JPH05112654A - Producti0n of water-containing gelatinous polymer particle and water-absorbing resin - Google Patents

Producti0n of water-containing gelatinous polymer particle and water-absorbing resin

Info

Publication number
JPH05112654A
JPH05112654A JP4090780A JP9078092A JPH05112654A JP H05112654 A JPH05112654 A JP H05112654A JP 4090780 A JP4090780 A JP 4090780A JP 9078092 A JP9078092 A JP 9078092A JP H05112654 A JPH05112654 A JP H05112654A
Authority
JP
Japan
Prior art keywords
hydrogel polymer
water
producing
polymer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4090780A
Other languages
Japanese (ja)
Other versions
JP3175790B2 (en
Inventor
Yoshio Irie
好夫 入江
Takumi Hatsuda
卓己 初田
Koichi Yonemura
耕一 米村
Kazumasa Kimura
和正 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP09078092A priority Critical patent/JP3175790B2/en
Publication of JPH05112654A publication Critical patent/JPH05112654A/en
Application granted granted Critical
Publication of JP3175790B2 publication Critical patent/JP3175790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • B29B7/186Rotors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain water-containing gelatinous polymer particles having high water-absorption ratio and low content of water-soluble component by applying a load on a water-containing gelatinous polymer having a cross-linked structure in a vessel under heating and repeatedly applying shearing force to the polymer. CONSTITUTION:A water-containing gelatinous polymer having cross-linked structure is heated at 40-110 deg.C in a vessel and a shearing force is repeatedly applied to the polymer under a load of 0.01-1.5kg/cm<2> to obtain the objective water-containing gelatinous polymer particles. The above vessel is preferably a kneader having a plurality of rotary stirring shafts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒子状含水ゲル状重合
体および吸水性樹脂の製造方法に関する。詳しくは、特
定温度の架橋構造を有する含水ゲル状重合体に特定範囲
の荷重をかけながら、繰り返し剪断力をかけることを特
徴とする粒子状含水ゲル状重合体の製造方法に関する。
さらにこの粒子状含水ゲル状重合体を乾燥して吸水性樹
脂を製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a particulate hydrogel polymer and a water absorbent resin. More specifically, the present invention relates to a method for producing a particulate hydrous gel polymer, which comprises repeatedly applying a shearing force to a hydrogel polymer having a crosslinked structure at a specific temperature while applying a load in a specific range.
Further, the present invention relates to a method for producing a water-absorbent resin by drying the particulate hydrogel polymer.

【0002】[0002]

【従来の技術】吸水性樹脂としては、架橋ポリアクリル
酸塩、アクリル酸エステル−酢酸ビニル共重合体のケン
化物、架橋ポリビニルアルコール変成物、架橋イソブチ
レン−無水マレイン酸共重合体、澱粉−アクリル酸グラ
フト重合物等が知られており、生理用ナプキン、紙おむ
つ等の衛生用吸収剤あるいは農園芸用分野、土木業分野
において保水剤、脱水剤等の広い用途に応用されてい
る。
Water-absorbent resins include crosslinked polyacrylic acid salts, saponified acrylic acid ester-vinyl acetate copolymers, crosslinked polyvinyl alcohol modified products, crosslinked isobutylene-maleic anhydride copolymers, starch-acrylic acid. Graft polymer and the like are known, and are widely applied to sanitary napkins, sanitary absorbents such as paper diapers, or water retention agents, dehydrating agents and the like in the fields of agriculture and horticulture and the field of civil engineering.

【0003】これらの吸水性樹脂の製法としては、逆相
懸濁重合法として、たとえば特開昭56-161,408号、同57
-94,011 号、同57-158,209号および同57-198,714号に記
載の方法が知られており、また、水溶液重合法として、
たとえば特開昭57-34,101 号、特公昭48-42,466 号、特
開昭58-49,714 号、特公昭59-37,003 号、USP 4,286,08
2 およびUSP 4,625,001 に記載されている方法が知られ
ている。
As a method for producing these water-absorbent resins, a reverse-phase suspension polymerization method is disclosed, for example, in JP-A-56-161408 and JP-A-56-161.
-94,011, No. 57-158,209 and No. 57-198,714 known methods, also, as an aqueous solution polymerization method,
For example, JP-A-57-34,101, JP-B-48-42,466, JP-A-58-49,714, JP-B-59-37,003, USP 4,286,08
2 and the method described in USP 4,625,001 are known.

【0004】しかし、逆相懸濁重合法は、有機溶媒を使
用するので、作業環境が悪くなるばかりでなく引火爆発
の危険性があり、そのための対策を講じなければなら
ず、有機溶媒の費用ならびにその除去費用と併せてコス
ト高となる。また、この有機溶媒が製品中に微量残存す
るので、これを完全に除去するにはさらにコスト高とな
る。さらに、逆相懸濁重合法で得られる吸水性樹脂は球
状でしかも粒径が小さいので、たとえば紙オムツ等に使
用した場合、パルプ等の繊維状の吸収コア成分に保持さ
れず脱落しやすい上に、取扱いも不便である。
However, since the reversed phase suspension polymerization method uses an organic solvent, not only the working environment is deteriorated but also there is a risk of ignition and explosion. In addition, the cost is high in addition to the cost for removing it. Further, since a small amount of this organic solvent remains in the product, it is more costly to completely remove it. Furthermore, since the water-absorbent resin obtained by the reverse phase suspension polymerization method has a spherical shape and a small particle size, when it is used in, for example, a paper diaper, it is not retained by a fibrous absorbent core component such as pulp and easily falls off. Moreover, handling is inconvenient.

【0005】一方、水溶液重合法では前記のごとき問題
点はなく、特開昭57-34,101 号およびUSP 4,625,001 に
開示されている方法が知られている。特開昭57-34,101
号およびUSP 4,625,001 に記載されている方法は、水溶
液重合時に架橋構造を形成して含水ゲル状重合体となる
単量体の水溶液および重合開始剤を、攪拌翼を備えた容
器内で、重合の進行に伴なって生成する含水ゲル状重合
体を該攪拌軸の回転による攪拌翼の剪断力により細分化
しながらラジカル水溶液重合を行なうことよりなる架橋
重合体の製造方法である。これらの製造方法によれば、
作業性が極めて良好であるばかりでなく、分子中に架橋
構造を有する細分化された含水ゲル状重合体が生産性良
く製造できるという利点がある。しかしながら、このよ
うな方法においても、吸水倍率が高く、水可溶分が少な
い吸水性樹脂は、生産性が低くなる場合があった。
On the other hand, the aqueous solution polymerization method does not have the above-mentioned problems, and the methods disclosed in JP-A-57-34,101 and USP 4,625,001 are known. JP-A-57-34,101
The method described in U.S. Pat. No. 4,625,001 is a method of polymerizing an aqueous solution of a monomer that forms a crosslinked structure during aqueous solution polymerization to form a hydrogel polymer and a polymerization initiator in a container equipped with a stirring blade. It is a method for producing a crosslinked polymer, which comprises carrying out radical aqueous solution polymerization while subdividing a hydrous gel-like polymer produced as it progresses by the shearing force of a stirring blade caused by rotation of the stirring shaft. According to these manufacturing methods,
Not only the workability is extremely good, but also a finely divided hydrogel polymer having a crosslinked structure in the molecule can be produced with high productivity. However, even in such a method, a water-absorbent resin having a high water absorption capacity and a low water-soluble content may have low productivity.

【0006】架橋密度を下げることによって吸水倍率が
上がることは、当業者においてよく知られていることで
あり、また架橋密度を下げるという作業をして吸水性樹
脂を製造した場合に、水可溶分が増すということも知ら
れている。水可溶分は、吸水性樹脂が、水、尿、体液等
の被吸収液体と接触してヒドロゲル構造を形成した際
に、そこから浸出されてしまう。このように被吸収液体
によって抽出される水可溶分は、吸水性樹脂の吸水倍率
を低下させるばかりでなく、吸水性樹脂の劣化を促進す
る。また、そのヌルつきのために不快感を与えたり、被
吸収液体を汚染する等の好ましくない状況をつくり出す
のである。
It is well known to those skilled in the art that the water absorption capacity is increased by decreasing the crosslink density, and when the water-absorbent resin is manufactured by the work of decreasing the crosslink density, it is soluble in water. It is also known that the minutes increase. The water-soluble component is leached from the water-absorbent resin when it contacts a liquid to be absorbed such as water, urine or body fluid to form a hydrogel structure. Thus, the water-soluble component extracted by the liquid to be absorbed not only lowers the water absorption capacity of the water absorbent resin, but also accelerates the deterioration of the water absorbent resin. In addition, unpleasant sensation is caused due to the sliminess, and an unfavorable situation such as contaminating the liquid to be absorbed is created.

【0007】したがって、吸水倍率が高く、しかも水可
溶分の少ない吸水性樹脂の製造方法が望まれていた。
Therefore, there has been a demand for a method for producing a water absorbent resin having a high water absorption capacity and a low water-soluble content.

【0008】USP 4,654,039 や特開平1-144,404号で
は、遊離酸型あるいは特定の中和率の単量体を水溶液重
合して吸水倍率が高く、水可溶分の少ない吸水性樹脂の
製造方法を提案している。しかしながら、これらの製造
方法は後中和が必要であったり、操作が繁雑で生産性が
低かったり、また重合条件に制約があったりした。
US Pat. No. 4,654,039 and Japanese Patent Laid-Open No. 1-144,404 describe a method for producing a water-absorbent resin having a high water absorption capacity and a low water-soluble content by polymerizing a free acid type or a monomer having a specific neutralization ratio in an aqueous solution. is suggesting. However, these production methods require post-neutralization, complicated operations and low productivity, and restrictions on polymerization conditions.

