boric acid are added thereto, and heating and stirring at a determined temperature are repeated, whereby the sample is sufficiently decomposed. After this decomposed solution is cooled, a cobalt is added to the decomposed solution as a standard material, and the solution is made to a fixed quantity by adding ion exchange water. The resulting solution is used as a sample solution, and the luminous strength of lanthanum is measured by use of a high frequency induction coupling type plasma light emitting method. Thus, the lanthanum in a fuel cell solid electrolyte is quantitatively analyzed by determining the lanthanum by internal standard method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波誘導結合型プラズ
マ発光法(以下、ICP法という)による燃料電池用固
体電解質,特にLaSrFの組成式で示される固体電解
質中のランタンLaの定量分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively analyzing lanthanum La in a solid electrolyte for a fuel cell, particularly a solid electrolyte represented by a composition formula of LaSrF, by a high frequency inductively coupled plasma emission method (hereinafter referred to as ICP method). ..

【0002】[0002]

【従来の技術】一般的に固体電解質型燃料電池としては
安定化ジルコニア(YSZ)を用いたものが知られてい
る。しかし、このYSZを用いた燃料電池の動作は約1
000℃と高温であるために、使用材料には耐熱材料を
用いなければならない。そこで、電池の動作温度を下げ
るため、他の固体電解質、例えばCeO2,Bi23
を用いて700〜800℃で動作する燃料電池の開発が
進められている。しかし、これらの材料は水素雰囲気等
の還元雰囲気において還元されてしまうという欠点があ
る。
2. Description of the Related Art Generally, a solid oxide fuel cell using stabilized zirconia (YSZ) is known. However, the operation of the fuel cell using this YSZ is about 1
Due to the high temperature of 000 ° C., a heat resistant material must be used as the material used. Therefore, in order to lower the operating temperature of the cell, the development of a fuel cell that operates at 700 to 800 ° C. using another solid electrolyte such as CeO 2 or Bi 2 O 3 is under way. However, these materials have a drawback that they are reduced in a reducing atmosphere such as a hydrogen atmosphere.

【0003】このため低温(300℃〜500℃)で動
作可能な固体電解質としてフッ化ランタン(LaF3
あるいはフッ化ランタンの電気導電率を上げるため、2
価のストロンチウムSr、バリウムBa等をドープし、
La1-xx3-x(M=Sr,Ba,Ca)(x=0.
05〜0.10)という組成式を持つ材料の研究が進め
られている。
Therefore, lanthanum fluoride (LaF 3 ) is used as a solid electrolyte capable of operating at low temperatures (300 ° C. to 500 ° C.).
Or to increase the electrical conductivity of lanthanum fluoride, 2
Valent strontium Sr, barium Ba, etc. are doped,
La 1-x M x F 3-x (M = Sr, Ba, Ca) (x = 0.
Studies on materials having a composition formula of (05 to 0.10) are underway.

【0004】[0004]

【発明が解決しようとする課題】上記の固体電解質中、
LaF3にSrをドープさせたLa1-xSrx3-x(x=
0.05〜0.10)の電気導電率はLaF3と比較し
てはるかに高く、燃料電池用固体電解質として有望であ
る。しかし、LaF3,La1-xSrx3-xの材料は耐熱
性がないため、動作温度を上げるにつれてLaOF結晶
構造に変化してしまう欠点がある。又、電極界面抵抗を
下げるため、酸素極側電極の固体電解質上への形成時の
焼成温度を上げたりすると、LaF3あるいはLa1-x
x3-xと酸素極側電極中の酸素が反応し、LaOF結
晶構造に変化してしまうという問題がある。
In the above solid electrolyte,
La was doped with Sr in LaF 3 1-x Sr x F 3-x (x =
The electric conductivity of 0.05 to 0.10) is much higher than that of LaF 3 and is promising as a solid electrolyte for fuel cells. However, since the materials of LaF 3 and La 1-x Sr x F 3-x do not have heat resistance, there is a drawback that the LaOF crystal structure is changed as the operating temperature is increased. Further, in order to reduce the electrode interface resistance, if the firing temperature during formation of the oxygen electrode side electrode on the solid electrolyte is increased, LaF 3 or La 1-x S
There is a problem that r x F 3-x reacts with oxygen in the oxygen electrode side electrode to change to a LaOF crystal structure.

【0005】このようにLaSrFの組成式を持つ固体
電解質がLaOFに変化すると、体積収縮が生じて電解
質中にクラックが発生するとともに、燃料電池としての
動作が行えなくなってしまう問題がある。又、LaSr
F中のLaとSrの組成配合によっても燃料電池として
の特性が大きく左右されることが知られている。
When the solid electrolyte having the composition formula of LaSrF is changed to LaOF in this way, there is a problem that volume contraction occurs and cracks occur in the electrolyte, and the fuel cell cannot operate as a fuel cell. Also, LaSr
It is known that the composition of La and Sr in F greatly affects the characteristics of the fuel cell.

