JPH05118703A - Underground heat exchanger - Google Patents

Underground heat exchanger

Info

Publication number
JPH05118703A
JPH05118703A JP28672291A JP28672291A JPH05118703A JP H05118703 A JPH05118703 A JP H05118703A JP 28672291 A JP28672291 A JP 28672291A JP 28672291 A JP28672291 A JP 28672291A JP H05118703 A JPH05118703 A JP H05118703A
Authority
JP
Japan
Prior art keywords
chamber
pipe
underground
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28672291A
Other languages
Japanese (ja)
Inventor
Junji Nishioka
岡 純 二 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Original Assignee
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc filed Critical Hokkaido Electric Power Co Inc
Priority to JP28672291A priority Critical patent/JPH05118703A/en
Publication of JPH05118703A publication Critical patent/JPH05118703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Air Conditioning (AREA)

Abstract

PURPOSE:To improve heat exchange efficiency compared with a case of a single chamber, and hence miniaturize the heat exchanger by dividing vertically an underground pipe buried vertically in the ground with partition plates into a plurality of chambers, and communicating gas phase regions in each chamber and liquid phase regions with refrigerant pipes. CONSTITUTION:An underground heat exchanger 10 is constructed by dividing an underground pipe 11 buried vertically in the ground with a partition plate 12 into upper stage and lower stage chambers 15 and 16. There is disposed in the upper stage chamber 15 a first fluid refrigerator pipe 17 for supplying a fluid refrigerant such as fluorocarbon from the outside of the ground 25 to the lower part 27 of the upper stage chamber 15. Further, there is interconnected a first gas refrigerant pipe 22 to the upper part 26 of the upper stage chamber 15 for discharging the gas refrigerant to the outside. In contrast, there are disposed in the lower stage chamber 16 a second fluid refrigerant pipe 18 serving to communicate the upper stage chamber 15 and the lower part 29 of the lower stage chamber 16 with each other and a second gas refrigerant pipe 23 serving to communicate the upper part 26 of the upper stage chamber 15 and the upper part 28 of the lower stage chamber 16. The fluid refrigerant in each Chamber 15, 16 is heat and evaporated with underground heat, the gaseous refrigerant is taken out to the outside for using for heating and so on.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は地中熱採取用の地中熱交
換器に関する。
FIELD OF THE INVENTION The present invention relates to an underground heat exchanger for extracting underground heat.

【0002】[0002]

【従来の技術】従来から、地中熱採取用の地中熱交換器
が知られている。この地中熱交換器は、地中に地中管を
埋設し、この地中管内で例えばフロン等の冷媒を循環さ
せて地中熱を採取するものである。
2. Description of the Related Art Conventionally, underground heat exchangers for extracting underground heat have been known. In this underground heat exchanger, an underground pipe is buried in the ground, and a refrigerant such as CFC is circulated in the underground pipe to collect underground heat.

【0003】このような地中熱交換器は、ヒートポンプ
型空調設備の熱交換器として用いられたり、ヒートパイ
プとして用いられたりしており、自然エネルギの有効利
用に大きな役割を果たしている。
Such an underground heat exchanger is used as a heat exchanger of a heat pump type air conditioner or a heat pipe, and plays a great role in effectively utilizing natural energy.

【0004】[0004]

【発明が解決しようとする課題】従来の地中熱交換器に
おいて、地中から多量に地中熱を採取する場合、地中熱
交換器を大型にして地中熱交換器の表面積を大きくして
対処している。しかしながら、このように地中熱交換器
を大型にすると、冷媒の気化ガスの過熱度が増大した
り、設備容量が過剰になってしまう。
In the conventional ground heat exchanger, when a large amount of ground heat is extracted from the ground, the ground heat exchanger is enlarged to increase the surface area of the ground heat exchanger. Are being dealt with. However, when the size of the underground heat exchanger is increased as described above, the degree of superheat of the vaporized gas of the refrigerant is increased and the equipment capacity is excessive.