【0009】一方、重合により得られた含水ゲル状重合
体は、一般に、乾燥工程を経て粉砕した後、粉末状の製
品として市販される。従来このような含水ゲル状重合体
を効率的に乾燥するために、含水ゲル状重合体の表面積
をできるだけ大きくする工夫がなされてきた。例えば、
含水ゲル状重合体を多孔板より押し出し破砕する方法
(特公昭54-32,176 号、特開昭50-136,348号等)が知ら
れているが、従来公知の方法では、細かく解砕され押し
出された含水ゲル状重合体が再付着し、ひも状になった
りして粒子状の含水ゲル状重合体を得ることができなか
った。
On the other hand, the hydrogel polymer obtained by polymerization is generally marketed as a powdery product after being pulverized through a drying step. Conventionally, in order to efficiently dry such a hydrous gel polymer, measures have been taken to increase the surface area of the hydrous gel polymer as much as possible. For example,
A method of crushing a hydrous gel polymer by extruding it from a porous plate (Japanese Patent Publication No. 54-32,176, JP-A No. 50-136,348, etc.) is known, but in the conventional method, it was finely crushed and extruded. The hydrated gel polymer reattached to form a string, and a particulate hydrated gel polymer could not be obtained.

【0010】含水ゲル状重合体を多孔板より押し出し破
砕する際に、含水ゲル状重合体の再付着を防止する目的
で潤滑剤等の添加物を加える方法(特開昭59-30,826
号、特開昭59-119,172号)が知られているが、重合体に
残存する添加物が製品の性能に悪影響を及ぼすことがあ
った。
A method of adding an additive such as a lubricant for the purpose of preventing redeposition of the hydrogel polymer when the hydrogel polymer is extruded from a porous plate and crushed (JP-A-59-30,826).
JP-A-59-119,172), but additives remaining in the polymer sometimes adversely affect the performance of the product.

【0011】また先に述べた特開昭57-34,101 号および
USP4,625,001 に開示されている方法によると、比較的
小粒径の含水ゲル状重合体が得られるが、サイズが10
mm以上の粗大ゲル粒子が数重量%から数十重量%生成
し、その粒度分布が広く、乾燥効率および乾燥の程度の
均一性が不十分であるという欠点を有していた。
The above-mentioned Japanese Patent Laid-Open No. 57-34,101 and
According to the method disclosed in USP 4,625,001, a hydrogel polymer having a relatively small particle size can be obtained, but the size is 10 or less.
Coarse gel particles having a size of mm or more are produced from several wt% to several tens wt%, the particle size distribution is wide, and the drying efficiency and the uniformity of the degree of drying are insufficient.

【0012】更にまた、従来の含水ゲル状重合体の粉砕
方法で、十分に平均粒子径の小さい粒子状含水ゲル状重
合体を得ることは困難であったり、生産性が著しく低か
ったりした。粒子状含水ゲル状重合体を乾燥し、所望の
粒度の製品を得ようとする際に、粒子状含水ゲル状重合
体の平均粒子径が大きいとその乾燥物を粉砕する必要が
あり、粉砕時に所望の粒度よりも小さい微粉末が発生す
る。この微粉末が、吸水性樹脂の性能面や取扱い性の点
で好ましくないことは当業者に周知のことである。
Furthermore, it has been difficult to obtain a particulate hydrous gel polymer having a sufficiently small average particle size by the conventional method for pulverizing a hydrous gel polymer, or the productivity is remarkably low. When drying the particulate hydrogel polymer to obtain a product having a desired particle size, it is necessary to grind the dried product when the average particle diameter of the particulate hydrogel polymer is large, and at the time of grinding A fine powder smaller than the desired particle size is generated. It is well known to those skilled in the art that this fine powder is not preferable in terms of performance and handleability of the water absorbent resin.

【0013】以上のように簡便なプロセスで、しかも生
産性よく吸水倍率が高く、水可溶分の少ない粒子状含水
ゲル状重合体および吸水性樹脂を製造する方法は従来確
立されていなかった。また、潤滑剤等の添加物を含有せ
ず、しかも粒度分布の狭い、乾燥効率の良好な粒子状含
水ゲル状重合体を、生産性高く得る方法は従来確立され
ていなかった。また十分に小さい平均粒子径を有する粒
子状含水ゲル状重合体を効率よく製造する方法は従来確
立されていなかった。
As described above, a method for producing a particulate hydrogel polymer and a water-absorbent resin with a simple process, high productivity, high water absorption capacity, and low water-soluble content has not been established. Further, a method for obtaining a highly productive particulate hydrogel polymer which does not contain additives such as a lubricant and has a narrow particle size distribution and good drying efficiency has not been established. Further, a method for efficiently producing a particulate hydrogel polymer having a sufficiently small average particle diameter has not been established so far.

【0014】[0014]

【発明が解決しようとする課題】従って、本発明の目的
は、吸水倍率が高く、水可溶分の少ない粒子状含水ゲル
状重合体および吸水性樹脂の製造方法を提供することに
ある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a method for producing a particulate hydrogel polymer and a water absorbent resin which have a high water absorption capacity and a low water-soluble content.

【0015】本発明の他の目的は、簡便なプロセスで、
しかも生産性よく吸水倍率が高く、水可溶分の少ない粒
子状含水ゲル状重合体および吸水性樹脂を製造する方法
を提供することにある。
Another object of the present invention is a simple process,
Moreover, it is an object of the present invention to provide a method for producing a particulate hydrogel polymer and a water-absorbent resin which have good productivity, a high water absorption capacity, and a low water-soluble content.

【0016】本発明の他の目的は、潤滑剤等の添加物を
含有せず、しかも粒度分布の狭い、乾燥効率の良好な粒
子状含水ゲル状重合体を、生産性高く得る製造方法を提
供することにある。
Another object of the present invention is to provide a method for producing a particulate hydrous gel polymer which does not contain additives such as a lubricant and has a narrow particle size distribution and good drying efficiency with high productivity. To do.

【0017】本発明の更に他の目的は、十分に小さい平
均粒子径を有する粒子状含水ゲル状重合体を効率よく製
造する方法を提供することにある。
Still another object of the present invention is to provide a method for efficiently producing a particulate hydrogel polymer having a sufficiently small average particle diameter.

【0018】[0018]

【課題を解決するための手段】上記の事情に鑑みて、本
発明者らは粒子状含水ゲル状重合体および吸水性樹脂の
製造方法について鋭意研究を重ねた結果、本発明を完成
するに至った。
In view of the above circumstances, the inventors of the present invention have conducted extensive studies on a method for producing a particulate hydrogel polymer and a water absorbent resin, and as a result, have completed the present invention. It was

【0019】すなわち、本発明の目的は、容器内で、架
橋構造を有する含水ゲル状重合体に、剪断力をかけて粒
子状に細分化する粒子状含水ゲル状重合体の製造方法に
おいて、40〜110℃の温度に加温した含水ゲル状重
合体に0.01〜1.5kg/cm2 の荷重をかけなが
ら繰り返し剪断力をかけることを特徴とする粒子状含水
ゲル状重合体の製造方法および該粒子状含水ゲル状重合
体を乾燥することを特徴とする吸水性樹脂の製造方法に
よって達成される。
That is, an object of the present invention is to provide a method for producing a particulate hydrogel polymer, which comprises subjecting a hydrogel polymer having a crosslinked structure to a shearing force to subdivide into particles in a container. A method for producing a particulate hydrous gel polymer, which comprises repeatedly applying a shearing force to a hydrous gel polymer heated to a temperature of ˜110 ° C. while applying a load of 0.01 to 1.5 kg / cm 2. And a method for producing a water-absorbent resin, which comprises drying the particulate hydrogel polymer.

【0020】[0020]

【作用】本発明の含水ゲル状重合体は、架橋構造を有し
かつ含水状態でゲル状を呈するヒドロゲルであれば特に
限定されないが、含水率が、通常40〜90重量%、よ
り好ましくは50〜80重量%の含水ゲル状重合体であ
る。なお、本発明において、含水ゲル状重合体の含水率
とは、含水ゲル状重合体の総重量に占める水の含量を重
量%で表わしたものである。また本発明において使用さ
れる含水ゲル状重合体は、架橋構造を有することが必須
である。架橋構造を有しない場合には本発明の目的を達
成することができない。
The hydrogel polymer of the present invention is not particularly limited as long as it is a hydrogel having a crosslinked structure and showing a gel state in the hydrous state, but the water content is usually 40 to 90% by weight, more preferably 50% by weight. It is a -80% by weight hydrogel polymer. In the present invention, the water content of the water-containing gel polymer means the content of water in the total weight of the water-containing gel polymer in% by weight. Further, it is essential that the hydrogel polymer used in the present invention has a crosslinked structure. If it does not have a crosslinked structure, the object of the present invention cannot be achieved.

【0021】本発明の含水ゲル状重合体は、例えば、型
枠の中に水溶液重合により架橋構造を形成し、含水ゲル
状重合体となる単量体成分を入れ、重合する方法(特開
昭55-133,413号)や、内部に生成した含水ゲル状重合体
を細分化できるような攪拌軸を持ったニーダー等の中で
該単量体成分を重合する方法(特開昭57-34,101 号)等
によって得られるものである。
The hydrogel polymer of the present invention is prepared by, for example, forming a crosslinked structure in a mold by aqueous solution polymerization, and adding a monomer component to form the hydrogel polymer, and polymerizing the mixture. 55-133,413) or a method of polymerizing the monomer component in a kneader or the like having a stirring shaft capable of subdividing the hydrogel polymer formed inside (JP-A-57-34,101). And the like.