【0006】そこでLaSrFの組成式を持つ燃料電池
用固体電解質の組成配合と特性の関係を明確にかつ定量
的に把握して、品質管理及び工程管理を向上させる必要
があり、そのため上記電解質中のLaの分析方法の確立
が不可欠である。
Therefore, it is necessary to improve the quality control and the process control by clearly and quantitatively grasping the relation between the composition and composition of the solid electrolyte for a fuel cell having the composition formula of LaSrF and improving the quality control and the process control. Establishing a La analysis method is essential.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような問
題点に着目して創案されたものであって、LaSrFの
組成式を持つ燃料電池用固体電解質中のランタンを高感
度に定量するICP法を提供するものである。
The present invention was devised by focusing on such problems, and is an ICP for quantifying lanthanum in a solid electrolyte for a fuel cell having a composition formula of LaSrF with high sensitivity. It provides the law.

【0008】[0008]

【課題を解決するための手段】本発明は上記の目的を達
成するために、試料を加圧ルツボに入れて塩酸、フッ化
水素、ほう酸を加え、所定温度での加熱と撹拌とを繰り
返し行うことによって該試料を充分に分解し、この分解
液を冷却した後、分解液に標準物質としてコバルトを加
えてからイオン交換水で一定量とし、これを試料溶液と
して高周波誘導結合型プラズマ発光法を用いてランタン
の発光強度を測定し、内部標準法によってランタンを定
量することをその解決手段としている。
In order to achieve the above object, the present invention places a sample in a pressure crucible, adds hydrochloric acid, hydrogen fluoride and boric acid, and repeatedly performs heating and stirring at a predetermined temperature. By sufficiently decomposing the sample, cooling the decomposing solution, adding cobalt as a standard substance to the decomposing solution to a fixed amount with deionized water, and using this as a sample solution, a high frequency inductively coupled plasma emission method is performed. The solution is to measure the luminescence intensity of lanthanum by using it and quantify lanthanum by the internal standard method.

【0009】[0009]

【作用】かかる定量分析方法によれば、塩酸、フッ化水
素及びほう酸による加熱と撹拌を繰り返すことにより、
試料が完全に分解される。
[Operation] According to such a quantitative analysis method, by repeating heating and stirring with hydrochloric acid, hydrogen fluoride and boric acid,
The sample is completely decomposed.

【0010】そして試料溶液をICP法を用いてランタ
ンの発光強度を測定し、内部標準法で定量した際に、試
薬が負の影響を示すが、検量線作成用溶液と試料溶液中
の試薬濃度を同一にすることによって試薬の存在による
影響を抑えることができる。
When the luminescence intensity of lanthanum in the sample solution was measured by the ICP method and quantified by the internal standard method, the reagent showed a negative effect. However, the concentration of the reagent in the calibration curve preparation solution and the reagent concentration in the sample solution By making the same, it is possible to suppress the influence of the presence of the reagent.

【0011】更に合成溶液を測定した時の変動係数、回
収率がともに実用上充分に満足できる分析精度が得ら
れ、その結果、ランタンが高感度に定量されるので、こ
れにより燃料電池用電解質中の微量のランタンの分析方
法が確立されて、この電解質の組成と特性の関係を明確
にすることができる。
Furthermore, both the coefficient of variation and the recovery rate when the synthetic solution is measured are sufficiently accurate for practical use, and as a result, lanthanum can be quantified with high sensitivity. A method for the analysis of trace amounts of lanthanum has been established to clarify the relationship between the composition and properties of this electrolyte.

【0012】[0012]

【実施例】以下、本発明にかかる燃料電池用固体電解質
中のLaの分析方法の具体的な実施例を説明する。
EXAMPLES Specific examples of the method for analyzing La in the solid electrolyte for a fuel cell according to the present invention will be described below.

【0013】先ず図1のフローチャートに基づいて、本
実施例の基本的な操作手順を説明する。
First, the basic operation procedure of this embodiment will be described with reference to the flow chart of FIG.

【0014】先ずステップ101でLaSrFの組成を有
する試料0.2gを加圧ルツボ内でHCl20ml,H
F0.5ml,H3BO31gの各所定量を加え、ステッ
プ102で所定温度での加熱と撹拌を繰り返し行うことに
より、試料を分解する。分析をより高精度に行うため、
使用する試薬はホールピペット、マイクロピペットなど
で計るのが好ましい。
First, in step 101, 0.2 g of a sample having a composition of LaSrF is added to 20 ml of HCl and H in a pressure crucible.
A predetermined amount of F 0.5 ml and H 3 BO 3 1 g is added, and heating and stirring at a predetermined temperature are repeated in step 102 to decompose the sample. For more accurate analysis,
The reagents used are preferably measured with a whole pipette, a micropipette or the like.

【0015】試料の加熱条件は特に限定されないが、1
00〜250℃、好ましくは170℃の恒温槽で約1時
間行う。恒温槽から取り出した後、スターラー上で一定
時間、例えば30分間撹拌する。これらの操作を2回繰
り返すことにより、試料が完全に分解される。
The heating conditions of the sample are not particularly limited, but 1
It is carried out for about 1 hour in a constant temperature bath at 00 to 250 ° C, preferably 170 ° C. After taking it out from the constant temperature bath, it is stirred for a certain period of time, for example, 30 minutes on a stirrer. By repeating these operations twice, the sample is completely decomposed.

【0016】次にこの分解液を冷却した後、ステップ10
3で全量を200mlのメスフラスコに受ける。次にス
テップ104で分解液に標準物質としてコバルト4.0g
を加え、イオン交換水で200mlの一定量とする。こ
れをステップ105でICP法によるランタンLaの定量
分析方法における試料溶液とする。
Next, after cooling this decomposition liquid, step 10
In 3, receive the whole volume in a 200 ml volumetric flask. Next, in step 104, 4.0 g of cobalt was added to the decomposition solution as a standard substance.
And add a fixed amount of 200 ml with deionized water. This is used as a sample solution in step 105 in the quantitative analysis method of lanthanum La by the ICP method.