【0005】本発明はこのような点を考慮してなされた
ものであり、熱交換効率の増大を図り、全体として小型
化を図ることができる地中熱交換器を提供することを目
的とする。
The present invention has been made in consideration of the above points, and an object thereof is to provide an underground heat exchanger capable of increasing the heat exchange efficiency and downsizing as a whole. ..

【0006】[0006]

【課題を解決するための手段】本発明は、地中に垂直に
埋設された地中管と、この地中管内に設けられ地中管内
を上下方向に複数の室に区画する区画板とを備え、各室
に気相領域、および液相領域を形成し、各室の気相領域
に外方または他の室の気相領域と連通する気体冷媒管を
設け、各室の液相領域に外方または他の室の液相領域と
連通する液体冷媒管を設けたことを特徴とする地中熱交
換器である。
DISCLOSURE OF THE INVENTION The present invention comprises an underground pipe vertically buried in the ground and a partition plate which is provided in the underground pipe and vertically divides the underground pipe into a plurality of chambers. The gas phase region and the liquid phase region are formed in each chamber, and the gas refrigerant pipe communicating with the gas phase region of the outside or another chamber is provided in the gas phase region of each chamber, and the liquid phase region of each chamber is provided. The underground heat exchanger is characterized in that a liquid refrigerant pipe is provided which communicates with a liquid phase region of the outside or another chamber.

【0007】[0007]

【作用】各室の液相領域に液体冷媒管を介して液体冷媒
が供給され、各室の液体冷媒は地中熱によって加熱され
境界領域を経て気体冷媒となって上昇し、この気体冷媒
はその後気体冷媒管から外方または他の室の気相領域に
流出する。
The liquid coolant is supplied to the liquid phase region of each chamber through the liquid coolant pipe, and the liquid coolant in each chamber is heated by the underground heat and rises as a gas coolant through the boundary region. After that, it flows out from the gas refrigerant pipe to the gas phase region of the outside or another chamber.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1は本発明による地中熱交換器の一実施
例を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of an underground heat exchanger according to the present invention.

【0009】図1において、地中熱交換器10は、地面
25中に垂直方向に埋設された地中管11と、地中管1
1内に設けられ地中管11内を上段室15と下段室16
とに区画する区画板12とを備えている。また上段室1
5内には、地面25の外方から例えばフロンのような液
体冷媒を上段室15の下方部27に供給する第1液体冷
媒管17が配設され、さらに上端室15の上方部26に
は気体冷媒が外方へ放出される第1気体冷媒管22が接
続されている。
In FIG. 1, an underground heat exchanger 10 includes an underground pipe 11 vertically embedded in a ground 25 and an underground pipe 1.
1 is provided in the inside of the underground pipe 11 and the upper chamber 15 and the lower chamber 16
And a partition plate 12 for partitioning into. Upper room 1
A first liquid refrigerant pipe 17 for supplying a liquid refrigerant such as chlorofluorocarbon to the lower portion 27 of the upper chamber 15 from the outside of the ground surface 25 is arranged in the inside of 5, and the upper portion 26 of the upper end chamber 15 is further provided in the upper portion 26. A first gas refrigerant pipe 22 is connected to which the gas refrigerant is discharged outward.

【0010】また、下段室16には、上段室15と下段
室16の下方部29とを連通する第2液体冷媒管18が
配設されている。第2液体冷媒管18は区画板12を貫
通するとともに、その上端18aは上段室15の略中央
部の地中管11内壁近傍に開口している。さらに、上段
室15の上方部26と下段室16の上方部28との間
は、区画板12を貫通する第2気体冷媒管23によって
連通されている。
The lower chamber 16 is provided with a second liquid refrigerant pipe 18 which connects the upper chamber 15 and a lower portion 29 of the lower chamber 16. The second liquid refrigerant pipe 18 penetrates the partition plate 12, and its upper end 18 a opens in the vicinity of the inner wall of the underground pipe 11 in the substantially central portion of the upper chamber 15. Further, the upper part 26 of the upper chamber 15 and the upper part 28 of the lower chamber 16 are connected by a second gas refrigerant pipe 23 penetrating the partition plate 12.