【0022】上記の重合方法において使用される単量体
成分のうち水溶性不飽和単量体の例としては、(メタ)
アクリル酸、(無水)マレイン酸、フマル酸、クロトン
酸、イタコン酸、2−(メタ)アクリロイルエタンスル
ホン酸、2−(メタ)アクリロイルプロパンスルホン
酸、2−(メタ)アクリルアミド−2−メチルプロパン
スルホン酸、ビニルスルホン酸、スチレンスルホン酸、
等のアニオン性単量体やその塩;(メタ)アクリルアミ
ド、N−置換(メタ)アクリルアミド、2−ヒドロキシ
エチル(メタ)アクリレート、2−ヒドロキシプロピル
(メタ)アクリレート、メトキシポリエチレングリコー
ル(メタ)アクリレート、ポリエチレングリコール(メ
タ)アクリレート、等のノニオン性親水性基含有単量
体;N,N−ジメチルアミノエチル(メタ)アクリレー
ト、N,N−ジメチルアミノプロピル(メタ)アクリレ
ート、N,N−ジメチルアミノプロピル(メタ)アクリ
ルアミド、等のアミノ基含有不飽和単量体やそれらの4
級化物等を具体的に挙げることがでる。また、得られる
含水ゲル状重合体の親水性を極度に阻害しない程度の量
で、例えば、メチル(メタ)アクリレート、エチル(メ
タ)アクリレート、ブチル(メタ)アクリレート等のア
クリル酸エステル類や酢酸ビニル、プロピオン酸ビニル
等の疎水性単量体を使用してもよい。単量体成分として
はこれらのうちから1種または2種以上を選択して用い
ることができるが、最終的に得られる吸水性樹脂の吸水
諸特性を考えると(メタ)アクリル酸(塩)、2−(メ
タ)アクリロイルエタンスルホン酸(塩)、2−(メ
タ)アクリルアミド−2−メチルプロパンスルホン酸
(塩)、(メタ)アクリルアミド、メトキシポリエチレ
ングリコール(メタ)アクリレート、N,N−ジメチル
アミノエチル(メタ)アクリレートまたはその4級化物
からなる群から選ばれる1種以上のものが好ましく、さ
らに(メタ)アクリル酸(塩)を必須成分として含むも
のがさらに好ましい。この場合(メタ)アクリル酸の3
0〜90モル%が塩基性物質で中和されているものが最
も好ましい。
Among the monomer components used in the above polymerization method, examples of the water-soluble unsaturated monomer include (meth)
Acrylic acid, (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2- (meth) acrylamido-2-methylpropanesulfone Acid, vinyl sulfonic acid, styrene sulfonic acid,
Anionic monomers and salts thereof such as; (meth) acrylamide, N-substituted (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, Nonionic hydrophilic group-containing monomers such as polyethylene glycol (meth) acrylate; N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dimethylaminopropyl Amino group-containing unsaturated monomers such as (meth) acrylamide and their 4
Specific examples thereof include graded products. In addition, an amount of acrylic acid ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate or vinyl acetate in an amount that does not extremely hinder the hydrophilicity of the resulting hydrogel polymer. Alternatively, a hydrophobic monomer such as vinyl propionate may be used. As the monomer component, one kind or two or more kinds can be selected and used from these, but considering various water absorption characteristics of the finally obtained water-absorbent resin, (meth) acrylic acid (salt), 2- (meth) acryloylethanesulfonic acid (salt), 2- (meth) acrylamido-2-methylpropanesulfonic acid (salt), (meth) acrylamide, methoxypolyethylene glycol (meth) acrylate, N, N-dimethylaminoethyl One or more selected from the group consisting of (meth) acrylate or a quaternary compound thereof is preferable, and one further containing (meth) acrylic acid (salt) as an essential component is more preferable. In this case, 3 of (meth) acrylic acid
Most preferably, 0 to 90 mol% is neutralized with a basic substance.

【0023】本発明の含水ゲル状重合体は、架橋剤を使
用せずに得られる自己架橋型のものでも、重合性不飽和
基および/または反応性官能基を有する架橋剤を得られ
る吸水性樹脂の諸特性が所望の基準に達する範囲で用い
て得られるものでもよい。通常その使用量は単量体成分
に対して、0.001〜1.0モル%、好ましくは0.
01〜0.5モル%である。
The water-containing gel-like polymer of the present invention is a self-crosslinking type polymer obtained without using a crosslinking agent, and is a water-absorbing polymer having a crosslinking agent having a polymerizable unsaturated group and / or a reactive functional group. It may be obtained by using the resin in such a range that various properties reach desired standards. Usually, the amount used is 0.001 to 1.0 mol% with respect to the monomer component, and preferably 0.1.
It is from 01 to 0.5 mol%.

【0024】これらの架橋剤の例としては、例えばN,
N′−メチレンビス(メタ)アクリルアミド、(ポリ)
エチレングリコール(メタ)アクリレート、グリセリン
トリ(メタ)アクリレート、トリメチロールプロパント
リ(メタ)アクリレート、トリアリルアミン、トリアリ
ルシアヌレート、トリアリルイソシアヌレート、グリシ
ジル(メタ)アクリレート、(ポリ)エチレングリコー
ル、ジエチレングリコール、(ポリ)グリセリン、プロ
ピレングリコール、ジエタノールアミン、トリメチロー
ルプロパン、ペンタエリスリトール、(ポリ)エチレン
グリコールジグリシジルエーテル、(ポリ)グリセロー
ルポリグリシジルエーテル、エピクロルヒドリン、エチ
レンジアミン、ポリエチレンイミン、(ポリ)塩化アル
ミニウム、硫酸アルミニウム、塩化カルシウム、硫酸マ
グネシウム等を具体的に挙げることができ、これらのう
ち反応性を考慮して、1種または2種以上を用いること
ができる。
Examples of these crosslinking agents include, for example, N,
N'-methylenebis (meth) acrylamide, (poly)
Ethylene glycol (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, triallylamine, triallyl cyanurate, triallyl isocyanurate, glycidyl (meth) acrylate, (poly) ethylene glycol, diethylene glycol, (Poly) glycerin, propylene glycol, diethanolamine, trimethylolpropane, pentaerythritol, (poly) ethylene glycol diglycidyl ether, (poly) glycerol polyglycidyl ether, epichlorohydrin, ethylenediamine, polyethyleneimine, (poly) aluminum chloride, aluminum sulfate, Specific examples include calcium chloride and magnesium sulfate. Of these, considering reactivity, It can be used alone or in combination.

【0025】また含水ゲル状重合体を得るにあたって
は、デンプン、セルロース、ポリビニルアルコール等の
親水性高分子の存在下で上記単量体成分を重合させるこ
とによって、重合と同時にグラフト結合やコンプレック
スを形成させてもよい。
In order to obtain a hydrogel polymer, the above-mentioned monomer components are polymerized in the presence of a hydrophilic polymer such as starch, cellulose and polyvinyl alcohol to form a graft bond or a complex simultaneously with the polymerization. You may let me.

【0026】これらの単量体成分を重合させるにあた
り、重合開始剤として、過硫酸アンモニウム、過硫酸カ
リウム、過酸化水素、t−ブチルハイドロパーオキサイ
ド、2、2′−アゾビス−アミジノプロパン二塩酸塩等
の水溶性ラジカル重合開始剤を用いればよい。
Upon polymerization of these monomer components, as a polymerization initiator, ammonium persulfate, potassium persulfate, hydrogen peroxide, t-butyl hydroperoxide, 2,2'-azobis-amidinopropane dihydrochloride and the like are used. The water-soluble radical polymerization initiator may be used.

【0027】本発明の含水ゲル状重合体は含水ゲル状を
呈するヒドロゲルであればよく、上記の単量体成分の重
合反応が進行中のもの、重合反応が終了したもののいず
れであってもよい。一般に、架橋構造を有する含水ゲル
状重合体は、重合率が数%程度で含水ゲル状を呈するの
で、荷重下の剪断力は重合率が数%以上の含水ゲル状重
合体に対して任意の時期にかければ良い。好ましくは重
合率が10〜100%、より好ましくは20〜100%
の含水ゲル状重合体である。むろん、含水ゲル状を呈す
る前の単量体成分には、通常の攪拌操作が加えられても
良い。但し、単量体成分の重合率が低い時点で剪断力を
かける際に、剪断力のかけ方が過剰であるばあいに基本
分子量の低下等の好ましくない現象が起こることが予想
されるので注意を要する。
The hydrogel polymer of the present invention may be any hydrogel having a hydrogel state, and may be either one in which the polymerization reaction of the above-mentioned monomer components is in progress or one in which the polymerization reaction is completed. .. Generally, a hydrogel polymer having a crosslinked structure exhibits a hydrogel state at a polymerization rate of about several%, so that the shearing force under a load is arbitrary for the hydrogel polymer having a polymerization rate of several% or more. It's good if the time comes. The polymerization rate is preferably 10 to 100%, more preferably 20 to 100%.
Is a hydrogel polymer. Needless to say, a usual stirring operation may be added to the monomer component before it has a hydrogel state. However, when applying shearing force at the time when the polymerization rate of the monomer component is low, it is expected that unfavorable phenomena such as decrease in basic molecular weight will occur if the application of shearing force is excessive. Requires.

【0028】本発明の粒子状含水ゲル状重合体の製造方
法は、含水ゲル状重合体に対して前記条件下に剪断力を
かける事により達成されるが、この条件を満たす範囲内
であれば任意の実施形態を適宜採用できる。典型的な具
体的実施態様としては、例えば、 1.重合反応終了後の含水ゲル状重合体に前記条件下に
剪断力をかける、 2.重合反応途中の含水ゲル状重合体に前記条件下に剪
断力をかける、 3.重合反応を進行させながら、生成した含水ゲル状重
合体に前記条件下に剪断力をかける、 という態様を挙げることができる。
The method for producing the particulate hydrous gel polymer of the present invention can be achieved by applying a shearing force to the hydrous gel polymer under the above conditions. Any embodiment can be adopted as appropriate. Typical specific embodiments include, for example: 1. A shear force is applied to the hydrogel polymer after completion of the polymerization reaction under the above conditions. 2. A shearing force is applied to the hydrogel polymer in the course of the polymerization reaction under the above conditions. An embodiment may be mentioned in which a shearing force is applied to the produced hydrogel polymer under the above conditions while the polymerization reaction proceeds.