【0017】以下、本発明に係るICP法による固体電
解質中のランタンの定量分析方法の詳細を実施例に基づ
いて説明する。
The details of the quantitative analysis method of lanthanum in the solid electrolyte by the ICP method according to the present invention will be described below based on examples.

【0018】〔1〕 分析方法の操作手順 〔1−1 試料の分解および試料溶液調製方法〕フッ化
ストロンチウム(SrF2)とフッ化ランタン(La
3)の混合粉と焼成粉を試料として、この各試料を以
下の6通りの分解液で分解し、分解残査物を蛍光X線ス
ペクトルで調べた。
[1] Operating Procedure of Analytical Method [1-1 Sample Decomposition and Sample Solution Preparation Method] Strontium fluoride (SrF 2 ) and lanthanum fluoride (La)
The mixed powder of F 3 ) and the calcined powder were used as samples, and each sample was decomposed with the following 6 kinds of decomposition solutions, and the decomposition residue was examined by fluorescent X-ray spectrum.

【0019】(1)HCl(20ml)+HF(0.5m
l)混合分解液 (2)HNO3(20ml)+HF(0.5ml)混合分
解液 (3)HNO3(20ml)溶液 (4)HNO3(20ml)+H3BO3(1g)混合分解
液 (5)HCl(20ml)+HF(0.5ml)+H3
3(1g)混合分解液 (6)HNO3(20ml)+HF(0.5ml)+H3
3(1g)混合分解液 分解操作は、上記何れの場合も試料0.2gと分解液と
をテフロン製加圧ルツボ内に回転子とともに入れ、スタ
ーラー上で2〜3分撹拌し、170℃の恒温槽中で1時
間加熱した後、再度スターラー上で30分間撹拌する。
この操作を2回繰り返して行った。
(1) HCl (20 ml) + HF (0.5 m
l) Mixed decomposition liquid (2) HNO 3 (20 ml) + HF (0.5 ml) mixed decomposition liquid (3) HNO 3 (20 ml) solution (4) HNO 3 (20 ml) + H 3 BO 3 (1 g) mixed decomposition liquid ( 5) HCl (20 ml) + HF (0.5 ml) + H 3 B
O 3 (1 g) mixed decomposition solution (6) HNO 3 (20 ml) + HF (0.5 ml) + H 3 B
O 3 (1 g) mixed decomposition solution In the decomposition operation, in any of the above cases, 0.2 g of the sample and the decomposition solution were put into a Teflon pressure crucible together with a rotor and stirred on a stirrer for 2 to 3 minutes to 170 ° C. After heating for 1 hour in the constant temperature bath, the mixture is again stirred on the stirrer for 30 minutes.
This operation was repeated twice.

【0020】〔2〕 分析装置、測定条件および試薬 〔2−1 分析装置〕ICP発光分光装置は島津製IC
PS−1000−2型を用いた。
[2] Analyzing device, measuring conditions and reagents [2-1 Analyzing device] ICP emission spectroscopic device is IC manufactured by Shimadzu
PS-1000-2 type was used.

【0021】 〔2−2 測定条件〕測定条件を表1に示す。[2-2 Measurement Conditions] Table 1 shows the measurement conditions.

【0022】[0022]

【表1】 [Table 1]

【0023】 〔2−3 試薬〕実験に使用した試薬のリストを表2に
示す。
[2-3 Reagents] Table 2 shows a list of reagents used in the experiment.

【0024】[0024]

【表2】 [Table 2]

【0025】 〔2−4 測定方法〕ピークサーチ内部標準法とした。[2-4 Measurement Method] The peak search internal standard method was used.

【0026】〔3〕 分解試験の結果 SrF2とLaF3の混合粉を上記(5)のHCl(20
ml)+HF(0.5ml)+H3BO3(1g)混合分
解液を用いて溶解すると、図2のX線スペクトルに見ら
れるように、La及びSrの何れもほぼ溶解しているこ
とが判明した。
[3] Results of Decomposition Test A mixed powder of SrF 2 and LaF 3 was mixed with HCl (20) of the above (5).
(ml) + HF (0.5 ml) + H 3 BO 3 (1 g) mixed decomposition solution, it was found that both La and Sr were almost dissolved as shown in the X-ray spectrum of FIG. did.

【0027】更に上記焼成粉を同様に(5)のHCl
(20ml)+HF(0.5ml)+H3BO3(1g)
混合分解液を用いて溶解することにより、図3に見られ
るようにLa及びSrの何れもほぼ溶解していることが
判明した。
Further, the above calcined powder is similarly treated with HCl of (5).
(20 ml) + HF (0.5 ml) + H 3 BO 3 (1 g)
It was found that both La and Sr were almost dissolved by dissolving using the mixed decomposition solution, as shown in FIG.