【0011】なお、運転中、上段室15および下段室1
6内は、いずれも下方部27,29の液相領域と上方部
26,28の気相領域に分けられ、液相領域と気相領域
との中間部分は、境界領域19,20となっている。ま
た、第2液体冷媒管18の上端18aが開口する部分
は、地中管11の内壁近傍のため液相領域となってい
る。
During operation, the upper chamber 15 and the lower chamber 1
The inside of 6 is divided into a liquid phase region of the lower parts 27 and 29 and a gas phase region of the upper parts 26 and 28, and the intermediate portion between the liquid phase region and the gas phase region becomes boundary regions 19 and 20. There is. The portion where the upper end 18 a of the second liquid refrigerant pipe 18 is open is a liquid phase region because it is near the inner wall of the underground pipe 11.

【0012】次にこのような構成からなる実施例の作用
について説明する。
Next, the operation of the embodiment constructed as above will be described.

【0013】まず、第1液体冷媒管17を通って液体冷
媒が、外方から上段室15の下方部(液相領域)27に
供給される。液体冷媒は、地中熱により加熱されて沸騰
しながら上昇する。この間、冷媒は境界領域19を通過
し、境界領域の大きな熱伝達率で地中熱により加熱され
る。このため、地中熱を効率良く採取することができ
る。沸騰した後の気体冷媒は、その後上方部(気相領
域)26から第1気体冷媒管22を経て外方へ排出され
る。
First, the liquid refrigerant is supplied to the lower portion (liquid phase region) 27 of the upper chamber 15 from the outside through the first liquid refrigerant pipe 17. The liquid refrigerant is heated by the underground heat and rises while boiling. During this time, the refrigerant passes through the boundary region 19 and is heated by the underground heat with a large heat transfer coefficient in the boundary region. Therefore, underground heat can be efficiently collected. The gas refrigerant that has boiled is then discharged from the upper portion (gas phase region) 26 through the first gas refrigerant pipe 22 to the outside.

【0014】同時に上段室15内の液体冷媒は、液相領
域に上端18aが開口する第2液体冷媒管18を通って
下段室16の下方部(液相領域)29に供給される。下
段室16の下方部29に供給された液体冷媒は、上段室
15内の液体冷媒と同様に境界領域20において大きな
熱伝達率で地中熱により加熱される。下段室16内で沸
騰した後の気体冷媒は、その後上方部(気相領域)28
から第2気体冷媒23によって上段室15の上方部26
に送られ、上段室15内の気体冷媒と合流して第1気体
冷媒管23から外方へ排出される。
At the same time, the liquid refrigerant in the upper chamber 15 is supplied to the lower portion (liquid phase region) 29 of the lower chamber 16 through the second liquid refrigerant pipe 18 having the upper end 18a opening in the liquid phase region. The liquid refrigerant supplied to the lower portion 29 of the lower chamber 16 is heated by the underground heat with a large heat transfer coefficient in the boundary region 20, similarly to the liquid refrigerant in the upper chamber 15. The gas refrigerant after boiling in the lower chamber 16 is then in the upper part (gas phase region) 28.
From the upper part 26 of the upper chamber 15 by the second gas refrigerant 23
Is discharged to the outside through the first gas refrigerant pipe 23 by joining with the gas refrigerant in the upper chamber 15.