【0029】上記の実施態様のうち、2または3を実施
する際に好ましい装置として、図1に示した装置が一例
として挙げられる。図2は、図1のa−a線に沿う概略
断面図である。図1および図2に示すように、本実施態
様の容器7において、含水ゲル状重合体に剪断力をかけ
るための回転腕10、11がそれぞれ回転攪拌軸12、
12′、および13、13′(図示せず)によって容器
7内の長手方向に沿って固定され、荷重をかけるための
加圧蓋5は、それが最下端に下ろされた場合でも回転腕
10、11の回転を妨げないように回転腕の周動部に合
わせた形状になっており、容器7の開口部に設置されて
いる。図1の状態で、すなわち加圧蓋5によって容器7
の実質的な密閉状態が保たれると共に、液供給口1およ
びガス供給口2は容器7に対して開口状態にある状態
で、上記の単量体成分の水溶液および不活性ガスが容器
7に供給される。この時、単量体成分の水溶液の仕込み
量は、通常、剪断有効体積(回転攪拌軸の回転腕の回転
により形成される空間体積から回転攪拌軸および回転腕
の体積を差し引いた残りの空間体積)の50〜150%
である。ガス供給口2から供給された不活性ガスは、容
器7内を通過してガス排出口1′あるいはノズル2′か
ら排出される。単量体成分の重合を開始させ、含水ゲル
状重合体を形成した任意の時点で油圧あるいは空気圧に
よりシリンダー8を動かし、加圧蓋5を含水ゲル状重合
体のうえに降ろし、所望の荷重が含水ゲル状重合体にか
けられ、回転腕10、11の回転による繰り返し剪断力
がかけられる。この状態の一例を図3に示す。この時、
液供給口1およびガス供給口2は加圧蓋5によって封鎖
されており、含水ゲル状重合体が入り込むことがない。
一方ガス供給口2から供給される不活性ガスは容器7の
壁と加圧蓋5の壁の間隙から攪拌空間14に供給され
る。上述のように単量体成分の水溶液の仕込みから、重
合、含水ゲル状重合体に荷重をかけながら剪断力をかけ
ることを経て、粒子状含水ゲル状重合体の取りだしまで
を不活性ガス雰囲気下で行うことができる。なお液供給
口1およびガス供給口2の位置は、荷重を取り除いた際
の含水ゲル状重合体面よりも高い位置に設けることが好
ましい。図1〜3には加圧蓋5の外側にこれに対して相
対的に上下動自在にカバー4が装着されている。このカ
バー4は下端に開口部を有する箱形となっており、その
下端部には、容器7に設けられたフランジ部と対向し合
うフランジ部が設けられ、このフランジ部にはシール材
9が備えられている。加圧蓋5を上昇させたときに、カ
バー4は加圧蓋5に当接して上昇される。一方、加圧蓋
5がシリンダー8により下降移動すると、加圧蓋5の下
端部が容器7内に嵌入し始める位置で、カバー4のフラ
ンジ部が容器7のフランジ部にシール材9を介して当接
し、自重によりカバー4内の空間は外部からシールされ
る。カバー4および容器7双方のフランジ部がシール材
9を介して接触した後には、シリンダー8によって加圧
蓋5のみが下降移動されることになる。カバー4にはガ
ス供給口3およびガス排出口3′が設けられており図1
の状態で、ガス供給口3より不活性ガスを供給すること
でカバー4内部を不活性ガス雰囲気に置換することがで
きる。このカバー4は必ずしも必要ではないが、容器7
内部の不活性ガス雰囲気をより完全なものとする場合に
好ましい態様である。
The apparatus shown in FIG. 1 is an example of a preferable apparatus for carrying out 2 or 3 of the above embodiments. FIG. 2 is a schematic sectional view taken along the line aa of FIG. As shown in FIGS. 1 and 2, in the container 7 of the present embodiment, rotary arms 10 and 11 for applying shearing force to the hydrogel polymer are respectively rotated and stirred shafts 12,
12 'and 13, 13' (not shown) are fixed along the longitudinal direction in the container 7, and the pressure lid 5 for applying a load has a rotating arm 10 even when it is lowered to the lowermost end. , 11 has a shape adapted to the peripheral part of the rotating arm so as not to hinder the rotation of the rotating arms 11, and is installed at the opening of the container 7. In the state of FIG. 1, that is, by the pressure lid 5, the container 7
Is kept substantially closed, and the liquid supply port 1 and the gas supply port 2 are in an open state with respect to the container 7, and the aqueous solution of the monomer component and the inert gas are stored in the container 7. Supplied. At this time, the charged amount of the aqueous solution of the monomer component is usually the effective shear volume (the remaining space volume obtained by subtracting the volume of the rotary stirring shaft and the rotary arm from the space volume formed by the rotation of the rotary arm of the rotary stirring shaft). ) Of 50-150%
Is. The inert gas supplied from the gas supply port 2 passes through the container 7 and is discharged from the gas discharge port 1'or the nozzle 2 '. Polymerization of the monomer components is started, and at any time when the hydrogel polymer is formed, the cylinder 8 is moved by hydraulic pressure or air pressure, and the pressure lid 5 is lowered onto the hydrogel polymer. It is applied to the water-containing gel polymer and subjected to repeated shearing force by the rotation of the rotating arms 10 and 11. An example of this state is shown in FIG. At this time,
The liquid supply port 1 and the gas supply port 2 are closed by the pressure lid 5, so that the water-containing gel polymer does not enter.
On the other hand, the inert gas supplied from the gas supply port 2 is supplied to the stirring space 14 through the gap between the wall of the container 7 and the wall of the pressure lid 5. As described above, from the charging of the aqueous solution of the monomer component, through the polymerization, applying a shearing force while applying a load to the hydrous gel polymer, until the removal of the particulate hydrogel polymer under an inert gas atmosphere Can be done at. The positions of the liquid supply port 1 and the gas supply port 2 are preferably provided at positions higher than the surface of the hydrogel polymer when the load is removed. 1 to 3, a cover 4 is attached to the outside of the pressure lid 5 so as to be vertically movable relative to the lid. The cover 4 has a box shape having an opening at the lower end, and a flange portion facing the flange portion provided on the container 7 is provided at the lower end portion, and a sealing material 9 is provided at the flange portion. It is equipped. When the pressure lid 5 is raised, the cover 4 contacts the pressure lid 5 and is raised. On the other hand, when the pressure lid 5 is moved down by the cylinder 8, the flange portion of the cover 4 is inserted into the flange portion of the container 7 via the sealing material 9 at the position where the lower end portion of the pressure lid 5 starts to be fitted into the container 7. The space inside the cover 4 is sealed from the outside by the abutment and its own weight. After the flanges of both the cover 4 and the container 7 come into contact with each other via the sealing material 9, only the pressure lid 5 is moved down by the cylinder 8. The cover 4 is provided with a gas supply port 3 and a gas discharge port 3 '.
In this state, by supplying an inert gas from the gas supply port 3, the inside of the cover 4 can be replaced with an inert gas atmosphere. This cover 4 is not always necessary, but the container 7
This is a preferred embodiment when the inert gas atmosphere inside is more complete.

【0030】本発明において使用される容器を備えた装
置としては、具体的には、通常の回分式ニーダーの開口
部に部材(加圧蓋)を設けたもの、機械加圧ニーダー、
インターナルミキサー、バンバリーミキサー等が使用で
きる。これらのうち、機械加圧ニーダーが好適に使用す
ることができる。
As the apparatus equipped with the container used in the present invention, specifically, an ordinary batch kneader having a member (pressurizing lid) at the opening thereof, a mechanical pressure kneader,
An internal mixer, a Banbury mixer, etc. can be used. Of these, a mechanical pressure kneader can be preferably used.

【0031】本発明において、上記回転腕は、2本以上
あることが好ましく、特に双腕型であることが好まし
い。また、本発明において用いられる回転腕の形状とし
ては、シグマ(δ)形、ゼット(Z)形、スパイラル
(S)形、マスチケータ形、フィッシュテール形、およ
び断面が凸レンズ形状等が、具体的に使用できる。ま
た、上記回転腕が双腕型である場合、これらの回転腕の
形状の組み合わせとしては、例えば、シグマ形とスパイ
ラル形あるいはゼット形の組み合わさったものがあり、
これら2本の回転腕が互いに逆方向に等速あるいは不等
速で回転している。また、この組み合わせ方法として
は、オーバーラップ形およびタンゼンシャル形が挙げら
れ、これらは含水ゲル状重合体の粘性等の諸性状によっ
て適宜選択されるが、一般的に、含水ゲル状重合体が高
粘性物質である場合には、タンゼンシャル形の方が適し
ている。また、上記回転腕が、インターナルミキサーに
使用されている場合には、2対のロールの位相を変えて
同方向に回転し、上方から加圧ニーダーやバンバリーミ
キサーと同様に、圧力を加えながら含水ゲル状重合体に
剪断力をかけることができる。
In the present invention, it is preferable that there are two or more rotating arms, and it is particularly preferable that the rotating arms are of a double-arm type. Specific examples of the shape of the rotary arm used in the present invention include a sigma (δ) shape, a zet (Z) shape, a spiral (S) shape, a masticator shape, a fish tail shape, and a convex lens shape in cross section. Can be used. Further, when the rotary arm is a double-arm type, as a combination of the shapes of these rotary arms, for example, there is a combination of a sigma type and a spiral type or a zet type,
These two rotating arms rotate in opposite directions at a constant speed or a non-constant speed. The combination method includes an overlap type and a tangential type, and these are appropriately selected depending on various properties such as viscosity of the hydrogel polymer, but generally, the hydrogel polymer has a high viscosity. If it is a substance, the tangential type is more suitable. When the rotary arm is used for an internal mixer, the phases of two pairs of rolls are changed to rotate in the same direction, and pressure is applied from above as in a pressure kneader or a Banbury mixer. Shearing force can be applied to the hydrogel polymer.

【0032】また、本発明において使用する回転腕の材
料としては、ステンレス鋼等が具体的に使用される。
As the material of the rotating arm used in the present invention, stainless steel or the like is specifically used.

【0033】本発明において使用する回転腕の回転速度
は、含水ゲル状重合体の粘性等の諸性状によって左右さ
れるが、外周で0.01〜10m/s、好ましくは0.
1〜5m/sである。
The rotation speed of the rotating arm used in the present invention depends on various properties such as viscosity of the hydrogel polymer, but is 0.01 to 10 m / s, preferably 0.
It is 1-5 m / s.

【0034】上記実施態様においては、含水ゲル状重合
体を加熱あるいは冷却するためにジャケット6を設けた
が、含水ゲル状重合体が加熱あるいは冷却できれば、ジ
ャケットに限定されることはなく、例えば、加圧蓋5や
回転腕に温度コントロール用の媒液が流せる構造であっ
てもよい。
In the above embodiment, the jacket 6 is provided to heat or cool the hydrous gel polymer, but the jacket is not limited as long as the hydrogel polymer can be heated or cooled. The pressure lid 5 or the rotating arm may have a structure in which a temperature controlling liquid medium can flow.