【0028】尚、上記の(1)(2)(3)の各分解液
を用いて前記混合粉を分解した場合には、Srは溶解さ
れるが、Laが分解されずに残った。更に(4)(5)
(6)の各分解液を用いた場合には、LaとSrの何れ
も分解可能であることが判明した。
When the mixed powder was decomposed using each of the decomposition solutions (1), (2) and (3), Sr was dissolved but La was not decomposed and remained. Furthermore (4) (5)
It was found that both La and Sr can be decomposed when each decomposition solution of (6) is used.

【0029】又、前記焼成粉の場合には、(5)のHC
l(20ml)+HF(0.5ml)+H3BO3(1
g)混合分解液以外ではLaとSrに何れもが分解され
ずに残った。
In the case of the above-mentioned baked powder, HC of (5)
l (20 ml) + HF (0.5 ml) + H 3 BO 3 (1
g) Other than the mixed decomposition solution, both La and Sr remained without being decomposed.

【0030】以上の結果から、本実施例では試料の分解
液として、SrF2とLaF3の混合粉と焼成粉の両方を
分解することができる(5)のHCl(20ml)+H
F(0.5ml)+H3BO3(1g)混合分解液を採用
した。
From the above results, in this example, HCl (20 ml) + H of (5) capable of decomposing both the mixed powder of SrF 2 and LaF 3 and the calcined powder as the sample decomposition liquid.
A mixed decomposition solution of F (0.5 ml) + H 3 BO 3 (1 g) was adopted.

【0031】即ち、この混合分解液を使用して試料を分
解し、冷却後に200mlのメスフラスコに全量移し
て、標準物質としてコバルトCoを4.0mg加え、2
00mlの一定量として、これを試料溶液とする。
That is, a sample was decomposed using this mixed decomposition solution, and after cooling, the entire amount was transferred to a 200 ml volumetric flask, 4.0 mg of cobalt Co was added as a standard substance, and 2
A fixed amount of 00 ml is used as a sample solution.

【0032】〔4〕 実験および結果 〔4−1 分析線の選定〕ランタンの分析に最も適した
波長を選定するため、ランタンの発光強度の高い3本の
波長を選び、Sr10ppm,La1000ppm,H
3BO310000ppm,Co10ppm及びTi10
ppm溶液を用いて分析線の選定を定性的に行った。C
o,Tiは内部標準物質を選定するために実施した。そ
の結果を図4〜図6に示す。
[4] Experiments and Results [4-1 Selection of Analysis Line] In order to select the wavelength most suitable for the analysis of lanthanum, three wavelengths with high emission intensity of lanthanum were selected, and Sr10 ppm, La1000 ppm, H
3 BO 3 10000 ppm, Co 10 ppm and Ti 10
The analytical line was qualitatively selected using the ppm solution. C
o and Ti were performed to select an internal standard substance. The results are shown in FIGS.

【0033】図4は波長408.671nmの発光スペ
クトル、図5は波長398.852nmの発光スペクト
ル、図6は波長379.477nmの発光スペクトルで
あり、どの波長においても共存物質の発光スペクトルは
全てベースライン上にあって、ランタンに対して妨害し
ないことが推測される。
FIG. 4 shows the emission spectrum at a wavelength of 408.671 nm, FIG. 5 shows the emission spectrum at a wavelength of 398.852 nm, and FIG. 6 shows the emission spectrum at a wavelength of 379.477 nm. It is presumed that it is on the line and does not interfere with the lantern.

【0034】従って分析線として、ランタンの波長の優
先順位一位で感度の高い408.671nmを採用し
た。
Therefore, as the analysis line, 408.671 nm, which has the highest sensitivity in the lanthanum wavelength and has the highest sensitivity, was adopted.

【0035】 〔4−2 感度(HV)の選定〕感度(HV)とはホト
マルに印加する高電圧のことで、濃度により最適なHV
が存在する。
[4-2 Selection of Sensitivity (HV)] Sensitivity (HV) is a high voltage applied to Photomal, which is an optimum HV depending on the concentration.
Exists.

【0036】このためランタン濃度1200ppm溶液
を用いて最適なHVの選定を行った。その結果を図7〜
図9に示す。図9に示したHVが20の時に発光強度が
飽和している。HVは飽和しない限り高い方が好ましい
ので、ここでは図8に示した結果からHVとして10を
採用した。
Therefore, an optimum HV was selected using a lanthanum concentration solution of 1200 ppm. The result is shown in FIG.
It shows in FIG. When the HV shown in FIG. 9 is 20, the emission intensity is saturated. Since HV is preferably as high as possible as long as it is not saturated, 10 is adopted as HV from the result shown in FIG.

【0037】 〔4−3 内部標準物質とその波長の選定〕内部標準物
質としてイットリウムなどの希土類が一般に使用される
が、本試料のようにフッ酸を含む場合には、フッ酸とイ
ットリウムとが反応してYF3として析出する危険性が
ある。従って不純物として試料中に含まれる可能性の低
いコバルトCoを内部標準物質として採用した。このコ
バルトの分析線を選定するため、コバルトの代表的な波
長3本(228.616nm、238.892nm、2
37.862nm) のプロファイルを測定して定性的
に行った。その結果を図10〜図12に示す。図10の
波長228.616nmではコバルトの発光線のみで共
存物質は全てベースライン上にあり、コバルトに対する
妨害は観察されなかった。図11,図12では共存物質
の主成分であるLaの発光線がCoの発光線に重複して
おり、Laによる妨害が予想されるため、分析線として
不適当である。
[4-3 Selection of Internal Standard Material and Its Wavelength] Rare earths such as yttrium are generally used as the internal standard material. When hydrofluoric acid is contained as in this sample, hydrofluoric acid and yttrium are There is a risk of reacting and depositing as YF 3 . Therefore, cobalt Co, which is unlikely to be contained in the sample as an impurity, was adopted as the internal standard substance. In order to select this cobalt analysis line, three typical wavelengths of cobalt (228.616 nm, 238.892 nm, 2
(37.862 nm) profile was measured and qualitatively determined. The results are shown in FIGS. At the wavelength of 228.616 nm in FIG. 10, only the emission line of cobalt was present and all the coexisting substances were on the baseline, and no interference with cobalt was observed. In FIGS. 11 and 12, the emission line of La, which is the main component of the coexisting substance, overlaps the emission line of Co, and interference with La is expected, so it is not suitable as an analysis line.