【0015】以上説明したように、本実施例によれば、
地中管11内を区画板12によって上下2つの室15,
16に区画し、上段室15および下段室16の各々に熱
伝達率の高い境界領域19,20を形成したので、単一
室の場合に比較して熱交換効率を向上させることができ
る。
As described above, according to this embodiment,
A partition plate 12 is provided inside the underground pipe 11 to form two chambers 15 above and below,
Since the boundary regions 19 and 20 having high heat transfer rates are formed in each of the upper chamber 15 and the lower chamber 16 by partitioning into 16, the heat exchange efficiency can be improved as compared with the case of a single chamber.

【0016】なお、上記実施例において、地中管11内
を上段室15と下段室16との2つに区画する例を示し
たが、これに限らず3つ以上の室に区画しても良い。ま
た、上段室15の液相領域27と下段室16の液相領域
29を第2液体冷媒18で接続し、上段室15の気相領
域26と下段室16の気相領域28を第2気体冷媒管2
3により接続した例を示したが、下段室16の液相領域
29に直接外方から液体冷媒を供給するとともに、下段
室16の気相領域28から直接外方へ気体冷媒を放出し
てもよい。
In the above embodiment, the underground pipe 11 is divided into the upper chamber 15 and the lower chamber 16 by way of example, but the present invention is not limited to this, and the underground pipe 11 may be divided into three or more chambers. good. Further, the liquid phase region 27 of the upper chamber 15 and the liquid phase region 29 of the lower chamber 16 are connected by the second liquid refrigerant 18, and the gas phase region 26 of the upper chamber 15 and the gas phase region 28 of the lower chamber 16 are connected to the second gas. Refrigerant pipe 2
3 shows an example in which the liquid refrigerant is directly supplied to the liquid phase region 29 of the lower chamber 16 from the outside, and the gas refrigerant is directly discharged from the gas phase region 28 of the lower chamber 16 to the outside. Good.

【0017】次に本発明の応用例について図2により説
明する。図2において、地面25中に、本発明による地
中熱交換器10が並列に2台埋設されている。2台の地
中熱交換器10には圧縮機31、凝縮器32および膨張
弁33が順次接続され、このようにして空調設備30が
構成されている。
Next, an application example of the present invention will be described with reference to FIG. In FIG. 2, two underground heat exchangers 10 according to the present invention are embedded in parallel in the ground 25. A compressor 31, a condenser 32, and an expansion valve 33 are sequentially connected to the two underground heat exchangers 10, and the air conditioning equipment 30 is configured in this manner.

【0018】この空調設備30において、圧縮機31に
よって加熱された気体冷媒は凝縮器32に入り、室内を
暖房して液化する。その後、液体冷媒は膨張弁33によ
って断熱的に絞られ、地中熱交換器10内に入る。地中
熱交換器10内において、前述のように地中熱により加
熱されて沸騰した気体冷媒は、その後圧縮機31に入
り、上述の作用が繰返される。
In this air conditioner 30, the gas refrigerant heated by the compressor 31 enters the condenser 32 and heats the room to liquefy it. After that, the liquid refrigerant is adiabatically throttled by the expansion valve 33 and enters the underground heat exchanger 10. In the underground heat exchanger 10, the gas refrigerant heated and boiled by the underground heat as described above enters the compressor 31 and the above-described operation is repeated.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
各室に供給された液体冷媒は、各々地中熱によって加熱
され、熱伝達率の高い境界領域を経て気体冷媒となって
上昇するので、単一の室の場合に比較して熱交換効率を
向上させることができる。このため、地中熱交換器の小
型化を図ることができる。
As described above, according to the present invention,
The liquid refrigerant supplied to each chamber is heated by the underground heat and rises as a gas refrigerant through the boundary region having a high heat transfer coefficient, so that the heat exchange efficiency is higher than that in the case of a single chamber. Can be improved. Therefore, it is possible to reduce the size of the underground heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による地中熱交換器の一実施例を示す概
略系統図。
FIG. 1 is a schematic system diagram showing an embodiment of an underground heat exchanger according to the present invention.