【0035】本発明において使用される加圧蓋の形状と
しては、図1に示したような回転腕の周動部に合わせた
形のほかに、図4(a)および(b)に示されるよう
に、平板状(図4(a))や容器壁面側のみ周動部に合
わせた形状(図4(b))であってもよい。これらのう
ち、含水ゲル状重合体全体を攪拌し、含水ゲル状重合体
全体に剪断力が均等にかかることが好ましい。このた
め、含水ゲル状重合体が容器内に滞留しにくい点を考慮
すると、図1に示した形状の加圧蓋が好ましい。なお、
上記均等とは、特定の含水ゲル状重合体が容器内で特定
の位置に連続して滞留することがなく、一部の含水ゲル
状重合体にのみ剪断力が加え続けられることがないこと
を意味する。
The shape of the pressure lid used in the present invention is shown in FIGS. 4 (a) and 4 (b) in addition to the shape adapted to the peripheral portion of the rotary arm as shown in FIG. As described above, it may have a flat plate shape (FIG. 4 (a)) or a shape (FIG. 4 (b)) adapted to the circumferential moving portion only on the wall surface side of the container. Among these, it is preferable that the entire hydrogel polymer is stirred and the shear force is evenly applied to the entire hydrogel polymer. Therefore, considering that the hydrogel polymer is unlikely to stay in the container, the pressure lid having the shape shown in FIG. 1 is preferable. In addition,
The above equality means that the specific hydrous gel polymer does not continuously stay at a specific position in the container, and that the shearing force cannot be continuously applied only to a part of the hydrous gel polymer. means.

【0036】本発明において、加圧蓋は、含水ゲル状重
合体に0.01〜1.5kg/cm2 の荷重をかけるた
めに使用される。荷重は、加圧蓋自体の荷重に加え、加
圧蓋の上方より空気圧あるいは油圧により圧力を加える
ことでかけられる。含水ゲル状重合体にかかる荷重は
0.01〜1.5kg/cm2 の範囲であることが必要
である。より好ましくは0.05〜1.0kg/cm2
である。含水ゲル状重合体にかかる荷重が0.01kg
/cm2 未満であると、含水ゲル状重合体に有効に剪断
力がかからず、本発明の目的とする粒子状含水ゲル状重
合体を得ることが困難であったり、得るために長時間を
要したりする。一方、含水ゲル状重合体にかかる荷重が
1.5kg/cm2 を越えると含水ゲル状重合体に剪断
力をかけるために必要な動力が大きすぎる上、含水ゲル
状重合体が混練される状態になるため得られる含水ゲル
状重合体の物性の低下をまねくことになり好ましくな
い。
In the present invention, the pressure lid is used to apply a load of 0.01 to 1.5 kg / cm 2 to the hydrogel polymer. The load is applied by applying pressure by air pressure or hydraulic pressure from above the pressure lid in addition to the load of the pressure lid itself. The load applied to the water-containing gel polymer needs to be in the range of 0.01 to 1.5 kg / cm 2 . More preferably 0.05 to 1.0 kg / cm 2
Is. 0.01kg load on hydrogel polymer
If it is less than / cm 2 , the hydrogel polymer will not be effectively subjected to shearing force, and it will be difficult to obtain the particulate hydrogel polymer aimed at by the present invention, or it will take a long time to obtain it. Or cost. On the other hand, when the load applied to the hydrogel polymer exceeds 1.5 kg / cm 2 , the power required to apply the shearing force to the hydrogel polymer is too large and the hydrogel polymer is kneaded. Therefore, the physical properties of the resulting hydrogel polymer are deteriorated, which is not preferable.

【0037】本発明において使用される加圧蓋は、上記
容器内部の容積が含水ゲル状重合体の体積V0の1.1
〜1.8倍、より好ましくは1.2〜1.7倍になり、
かつ剪断力のかかる空間体積(以下、剪断有効体積と称
する)V1の1.0〜2.0倍、より好ましくは1.0
〜1.8倍になるように、上記容器内において位置させ
ることが望ましい。この際剪断力のかかる空間体積と
は、回転攪拌軸の回転腕の最大回転円によって形成され
る空間体積から回転攪拌軸および回転腕の体積を差し引
いた残りの空間体積をいう。上記容器内部の容積が含水
ゲル状重合体の体積V0の1.1倍未満であると、含水
ゲル状重合体に剪断力をかけるために必要な動力が大き
すぎる上、含水ゲル状重合体が混練される状態になるた
め物性が低下するという欠点がある。一方、上記容器内
部の容積が含水ゲル状重合体の体積V0の1.8倍を超
えると、含水ゲル状重合体に有効に剪断力がかからず、
本発明の目的とする粒子状含水ゲル状重合体を得ること
が困難であったり、得るために長持間を要したりして好
ましくない。
In the pressure lid used in the present invention, the volume inside the container is 1.1 of the volume V 0 of the hydrogel polymer.
~ 1.8 times, more preferably 1.2 to 1.7 times,
And 1.0 to 2.0 times, more preferably 1.0 to 2.0 times the spatial volume V 1 to which a shear force is applied (hereinafter referred to as the effective shear volume).
It is desirable to position it in the container so that it becomes about 1.8 times. At this time, the space volume to which the shearing force is applied refers to the remaining space volume obtained by subtracting the volumes of the rotary stirring shaft and the rotary arm from the space volume formed by the maximum rotation circle of the rotary arm of the rotary stirring shaft. When the volume inside the container is less than 1.1 times the volume V 0 of the hydrous gel polymer, the power required to apply the shearing force to the hydrous gel polymer is too large, and the hydrous gel polymer is too large. However, there is a drawback that the physical properties are deteriorated because of the kneading state. On the other hand, when the volume inside the container exceeds 1.8 times the volume V 0 of the hydrogel polymer, the hydrogel polymer is not effectively subjected to shearing force,
It is not preferable because it is difficult to obtain the particulate hydrogel polymer which is the object of the present invention, and it takes a long time to obtain the polymer.

【0038】また、上記容器内部の容積が剪断有効体積
1の2.0倍を越えると含水ゲル状重合体に有効に剪
断力がかからず、本発明の目的とする粒子状含水ゲル状
重合体を得ることが困難であったり、得るために長持間
を要したりして好ましくない。
If the volume inside the container exceeds 2.0 times the effective shear volume V 1 , the hydrogel polymer is not effectively subjected to shearing force, and the particulate hydrogel form of the present invention is intended. It is not preferable because it is difficult to obtain the polymer or it takes a long time to obtain the polymer.

【0039】本発明の含水ゲル状重合体は、本発明を実
施するための容器に投入できる大きさであれば特に制限
されない。また、例えば、特開昭57-34,101 号に記載さ
れている方法等によって得られる細分化された含水ゲル
状重合体に対しても、これらの含水ゲル状重合体に本発
明の方法を実施することにより本発明の目的を達成する
ことができる。
The hydrogel polymer of the present invention is not particularly limited as long as it has a size that can be put into a container for carrying out the present invention. Further, for example, even for the finely divided hydrogel polymer obtained by the method described in JP-A-57-34,101, etc., the method of the present invention is applied to these hydrogel polymers. Thereby, the object of the present invention can be achieved.

【0040】本発明において、含水ゲル状重合体の温度
は、40〜110℃、好ましくは40〜100℃、更に
好ましくは50〜95℃の温度に加温されることが、必
須の要件である。上記含水ゲル状重合体の加温温度が4
0℃未満であると、剪断面と含水ゲル状重合体との間、
あるいは含水ゲル状重合体同士の摩擦が大きくなり、含
水ゲル状重合体の物性が低下する傾向がある。一方、含
水ゲル状重合体の加温温度が110℃を越えると、含水
ゲル状重合体からの水の蒸発が激しくなり含水ゲル状重
合体が発泡する等のため含水ゲル状重合体に剪断力が十
分に加わらず、そのために十分に小さい粒子径を有する
粒子状含水ゲル状重合体が得られない恐れがあるととも
に、含水ゲル状重合体の劣化による可溶分の増加が起こ
る場合があり好ましくない。
In the present invention, it is an essential requirement that the temperature of the hydrogel polymer be heated to a temperature of 40 to 110 ° C, preferably 40 to 100 ° C, more preferably 50 to 95 ° C. .. The heating temperature of the hydrous gel polymer is 4
If the temperature is less than 0 ° C, the shearing surface and the water-containing gel-like polymer,
Alternatively, the friction between the water-containing gel-like polymers becomes large, and the physical properties of the water-containing gel-like polymer tend to deteriorate. On the other hand, when the heating temperature of the hydrogel polymer exceeds 110 ° C., water from the hydrogel polymer evaporates violently and the hydrogel polymer foams. Is not sufficiently added, therefor there is a possibility that a particulate hydrogel polymer having a sufficiently small particle size may not be obtained, and there is a case where an increase in soluble content may occur due to deterioration of the hydrogel polymer. Absent.

【0041】本発明において、剪断力をかける時間は特
に制限されない。剪断力をかける時間は、一般的に回転
攪拌軸の回転速度を上げるほど、また含水ゲル状重合体
にかかる荷重を大きくするほど、短時間でよい。但し、
本発明の特許請求の範囲に述べた繰り返し剪断力をかけ
るとは、特定の含水ゲル状重合体に繰り返し剪断力をか
けることであって、例えば、含水ゲル状重合体をスクリ
ュウ型押し出し機をもちいて多孔板より押し出す場合の
ような一過性の剪断力のかけかたとは異なるものであ
る。一過性の剪断力では、各種物性、特に吸水速度が充
分満足できる粒子状含水ゲル状重合体は得られない。
In the present invention, the time for applying the shearing force is not particularly limited. Generally, the time for applying the shearing force may be shorter as the rotational speed of the rotary stirring shaft is increased and the load applied to the hydrous gel polymer is increased. However,
Applying the repeated shearing force described in the claims of the present invention means applying a repeated shearing force to a specific hydrous gel polymer, for example, using a screw type extruder for the hydrous gel polymer. This is different from the method of applying a temporary shearing force as in the case of extruding from a perforated plate. With a transient shearing force, a particulate hydrous gel polymer having various physical properties, especially a water absorption rate, cannot be obtained.