【0038】以上の結果から、内部標準物質であるコバ
ルトの分析線として波長228.616nmを採用し
た。
From the above results, a wavelength of 228.616 nm was adopted as the analytical line of cobalt as the internal standard substance.

【0039】 〔4−4 検量線の精度〕前記試料溶液中のランタンの
濃度は800ppm〜1000ppmである。このため
ランタン濃度700〜1200ppmの範囲で検量線の
精度を確かめた。その結果を図13に示す。この図か
ら、検量線はほぼ原点を通り、相関係数は0.999
9、標準偏差は0.1549ppmと非常に良い精度を
示していることがわかる。
[4-4 Accuracy of Calibration Curve] The concentration of lanthanum in the sample solution is 800 ppm to 1000 ppm. Therefore, the accuracy of the calibration curve was confirmed in the lanthanum concentration range of 700 to 1200 ppm. The result is shown in FIG. From this figure, the calibration curve passes almost the origin and the correlation coefficient is 0.999.
9. The standard deviation is 0.1549 ppm, which shows that the accuracy is very good.

【0040】 〔4−5 共存物質の影響〕ランタン濃度1000pp
m溶液にHCl,H3BO3,Sr及び内部標準物質のC
oを各々段階的に加えて、これらの共存物質の影響を定
量的に調べた。
[4-5 Effect of Coexisting Substance] Lanthanum concentration 1000 pp
m solution, HCl, H 3 BO 3 , Sr and internal standard C
The effect of these coexisting substances was quantitatively investigated by adding o in stages.

【0041】その結果を図14〜図17に示す。これら
の影響の有無の判定はランタンの回収率(測定値×10
0/仕込み値)の±2%以内とし、図中に許容範囲とし
て破線で表示した。
The results are shown in FIGS. The lantern recovery rate (measured value x 10
0 / prepared value) within ± 2%, and the allowable range is shown by a broken line in the figure.

【0042】その結果、HCl,H3BO3,Sr及びC
oはいずれも破線で示した許容範囲内で影響のないこと
が判明した。
As a result, HCl, H 3 BO 3 , Sr and C
It was found that all o had no influence within the allowable range shown by the broken line.

【0043】 〔4−6 内部標準物質コバルトに対する共存物質の影
響〕コバルト濃度10ppm溶液にHCl,H3BO3
Sr及びLaを各々段階的に加えてその影響を定量的に
調べた。その結果を図18〜図21に示す。
[4-6 Effect of Coexisting Substance on Internal Standard Material Cobalt] HCl, H 3 BO 3 ,
Sr and La were added stepwise, and the effect was quantitatively investigated. The results are shown in FIGS.

【0044】この結果、H3BO3とSrは破線で示した
許容範囲にあり、影響はなかったが、HClとLaは添
加量が多くなると負の影響を示すことが判明した。即
ち、添加量が増すとコバルトの回収率は低下した。これ
はHCl及びLaの存在によって試料溶液の粘度が上昇
して、見掛け上の試料吸込量が減少して発光強度が低下
したためと考えられる。
As a result, it was found that H 3 BO 3 and Sr were in the permissible range shown by the broken line and had no effect, but HCl and La had a negative effect when the added amount increased. That is, as the amount of addition increased, the recovery rate of cobalt decreased. It is considered that this is because the presence of HCl and La increased the viscosity of the sample solution, and the apparent amount of sample suction was decreased to lower the emission intensity.

【0045】従って試料溶液と検量線作成用溶液中の試
薬及びLa濃度を同一にして、上記負の影響を抑えるこ
とにした。
Therefore, the concentration of the reagent and La in the sample solution and the solution for preparing the calibration curve were made the same to suppress the above negative influence.

【0046】 〔4−7 合成溶液による分析精度の検証〕上記検討し
た条件での分析精度を検証するため、合成溶液を5個調
整して実施した。表3に合成溶液の組成を、表4に検量
線作成用溶液の組成を、表5に測定結果をそれぞれ示
す。
[4-7 Verification of Analysis Accuracy Using Synthetic Solution] In order to verify the analysis accuracy under the conditions examined above, five synthetic solutions were prepared and implemented. Table 3 shows the composition of the synthetic solution, Table 4 shows the composition of the solution for preparing the calibration curve, and Table 5 shows the measurement results.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】表5から、Laの添加量が800ppmの
場合にはLaの測定値平均は799.4ppm,回収率
は99.93%、変動係数(CV)は0.22%であ
り、Laの添加量が1000ppmの場合には、Laの
測定値平均は996.8ppm,回収率は99.68
%、変動係数(CV)は0.91%と実用上十分満足出
来る精度が得られた。
From Table 5, when the amount of La added is 800 ppm, the average measured value of La is 799.4 ppm, the recovery is 99.93%, and the coefficient of variation (CV) is 0.22%. When the added amount is 1000 ppm, the average La measurement value is 996.8 ppm, and the recovery rate is 99.68.
%, The coefficient of variation (CV) was 0.91%, which was a sufficiently satisfactory accuracy for practical use.