【図2】本発明の応用例を示す概略系統図。FIG. 2 is a schematic system diagram showing an application example of the present invention.

【符号の説明】[Explanation of symbols]

10 地中熱交換器 11 地中管 12 区画板 15 上段室 16 下段室 17 第1液体冷媒管 18 第2液体冷媒管 19 境界領域 20 境界領域 22 第1気体冷媒管 23 第2気体冷媒管 10 underground heat exchanger 11 underground pipe 12 partition plate 15 upper chamber 16 lower chamber 17 first liquid refrigerant pipe 18 second liquid refrigerant pipe 19 boundary region 20 boundary region 22 first gas refrigerant pipe 23 second gas refrigerant pipe 23

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】地中に垂直に埋設された地中管と、この地
中管内に設けられ地中管内を上下方向に複数の室に区画
する区画板とを備え、各室に冷媒の気相領域、境界領域
および液相領域を形成し、各室の気相領域に外方または
他の室の気相領域と連通する気体冷媒管を設け、各室の
液相領域に外方または他の室の液相領域と連通する液体
冷媒管を設けたことを特徴とする地中熱交換器。
1. An underground pipe vertically buried in the ground, and a partition plate provided in the underground pipe for vertically partitioning the interior of the underground pipe into a plurality of chambers. Forming a phase region, a boundary region and a liquid phase region, providing a gas refrigerant pipe communicating with the gas phase region of each chamber to the outside or the gas phase region of another chamber, and to the outside or other of the liquid phase region of each chamber An underground heat exchanger characterized in that a liquid refrigerant pipe communicating with the liquid phase region of the chamber is provided.
JP28672291A 1991-10-31 1991-10-31 Underground heat exchanger Pending JPH05118703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28672291A JPH05118703A (en) 1991-10-31 1991-10-31 Underground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28672291A JPH05118703A (en) 1991-10-31 1991-10-31 Underground heat exchanger

Publications (1)

Publication Number Publication Date
JPH05118703A true JPH05118703A (en) 1993-05-14

Family

ID=17708169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28672291A Pending JPH05118703A (en) 1991-10-31 1991-10-31 Underground heat exchanger

Country Status (1)

Country Link
JP (1) JPH05118703A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116253A (en) * 1984-11-13 1986-06-03 株式会社 前川製作所 Heat pump or cooling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116253A (en) * 1984-11-13 1986-06-03 株式会社 前川製作所 Heat pump or cooling device

Similar Documents

Publication Publication Date Title
JP4123829B2 (en) Refrigeration cycle equipment
EP0998651B1 (en) Method and apparatus for applying dual centrifugal compressors to a refrigeration chiller unit
US6672082B1 (en) Heat pump and dehumidifying device
US4516407A (en) Refrigerating apparatus
JP2000249479A (en) Heat exchanger
US20040226686A1 (en) Heat pump and dehumidifying air-conditioning apparatus
JPH03211377A (en) Heat exchanger for cooling and heating device
JP2000205735A (en) Refrigerator
US3009335A (en) Air conditioning apparatus
JPH05118703A (en) Underground heat exchanger
JPH05118700A (en) Heat pump type air-conditioner
US20040118133A1 (en) Heat pump and dehumidifying air-conditioning apparatus
JPS6353456B2 (en)
JP3437302B2 (en) Vertical shell and tube heat exchanger
JPS5818061A (en) Refrigerator
SU1774142A1 (en) Heat-condensation method
JPS5913573Y2 (en) Heat pump air conditioner
JPS6023759A (en) Energy conserving type refrigerator
JPS586226Y2 (en) Air conditioning equipment
JPH0476391A (en) Liquid receiving device for air conditioning
JPS5829396Y2 (en) Air conditioning equipment
JP2716484B2 (en) Heat transfer device
JPH10227537A (en) Absorption refrigerator
JPS5924930Y2 (en) air conditioner
CN113465234A (en) Heat exchanger and refrigerating system