【0042】図5は、本発明において含水ゲル状重合体
に剪断力をかけるために使用する容器の他の実施態様を
概略的に示す断面図である。
FIG. 5 is a sectional view schematically showing another embodiment of the container used for applying a shearing force to the hydrogel polymer in the present invention.

【0043】図5に示す容器7は、加圧蓋5の底部16
がメッシュ状になっており、かつ加圧蓋5の上部17に
容器内の雰囲気を減圧するためのチューブ18がついて
いる以外は、図1と同様の構造を有するものである。こ
のような構造を有する容器は、メッシュを通して容器内
の雰囲気を減圧することによって、重合の際に発生する
熱による容器内の温度の上昇を抑えながら重合を進行さ
せることが可能となる。上記単量体成分を重合させ含水
ゲル状重合体を生成させながら該含水ゲル状重合体に剪
断力をかけた際に発生する重合熱の除去が不十分な場合
には、系の温度が高くなったり、著しいときには突沸を
生じたりし、得られる重合体の品質が低下し好ましくな
い場合がある。除熱効果を上げるためにジャケットに加
え加圧蓋内部および/または回転腕に冷却水等を流して
除熱のための熱伝面を増やすことが可能であるが、それ
でも除熱が不十分のときに減圧する方法が有効に利用さ
れる。
The container 7 shown in FIG. 5 has a bottom portion 16 of the pressure lid 5.
Has a structure similar to that shown in FIG. 1 except that the upper part 17 of the pressure lid 5 is provided with a tube 18 for decompressing the atmosphere in the container. In a container having such a structure, by depressurizing the atmosphere in the container through a mesh, it becomes possible to proceed with the polymerization while suppressing an increase in the temperature in the container due to the heat generated during the polymerization. When the heat of polymerization generated when a shearing force is applied to the hydrogel polymer while polymerizing the above-mentioned monomer components to generate a hydrogel polymer is insufficient, the system temperature is high. In some cases, bumping may occur, and the quality of the obtained polymer may be deteriorated, which is not preferable. In order to increase the heat removal effect, it is possible to increase the heat transfer surface for heat removal by flowing cooling water or the like inside the pressure lid and / or the rotating arm in addition to the jacket, but still the heat removal is insufficient. Sometimes the method of reducing pressure is effectively used.

【0044】図5に示す容器を使用する際の容器内の減
圧度は、1〜500mmHg、より好ましくは1〜40
0mmHg程度であることが好ましい。
The degree of pressure reduction in the container when using the container shown in FIG. 5 is 1 to 500 mmHg, more preferably 1 to 40 mmHg.
It is preferably about 0 mmHg.

【0045】本発明の製造方法において、含水ゲル状重
合体の粒子径の調整を容易にする、あるいは得られる粒
子状含水ゲル状重合体の取扱い性を向上させることを目
的として、含水ゲル状重合体に剪断力をかける工程の前
後を含めた任意の時点で、界面活性剤等の添加物を投入
してもよい。また得られる粒子状含水ゲル状重合体およ
び吸水性樹脂に新たな機能を付与するために、水溶性高
分子、消臭剤、香料、植物育成助剤、殺菌剤、防黴剤、
発泡剤、顔料、染料、活性炭、親水性短繊維等と含水ゲ
ル状重合体の共存下に剪断力をかけることも可能であ
る。
In the production method of the present invention, for the purpose of facilitating the adjustment of the particle diameter of the hydrous gel polymer or improving the handleability of the obtained hydrous gel polymer, Additives such as a surfactant may be added at any time, including before and after the step of applying shearing force to the coalescence. Further, in order to impart a new function to the resulting particulate hydrogel polymer and water-absorbent resin, a water-soluble polymer, a deodorant, a fragrance, a plant growing aid, a bactericide, a fungicide,
It is also possible to apply shearing force in the coexistence of a hydrous gel polymer with a foaming agent, pigment, dye, activated carbon, hydrophilic short fiber, and the like.

【0046】本発明の吸水性樹脂の製造方法は、上記本
発明の製造方法によって得られる粒子状含水ゲル状重合
体を乾燥することを特徴とするものである。
The method for producing a water-absorbent resin of the present invention is characterized by drying the particulate hydrogel polymer obtained by the above-mentioned production method of the present invention.

【0047】本発明において、乾燥は、従来公知の方法
を採用することができる。例えば、箱型乾燥機、通気箱
型乾燥機、通気バンド乾燥機、通気竪型乾燥機あるいは
回転乾燥機等が挙げられる。
In the present invention, a conventionally known method can be adopted for drying. For example, a box dryer, an aeration box dryer, an aeration band dryer, an aeration vertical dryer, a rotary dryer and the like can be mentioned.

【0048】含水ゲル状重合体を乾燥する際の乾燥温度
は、従来公知の温度でよいが、80〜250℃、好まし
くは100〜200℃の範囲である。250℃を越える
温度では重合体の劣化、分解がおこることがある。乾燥
に要する時間は、上記のいずれの方法を採用した場合で
も、本発明の方法によって得られる粒子状含水ゲル状重
合体は、従来の含水ゲル状重合体に比べ、著しく短くな
る。
The drying temperature for drying the hydrogel polymer may be a conventionally known temperature, but is in the range of 80 to 250 ° C, preferably 100 to 200 ° C. If the temperature exceeds 250 ° C, the polymer may be deteriorated or decomposed. In any of the above methods, the time required for drying is significantly shorter in the particulate hydrogel polymer obtained by the method of the present invention than in the conventional hydrogel polymers.

【0049】本発明の方法の特に有利な実施形態は、特
開昭64-26,604 号に記載の乾燥方法を実施することであ
る。この方法は、残存単量体の低い重合体を得るのに好
適な方法であるが、低いレベルの残存単量体量を達成す
る際に、その乾燥効率(生産性)が低くなるという欠点
があった。本発明の製造方法によって得られる粒子状含
水ゲル状重合体を用いることで、著しくその乾燥効率が
向上し、本発明の目的の吸水倍率が高く、水可溶分が少
ないということを満足した上に、著しく残存単量体の少
ない吸水性樹脂を生産性よく得ることができる。
A particularly advantageous embodiment of the process according to the invention is to carry out the drying process described in JP-A 64-26,604. This method is a suitable method for obtaining a polymer having a low residual monomer, but has a drawback that its drying efficiency (productivity) becomes low when a low level of residual monomer is achieved. there were. By using the particulate hydrogel polymer obtained by the production method of the present invention, its drying efficiency is remarkably improved, and the object of the present invention is to have a high water absorption capacity and a low water-soluble content. In addition, it is possible to obtain a water-absorbent resin having a significantly small amount of residual monomer with high productivity.

【0050】本発明の吸水性樹脂の製造方法は、上記本
発明の製造方法によって得られる粒子状含水ゲル状重合
体を乾燥し、粉砕および/または解砕することを特徴と
するものである。本発明において、粉粒状の吸水性樹脂
を得るにあたり、従来公知の粉砕方法を採用することが
できる。例えば、高速回転式粉砕機(ピンミル、ハンマ
ミル等)、スクリューミル(コーヒーミル)、ロールミ
ル等が挙げられる。なかでも、本発明の製造方法によっ
て得られる粒子状含水ゲル状重合体の乾燥物は均一な乾
燥物であるため、未乾燥部分の除去等の工程を経ること
なく、ロールミルで粉砕(解砕)することによって、微
粉末の含有量の小さい吸水性樹脂を得ることができる。
The method for producing a water-absorbent resin of the present invention is characterized by drying, pulverizing and / or crushing the particulate hydrogel polymer obtained by the above-mentioned production method of the present invention. In the present invention, a conventionally known pulverization method can be adopted to obtain the powdery water-absorbent resin. For example, a high speed rotary crusher (pin mill, hammer mill, etc.), screw mill (coffee mill), roll mill, etc. may be mentioned. Among them, since the dried product of the particulate hydrogel polymer obtained by the production method of the present invention is a uniform dried product, it is crushed (crushed) by a roll mill without undergoing a step such as removal of an undried portion. By doing so, it is possible to obtain a water absorbent resin having a small content of fine powder.

【0051】このようにして得られた吸水性樹脂は、従
来公知の表面処理方法を施すことで表面の特性が改質さ
れた吸水剤にすることができる。例えば、吸水性樹脂と
該吸水性樹脂の有する官能基と反応し得る少なくとも2
個以上の官能基を一分子中に有する有する架橋剤とを混
合、反応し吸水性樹脂の表面近傍の架橋密度を高くする
という改質方法や、吸水性樹脂と疎水性物質とを混合、
必要により反応させ疎水化処理を行うという改質方法が
挙げられる。
The water-absorbent resin thus obtained can be made into a water-absorbing agent whose surface properties are modified by subjecting the water-absorbing resin to a conventionally known surface treatment method. For example, at least 2 which can react with the water-absorbent resin and the functional group of the water-absorbent resin
Mixing with a cross-linking agent having one or more functional groups in one molecule, a modification method of increasing the cross-linking density in the vicinity of the surface of the water-absorbent resin by reacting, mixing the water-absorbent resin and a hydrophobic substance,
A modification method may be mentioned in which a reaction is carried out if necessary to carry out a hydrophobic treatment.

【0052】また、本発明の方法を実施して得られる吸
水性樹脂あるいは上記の表面処理を施した吸水剤に従来
公知の造粒方法を施してもよい。
Further, the water-absorbent resin obtained by carrying out the method of the present invention or the water-absorbing agent subjected to the above surface treatment may be subjected to a conventionally known granulation method.