【0051】〔5〕 考察 以上の結果から、ICP法によるLaSrFの組成式で
示される燃料電池用固体電解質中のランタンの定量分析
方法を検討することにより、次の知見が得られた。
[5] Consideration From the above results, the following findings were obtained by examining the quantitative analysis method of lanthanum in the solid electrolyte for fuel cell represented by the composition formula of LaSrF by the ICP method.

【0052】(5−1) 試料の分解方法 試料の分解液としてHCl,HF,H3BO3を採用し、
加圧ルツボを用いて加熱,撹拌を繰り返すことにより、
試料を完全に分解することが可能となった。
(5-1) Sample Decomposition Method HCl, HF, and H 3 BO 3 were adopted as sample decomposition solutions,
By repeating heating and stirring using a pressure crucible,
It was possible to completely decompose the sample.

【0053】(5−2) 分析線 発光強度及び感度の高いランタンの分析線408.67
1nmの共存元素の妨害を調べた結果、妨害ピークは見
られなかった。
(5-2) Analysis line Analysis line of lanthanum with high emission intensity and high sensitivity 408.67
As a result of examining the interference of coexisting elements of 1 nm, no interference peak was observed.

【0054】(5−3) 分解試薬の影響と抑制 分解試薬であるHClは負の干渉を示した。これはHC
lの共存により試料溶液中の粘度が上昇して試料の吸込
量が低下したことによるものと考えられるので、この影
響を抑えるため試料溶液と検量線作成用溶液中の試薬濃
度とLa濃度を同一にし、更にコバルト内部標準法を用
いて測定することにより、上記の影響を抑えることが可
能となった。
(5-3) Effect and Suppression of Decomposition Reagent HCl, which is a decomposition reagent, showed negative interference. This is HC
It is considered that this is because the viscosity of the sample solution increased due to the coexistence of 1 and the suction amount of the sample decreased, so in order to suppress this effect, the reagent concentration and La concentration in the sample solution and the calibration curve preparation solution should be the same. Furthermore, it became possible to suppress the above-mentioned influence by measuring with the cobalt internal standard method.

【0055】(5−4) 分析精度 合成溶液を5個測定した時の回収率は99.93%〜9
9.68%、変動係数は0.22%〜0.91%といず
れも実用上十分満足できる精度であった。
(5-4) Analytical accuracy The recovery rate when 5 synthetic solutions were measured was 99.93% -9.
The precision was 9.68% and the coefficient of variation was 0.22% to 0.91%, which were all sufficiently satisfactory in practical use.

【0056】[0056]

【発明の効果】本発明に係るICP法による燃料電池用
固体電解質中のランタンの分析方法によれば、加圧ルツ
ボ内で塩酸、フッ化水素、ほう酸による加熱,撹拌を繰
り返すことにより、試料をほぼ完全に分解することがで
きる。
According to the method for analyzing lanthanum in a solid electrolyte for a fuel cell by the ICP method according to the present invention, a sample is prepared by repeating heating and stirring with hydrochloric acid, hydrogen fluoride and boric acid in a pressure crucible. Can be almost completely decomposed.

【0057】そして試料溶液をICP法を用いてランタ
ンの発光強度を測定し、内部標準法で定量した際に、試
薬は負の影響を示すが、検量線作成用溶液と試料溶液中
の試薬濃度を同一にして、試薬の存在による影響を抑え
ることが可能となった。又、試料溶液をICP法によっ
て測定した時の変動係数、回収率がともに実用上充分に
満足できる分析精度が得られ、その結果LaSrF系固
体電解質中の微量のLaの分析方法が確立されて、燃料
電池用電解質の組成と特性の関係を明確にするととも
に、品質管理及び工程管理を向上させることができる。
When the luminescence intensity of lanthanum in the sample solution was measured by the ICP method and quantified by the internal standard method, the reagent showed a negative influence, but the concentration of the reagent in the calibration curve preparation solution and the sample solution It is possible to suppress the influence of the presence of the reagent by making the same. Further, both the coefficient of variation when the sample solution was measured by the ICP method and the recovery rate were sufficiently satisfactory in practical use, and as a result, a method for analyzing a trace amount of La in the LaSrF-based solid electrolyte was established. It is possible to clarify the relationship between the composition and characteristics of the fuel cell electrolyte and improve quality control and process control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる燃料電池用電解質中のランタン
の定量分析方法の基本的な操作手順を示すフローチャー
ト。
FIG. 1 is a flowchart showing a basic operation procedure of a method for quantitatively analyzing lanthanum in a fuel cell electrolyte according to the present invention.

【図2】塩酸−フッ化水素−ほう酸分解法に供した混合
粉試料の残査を示すグラフ。
FIG. 2 is a graph showing the residue of a mixed powder sample subjected to a hydrochloric acid-hydrogen fluoride-boric acid decomposition method.