【0053】本発明の方法にしたがって得られた吸水性
樹脂あるいは吸水剤と水溶性高分子、消臭剤、香料、薬
剤、植物成育助剤、殺菌剤、防黴剤、発泡剤、顔料、染
料、カーボンブラック、活性炭、単繊維等とを混合し、
得られた吸水性樹脂に新たな機能を付与することもでき
る。
Water-absorbent resin or water-absorbent obtained by the method of the present invention and water-soluble polymer, deodorant, fragrance, drug, plant growth aid, bactericide, fungicide, foaming agent, pigment, dye , Carbon black, activated carbon, single fiber, etc.,
It is also possible to impart a new function to the obtained water absorbent resin.

【0054】[0054]

【実施例】以下実施例および比較例を挙げて本発明を更
に詳述するが、本発明の範囲がこれらの例により限定さ
れるものではない。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the scope of the present invention is not limited by these examples.

【0055】また、これらの例に記載の粒子状含水ゲル
状重合体の乾燥換算時の粒度分布、乾燥粉砕物の粒度分
布、乾燥粉砕物の吸水性樹脂としての吸水倍率、水可溶
分および吸水速度は下記の試験方法によって測定した数
値を示す。
Further, the particle size distribution of the particulate hydrogel polymer described in these examples in dry conversion, the particle size distribution of the dry pulverized product, the water absorption capacity of the dry pulverized product as a water absorbent resin, the water-soluble content, and The water absorption rate is a value measured by the following test method.

【0056】A:粒子状含水ゲル状重合体の乾燥換算時
の粒度分布 サンプリングした粒子状含水ゲル状重合体(固形分α重
量%)25gを、20重量%塩化ナトリウム水溶液12
00g中に投入し、スターラーチップを300rpmで
回転させ、60分間攪拌した。攪拌終了後、フルイ(目
開き9.5mm、2.0mm、0.85mm、0.60
mm、0.30mm、0.075mm)に上記分散液を
投入し、上から6000gの20重量%塩化ナトリウム
水溶液をゆっくり注ぎ、粒子状含水ゲル状重合体を分級
した。分級されたそれぞれのフルイ上の粒子状含水ゲル
状重合体を充分に水切り後、秤量した。フルイの目開き
は、下記の数式1に従い粒子状含水ゲル状重合体の固形
分100重量%相当のフルイの目開きR(100)に換
算した。対数確率紙に固形分100重量%相当の、すな
わち乾燥換算時の粒子状含水ゲル状重合体の粒度分布を
プロットした。
A: Particle size distribution of the particulate hydrous gel polymer in terms of dryness: 25 g of the sampled hydrous gel polymer (solid content α% by weight) was added to a 20% by weight sodium chloride aqueous solution 12
It was put into 100 g and the stirrer chip was rotated at 300 rpm and stirred for 60 minutes. After stirring, sieve (opening 9.5 mm, 2.0 mm, 0.85 mm, 0.60
mm, 0.30 mm, 0.075 mm), the above dispersion was charged, and 6000 g of a 20 wt% sodium chloride aqueous solution was slowly poured from above to classify the particulate hydrogel polymer. The classified hydrogel polymer particles on each sieve were thoroughly drained and then weighed. The sieve opening was converted to a sieve opening R (100) corresponding to 100% by weight of the solid content of the particulate hydrogel polymer according to the following mathematical formula 1. The particle size distribution of the particulate hydrous gel polymer corresponding to a solid content of 100% by weight, that is, in terms of dry matter was plotted on a logarithmic probability paper.

【0057】[0057]

【数1】 [Equation 1]

【0058】(式中、R(100):固形分100重量
%の粒子状含水ゲル状重合体に換算した時のフルイの目
開き(mm)、 w:分級、水切り後の含水ゲル状重合体の総重量
(g)、 γ:20%塩化ナトリウム水溶液中で膨潤した含水ゲル
状重合体が分級されたフルイの目開き(mm)であ
る。) B:乾燥粉砕物の粒度分布 JIS標準フルイの網目が16メッシュ、30メッシ
ュ、50メッシュ、100メッシュおよび受け皿の分級
皿を重ね、その上に含水ゲル状重合体の乾燥粉砕物を3
0g入れ、フルイ振盪機で10分間振盪させた後、それ
ぞれのフルイの上の分級物を秤量して重量%で表示し
た。
(In the formula, R (100): sieve opening (mm) when converted to a particulate hydrogel polymer having a solid content of 100% by weight, w: hydrogel polymer after classification and draining) (G), γ: mesh size (mm) of sieve classified by hydrous gel polymer swollen in 20% aqueous sodium chloride solution) B: particle size distribution of dry ground product JIS standard sieve A mesh of meshes of 16 mesh, 30 mesh, 50 mesh, 100 mesh and a saucer was placed on top of this, and the dried pulverized product of the hydrogel polymer was placed on top of it.
After adding 0 g and shaking with a sieve shaker for 10 minutes, the classified matter on each sieve was weighed and displayed in% by weight.

【0059】C:乾燥粉砕物の吸水倍率 JIS標準フルイの網目16メッシュから100メッシ
ュに分級した含水ゲル状重合体の乾燥粉砕物約0.2g
を精秤し、不織布製のティーバッグ式袋(40mm×1
50mm)に均一に入れ、0.9%食塩水に浸漬し60
分後の重量を測定し下記の数式2に従って吸水倍率を求
めた。
C: Water absorption capacity of dry pulverized product Approximately 0.2 g of dry pulverized product of hydrous gel polymer classified according to JIS standard sieve mesh 16 mesh to 100 mesh
Precisely weighed, and made of non-woven tea bag type bag (40mm × 1
50 mm) and soak in 0.9% saline solution for 60
The weight after the minute was measured, and the water absorption capacity was determined according to the following mathematical formula 2.

【0060】[0060]

【数2】 [Equation 2]

【0061】D:乾燥粉砕物の水可溶分 JIS標準フルイの網目16メッシュから100メッシ
ュに分級した含水ゲル状重合体の乾燥粉砕物0.5gを
1000mlの脱イオン水中に分散し、16時間攪拌
後、ろ紙(TOYO#6)でろ過し、少なくとも100
gのろ液を得た。正確に100gのろ液を回転蒸発器で
2〜3ml程度まで濃縮し、脱イオン水を追加して、シ
ャーレ(W0 g)に移した。これを120℃で乾固し
た(W1g)。下記の数式3に従って水可溶分を求め
た。
D: Water-soluble content of dry pulverized product 0.5 g of dry pulverized product of hydrous gel-like polymer classified from JIS standard sieve mesh 16 mesh to 100 mesh was dispersed in 1000 ml of deionized water for 16 hours. After stirring, filter with a filter paper (TOYO # 6) to obtain at least 100
g of filtrate was obtained. Exactly 100 g of the filtrate was concentrated to about 2 to 3 ml with a rotary evaporator, deionized water was added, and the filtrate was transferred to a petri dish (W0 g). This was dried at 120 ° C. (W1g). The water-soluble content was determined according to the following mathematical formula 3.

【0062】[0062]

【数3】 [Equation 3]

【0063】E:乾燥粉砕物の吸水速度 100mlビーカーに0.9%食塩水50ml(30
℃)とスターラーチップを入れ、600rpmで攪拌し
た。JIS標準フルイの網目16メッシュから100メ
ッシュに分級した含水ゲル状重合体の乾燥粉砕物2.0
gをビーカー内へ瞬時に投入し、ストップウォッチをス
タートさせた。食塩水の流れの中心部で露出しているス
ターラーチップが膨潤した含水ゲル状重合体で隠れた時
点でストップウォッチを止め、得られた時間を吸水速度
とした。
E: Water absorption rate of dried pulverized product 50 ml of 0.9% saline solution (30 ml in a 100 ml beaker)
(° C.) and a stirrer chip were put in and stirred at 600 rpm. Dry pulverized product of hydrous gel polymer classified from JIS standard sieve mesh 16 mesh to 100 mesh 2.0
g was immediately put into the beaker, and the stopwatch was started. The stopwatch was stopped when the stirrer chip exposed at the center of the saline flow was hidden by the swollen hydrogel polymer, and the obtained time was defined as the water absorption rate.