【図3】塩酸−フッ化水素−ほう酸分解法に供した焼成
粉試料の残査を示すグラフ。
FIG. 3 is a graph showing the residue of a fired powder sample subjected to a hydrochloric acid-hydrogen fluoride-boric acid decomposition method.

【図4】波長408.671nmにおける各種元素の発
光スペクトルを示すグラフ。
FIG. 4 is a graph showing emission spectra of various elements at a wavelength of 408.671 nm.

【図5】波長398.852nmにおける各種元素の発
光スペクトルを示すグラフ。
FIG. 5 is a graph showing emission spectra of various elements at a wavelength of 398.852 nm.

【図6】波長379.477nmにおける各種元素の発
光スペクトルを示すグラフ。
FIG. 6 is a graph showing emission spectra of various elements at a wavelength of 379.477 nm.

【図7】波長408.671nm,ランタン濃度120
0ppm溶液を用いてHVの選定(HV5の場合)を行
ったグラフ。
FIG. 7: Wavelength 408.671 nm, lanthanum concentration 120
The graph which selected HV (in the case of HV5) using a 0 ppm solution.

【図8】波長408.671nm,ランタン濃度120
0ppm溶液を用いてHVの選定(HV10の場合)を
行ったグラフ。
FIG. 8: Wavelength 408.671 nm, lanthanum concentration 120
The graph which selected HV (in the case of HV10) using a 0 ppm solution.

【図9】波長408.671nm,ランタン濃度120
0ppm溶液を用いてHVの選定(HV20の場合)を
行ったグラフ。
FIG. 9: Wavelength 408.671 nm, lanthanum concentration 120
The graph which selected HV (in the case of HV20) using a 0 ppm solution.

【図10】分解後の試料中の各元素と内部標準物質とし
てのコバルトの波長228.616nmにおける共存物
質のプロファイルを示すグラフ。
FIG. 10 is a graph showing profiles of coexisting substances of each element in the sample after decomposition and cobalt as an internal standard substance at a wavelength of 228.616 nm.

【図11】分解後の試料中の各元素と内部標準物質とし
てのコバルトの波長238.892nmにおける共存物
質のプロファイルを示すグラフ。
FIG. 11 is a graph showing profiles of coexisting substances of each element in the sample after decomposition and cobalt as an internal standard substance at a wavelength of 238.892 nm.

【図12】分解後の試料中の各元素と内部標準物質とし
てのコバルトの波長237.862nmにおける共存物
質のプロファイルを示すグラフ。
FIG. 12 is a graph showing profiles of coexisting substances at a wavelength of 237.862 nm of each element in the sample after decomposition and cobalt as an internal standard substance.

【図13】ランタンの検量線を示すグラフ。FIG. 13 is a graph showing a calibration curve of lanthanum.

【図14】分解試薬としての塩酸の影響を示すグラフ。FIG. 14 is a graph showing the effect of hydrochloric acid as a decomposition reagent.

【図15】分解試薬としてのほう酸の影響を示すグラ
フ。
FIG. 15 is a graph showing the effect of boric acid as a decomposition reagent.

【図16】ストロンチウムの影響によるランタンの回収
率の許容範囲を定量的に示すグラフ。
FIG. 16 is a graph quantitatively showing the allowable range of the recovery rate of lanthanum due to the influence of strontium.

【図17】コバルトの影響によるランタンの回収率の許
容範囲を定量的に示すグラフ。
FIG. 17 is a graph quantitatively showing the allowable range of the recovery rate of lanthanum due to the influence of cobalt.

【図18】塩酸の影響によるコバルトの回収率の許容範
囲を定量的に示すグラフ。
FIG. 18 is a graph quantitatively showing the allowable range of the recovery rate of cobalt due to the influence of hydrochloric acid.

【図19】ほう酸の影響によるコバルトの回収率の許容
範囲を定量的に示すグラフ。
FIG. 19 is a graph quantitatively showing the allowable range of the recovery rate of cobalt due to the influence of boric acid.

【図20】ストロンチウムの影響によるコバルトの回収
率の許容範囲を定量的に示すグラフ。
FIG. 20 is a graph quantitatively showing the allowable range of the recovery rate of cobalt due to the influence of strontium.

【図21】ランタンの影響によるコバルトの回収率の許
容範囲を定量的に示すグラフ。
FIG. 21 is a graph quantitatively showing the allowable range of the recovery rate of cobalt due to the influence of lanthanum.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料を加圧ルツボに入れて塩酸、フッ化
水素、ほう酸を加え、所定温度での加熱と撹拌とを繰り
返し行うことによって該試料を充分に分解し、この分解
液を冷却した後、分解液に標準物質としてコバルトを加
えてからイオン交換水で一定量とし、これを試料溶液と
して高周波誘導結合型プラズマ発光法を用いてランタン
の発光強度を測定し、内部標準法によってランタンを定
量することを特徴とする燃料電池用固体電解質中のラン
タンの定量分析方法。
1. A sample is placed in a pressure crucible, hydrochloric acid, hydrogen fluoride and boric acid are added thereto, and the sample is sufficiently decomposed by repeating heating and stirring at a predetermined temperature, and the decomposed solution is cooled. After that, cobalt was added to the decomposition solution as a standard substance, and then a fixed amount of ion-exchanged water was used as a sample solution. A method for quantitatively analyzing lanthanum in a solid electrolyte for a fuel cell, which is characterized by quantifying.
【請求項2】 上記試料がLaSrFの組成式で示され
る固体電解質である請求項1記載の燃料電池用固体電解
質中のランタンの定量分析方法。
2. The method for quantitatively analyzing lanthanum in a solid electrolyte for a fuel cell according to claim 1, wherein the sample is a solid electrolyte represented by a composition formula of LaSrF.
JP3280244A 1991-10-28 1991-10-28 Quantitative analysis method for lanthanum in fuel cell solid electrolyte Pending JPH05118990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280244A JPH05118990A (en) 1991-10-28 1991-10-28 Quantitative analysis method for lanthanum in fuel cell solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280244A JPH05118990A (en) 1991-10-28 1991-10-28 Quantitative analysis method for lanthanum in fuel cell solid electrolyte

Publications (1)

Publication Number Publication Date
JPH05118990A true JPH05118990A (en) 1993-05-14

Family

ID=17622309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280244A Pending JPH05118990A (en) 1991-10-28 1991-10-28 Quantitative analysis method for lanthanum in fuel cell solid electrolyte

Country Status (1)

Country Link
JP (1) JPH05118990A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370242C (en) * 2003-12-30 2008-02-20 中国洛阳浮法玻璃集团有限责任公司 Process for simultaneous determination of stained element content in gray glass utilizing plasma emission spectrometer
CN105866102A (en) * 2016-03-28 2016-08-17 超威电源有限公司 Method for determining content of lanthanum element in lead or lead alloy through plasma emission spectroscopy
CN109540874A (en) * 2018-12-14 2019-03-29 蜂巢能源科技有限公司 The method for detecting inorganic element content in the sample of lithium lanthanum zirconium oxygen type solid electrolyte

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370242C (en) * 2003-12-30 2008-02-20 中国洛阳浮法玻璃集团有限责任公司 Process for simultaneous determination of stained element content in gray glass utilizing plasma emission spectrometer
CN105866102A (en) * 2016-03-28 2016-08-17 超威电源有限公司 Method for determining content of lanthanum element in lead or lead alloy through plasma emission spectroscopy
CN109540874A (en) * 2018-12-14 2019-03-29 蜂巢能源科技有限公司 The method for detecting inorganic element content in the sample of lithium lanthanum zirconium oxygen type solid electrolyte

Similar Documents

Publication Publication Date Title
EP2495551A1 (en) Method for analyzing and detecting calcium element in ore
CN109596699B (en) Rare earth single element solution standard substance and preparation thereof
CN100498309C (en) Method for analyzing metal content in catalytic cracking catalyst through X ray fluorescence method
Bieger et al. An Optical In‐Situ Method to Study Redox‐Kinetics in SrTiO3
JPH05118990A (en) Quantitative analysis method for lanthanum in fuel cell solid electrolyte
KR20230007137A (en) Vanadium redox flow battery charge/discharge monitoring device and real-time measuring method
RU2696011C1 (en) Method of determining blood content of rare-earth elements: yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium by mass spectrometry with inductively coupled plasma
JP2012145375A (en) Composition analysis method for multicomponent ceramic
Rodewald et al. The Effect of the Oxygen Exchange at Electrodes on the High-Voltage Electrocoloration of Fe-Doped SrTiO 3 Single Crystals: A Combined SIMS and Microelectrode Impedance Study
CN1156690C (en) Method for determining content of Pt, Eu and Ce elements in reformed catalyst
Rivoldini et al. Inductively coupled plasma mass spectrometric determination of low-level rare earth elements in rocks using potassium-based fluxes for sample decomposition
JP4112703B2 (en) Method for estimating the sulfated ash content of lubricating oils
CN103353453A (en) Inductively coupled plasma-atomic emission spectrometry (ICP-AES) method for testing chemical components of blue phosphors of plasma display panel (PDP)
Matschat et al. High purity metals as primary calibration materials for elemental analysis-their importance and their certification
Kurita et al. Measuring apparatus for hydrogen permeation using oxide proton conductor
Dixit et al. An XRF method for determination of common rare earth impurities in high purity yttrium oxide
JPH0599850A (en) Quantitative analysis method of bismuth within electrode
Hołyńska et al. A comparison of the performance of a fundamental parameter method for analysis of total reflection X-ray fluorescence spectra and determination of trace elements, versus an empirical quantification procedure
JPH05133898A (en) Method for quantitatively analyzing chromium in electrode
JPH0599851A (en) Quantitative analysis method of titanium within electrode
Wah Fong et al. Multi-elements (aluminium, copper, magnesium, manganese, selenium and zinc) determination in serum by dynamic reaction cell-inductively coupled plasma-mass spectrometry
LU504019B1 (en) Method for determining contents of major elements, trace elements and rare earth elements in cobalt-rich crusts and polymetallic nodules
Skeen et al. Computerized spectrographic data for two new USGS rocks, AMH-1 and DTS-2
Wang et al. In-situ electrothermal fluorination-assisted matrix removal, slurry sampling, graphite furnace atomic absorption spectrometry for the determination of trace-level chromium, cobalt and vanadium in zirconium dioxide powder
RU2292036C2 (en) Method of preparing samples to determine boron in uranium hexafluoride by atomic-emission spectroscopy technique