【0064】実施例1 図1および2に示す全容量75リットル、剪断有効体積
24.9リットルの双腕型Z翼をもち、温度計(15)
を備えたジャケット(6)付きステンレス製、加圧ニー
ダー(7)の加圧蓋(5)およびカバー(4)を、図1
に示した状態で、液供給口(1)およびノズル(2′)
は閉じた状態で、ガス供給口(2)から50リットル/
分で窒素を投入し、ガス排出口(1′)からガスを排出
させた。この時カバー(4)は、自重により加圧ニーダ
ー(7)とシール材(9)を介して密着している。一
方、ガス供給口(3)から80リットル/分で窒素を投
入し、ガス排出口(3′)からガスを排出させた。上記
の操作を10分間続け、系内を窒素置換した後、ガス排
出口(3′)を閉じた。別容器でアクリル酸ナトリウム
75mol%およびアクリル酸25mol%からなる単
量体成分の水溶液30kg(単量体成分37重量%)
と、架橋剤としてのトリメチロールプロパントリアクリ
レート18.6g(0.05mol%対単量体成分)と
の水溶液に窒素ガスを吹き込み溶存酸素を追い出した。
得られた単量体成分の水溶液を窒素で押しながら液供給
口(1)から投入した。次いで、2本のニーダーの羽根
を30rpmで回転させ、ジャケット(6)および加圧
蓋内部のジャケット(5′)に35℃の温水を通し、単
量体成分を加熱した。次いで重合開始剤として過硫酸ナ
トリウム15.0gを含有する水溶液とL−アスコルビ
ン酸0.75gを含有する水溶液を液供給口(1)から
添加した。添加終了後液供給口(1)を閉じた。重合開
始剤を添加して4分後に重合が開始し、13分後に89
℃の重合ピーク温度に到達した。さらに30rpmで攪
拌を続け、重合開始後25分で粒子状の含水ゲル状重合
体(A)を得た。この時、含水ゲル状重合体(A)のう
ち、約10重量%が10mm以上のサイズの含水ゲル状
重合体であった。なお、10mm以上のサイズの含水ゲ
ル状重合体の量は、500gの含水ゲル状重合体をサン
プリングし、目視で10mm以上のサイズの含水ゲル状
重合体を選別し、これを重量%で表示した。ジャケット
の温水温度を70℃に上げ、約65℃に調整された含水
ゲル状重合体(A)に、羽根を30rpmで回転させな
がら、油圧装置によりシリンダー(8)を動かし、加圧
蓋(5)を図3に示した状態まで下ろした。すなわち
0.40kg/cm2 の面圧が含水ゲル状重合体(A)
にかかるようにシリンダー(8)の油圧を調整し、窒素
雰囲気下で10分間、荷重下に含水ゲル状重合体(A)
に剪断力を加え、粒子状に細分化された含水ゲル状重合
体(1)を得た。この時、加圧蓋は完全密閉の位置(す
なわちゲル攪拌空間(14)/剪断有効体積=1)から
43mm浮き上がっていた。ゲル攪拌空間(14)/剪
断有効体積=1.33であり、ゲル攪拌空間(14)/
仕込みゲル体積=1.35であった。得られた含水ゲル
状重合体(1)は、油圧装置によりシリンダー(8)を
動かし、加圧蓋(5)を上昇させ、加圧ニーダー(7)
を傾胴させて取り出した。得られた含水ゲル状重合体
(A)および含水ゲル状重合体(1)のそれぞれ1kg
ずつを200mm×280mm×80mmの金網に入
れ、160℃で30分間熱風乾燥した。含水ゲル状重合
体(A)は乾燥状態が不均一で、未乾燥部分があり、粉
砕不可能であった。そこで含水ゲル状重合体(A)の乾
燥をさらに35分間追加した。得られた乾燥物をそれぞ
れロールミルで粉砕して16メッシュ(1000mμ)
パスの乾燥粉砕物(A)および乾燥粉砕物(1)を得
た。得られた含水ゲル状重合体の粒度分布および乾燥粉
砕物の粒度分布、吸水性樹脂としての吸水倍率、水可溶
分および吸水速度を上記の試験方法によって測定し、結
果を表1〜表4に示した。
Example 1 A thermometer (15) having a dual-arm Z wing shown in FIGS. 1 and 2 with a total volume of 75 liters and an effective shearing volume of 24.9 liters.
The pressure lid (5) and cover (4) of the pressure kneader (7) made of stainless steel with a jacket (6) equipped with are shown in FIG.
In the state shown in, the liquid supply port (1) and the nozzle (2 ')
Is closed, 50 liters / from the gas supply port (2)
Nitrogen was added in minutes, and the gas was discharged from the gas discharge port (1 '). At this time, the cover (4) is in close contact with the pressure kneader (7) through the sealing material (9) by its own weight. On the other hand, nitrogen was introduced from the gas supply port (3) at 80 liters / minute, and the gas was discharged from the gas discharge port (3 '). The above operation was continued for 10 minutes, the system was replaced with nitrogen, and then the gas outlet (3 ') was closed. 30 kg aqueous solution of monomer component consisting of 75 mol% sodium acrylate and 25 mol% acrylic acid in another container (37 wt% monomer component)
Then, nitrogen gas was blown into an aqueous solution of 18.6 g (0.05 mol% relative to the monomer component) of trimethylolpropane triacrylate as a cross-linking agent to expel dissolved oxygen.
The resulting aqueous solution of the monomer component was charged from the liquid supply port (1) while pressing with nitrogen. Next, the blades of the two kneaders were rotated at 30 rpm, and hot water at 35 ° C was passed through the jacket (6) and the jacket (5 ') inside the pressure lid to heat the monomer components. Then, an aqueous solution containing 15.0 g of sodium persulfate as a polymerization initiator and an aqueous solution containing 0.75 g of L-ascorbic acid were added from the liquid supply port (1). After the addition was completed, the liquid supply port (1) was closed. Polymerization started 4 minutes after the addition of the polymerization initiator and 89 minutes after 13 minutes.
A polymerization peak temperature of ° C was reached. Further, stirring was continued at 30 rpm, and 25 minutes after the initiation of the polymerization, a particulate hydrogel polymer (A) was obtained. At this time, about 10% by weight of the hydrogel polymer (A) was a hydrogel polymer having a size of 10 mm or more. The amount of the water-containing gel-like polymer having a size of 10 mm or more was determined by sampling 500 g of the water-containing gel-like polymer and visually selecting the water-containing gel-like polymer having a size of 10 mm or more. .. The warm water temperature of the jacket was raised to 70 ° C., and while the blade was rotated at 30 rpm, the cylinder (8) was moved by the hydraulic device to the hydrogel polymer (A) adjusted to about 65 ° C. ) Was lowered to the state shown in FIG. That is, a hydrogel polymer (A) having a surface pressure of 0.40 kg / cm 2
The hydraulic pressure of the cylinder (8) is adjusted so as to affect the pressure, and the hydrous gel polymer (A) is loaded under a load for 10 minutes under a nitrogen atmosphere.
A shearing force was applied to to obtain a hydrogel polymer (1) finely divided into particles. At this time, the pressure lid was lifted by 43 mm from the completely closed position (namely, gel stirring space (14) / effective shearing volume = 1). Gel stirring space (14) / effective shear volume = 1.33, gel stirring space (14) /
The charged gel volume was 1.35. The hydrogel polymer (1) thus obtained was moved by moving a cylinder (8) with a hydraulic device to raise a pressure lid (5), and a pressure kneader (7).
Was tilted and taken out. 1 kg each of the resulting hydrogel polymer (A) and hydrogel polymer (1)
Each of them was put in a wire net of 200 mm × 280 mm × 80 mm and dried with hot air at 160 ° C. for 30 minutes. The hydrogel polymer (A) was not uniformly dried, had undried portions, and could not be pulverized. Then, the hydrogel polymer (A) was dried for additional 35 minutes. The obtained dried product was pulverized with a roll mill to obtain 16 mesh (1000 mμ)
A dry ground product (A) and a dry ground product (1) were obtained. The particle size distribution of the obtained hydrous gel polymer and the particle size distribution of the dried and pulverized product, the water absorption capacity as a water absorbent resin, the water-soluble content and the water absorption rate were measured by the above test methods, and the results are shown in Tables 1 to 4. It was shown to.

【0065】比較例1 実施例1において、加圧蓋(5)を図3の状態まで下ろ
さず、図1の状態で窒素雰囲気下で10分間、無荷重下
に含水ゲル状重合体(A)に剪断力を加えた以外は、実
施例1と同様の操作を行い、比較含水ゲル状重合体(1
a)を得た。得られた比較含水ゲル状重合体(1a)を
実施例1と同様にして160℃で30分間熱風乾燥し
た。しかし乾燥状態が不均一で、未乾燥部分があり、粉
砕不可能であった。そこで、比較含水ゲル状重合体(1
a)をさらに30分間乾燥し、得られた比較乾燥物を実
施例1と同様に粉砕して比較乾燥粉砕物(1a)を得
た。得られた比較含水ゲル状重合体および比較乾燥粉砕
物を実施例1と同様の試験方法によって評価し、結果を
表1〜表4に示した。
COMPARATIVE EXAMPLE 1 In Example 1, the pressure lid (5) was not lowered to the state of FIG. 3, and the hydrogel polymer (A) was loaded under a nitrogen atmosphere for 10 minutes in the state of FIG. 1 under no load. The same operation as in Example 1 was carried out except that shearing force was applied to the comparative hydrogel polymer (1
a) was obtained. The obtained comparative hydrogel polymer (1a) was dried in the same manner as in Example 1 at 160 ° C. for 30 minutes with hot air. However, the dry state was non-uniform, there were undried portions, and crushing was impossible. Therefore, a comparative hydrogel polymer (1
The a) was further dried for 30 minutes, and the obtained comparative dried product was pulverized in the same manner as in Example 1 to obtain a comparative dried pulverized product (1a). The obtained comparative hydrogel polymer and the comparative dry pulverized product were evaluated by the same test method as in Example 1, and the results are shown in Tables 1 to 4.

【0066】実施例2 実施例1において、89℃の重合ピーク温度に達した際
に、油圧装置によりシリンダー(8)を動かし、加圧蓋
(5)を図3の状態まで下ろした以外は、実施例1と同
様の操作を行い、含水ゲル状重合体(2)を得た。得ら
れた含水ゲル状重合体(2)を実施例1と同様にして熱
風乾燥、粉砕し、乾燥粉砕物(2)を得た。得られた含
水ゲル状重合体および乾燥粉砕物を実施例1と同様の試
験方法によって評価し、結果を表1〜表4に示した。
Example 2 In Example 1, except that when the polymerization peak temperature of 89 ° C. was reached, the cylinder (8) was moved by the hydraulic device and the pressure lid (5) was lowered to the state of FIG. The same operation as in Example 1 was performed to obtain a hydrogel polymer (2). The obtained hydrogel polymer (2) was dried with hot air and pulverized in the same manner as in Example 1 to obtain a dry pulverized product (2). The obtained hydrogel polymer and dried and pulverized product were evaluated by the same test method as in Example 1, and the results are shown in Tables 1 to 4.

【0067】実施例3 実施例1において、重合開始直後から加圧蓋(5)を、
完全密閉の位置から20mm浮き上がった位置に下ろし
た以外は実施例1と同様の操作を行った。重合開始剤を
添加して3分後に重合が開始し、12分後に86℃の重
合ピーク温度に到達した。さらに30rpmで攪拌を続
け、重合開始後40分で60℃の粒子状の含水ゲル状重
合体(3)を得た。重合熱による発熱から見て、重合率
約60%あたりから含水ゲル状重合体に圧力が加わり始
め、その面圧は0.12kg/cm2 に調整した。最終
的に加圧蓋(5)は、完全密閉の位置から73mm浮き
上がった位置で安定し、その際のゲル攪拌空間(14)
/剪断有効体積=1.57であり、ゲル攪拌空間(1
4)/仕込みゲル体積=1.59であった。得られた含
水ゲル状重合体(3)を実施例1と同様にして熱風乾
燥、粉砕し、乾燥粉砕物(3)を得た。得られた含水ゲ
ル状重合体および乾燥粉砕物を実施例1と同様の試験方
法によって評価し、結果を表1〜表4に示した。
Example 3 In Example 1, the pressure lid (5) was placed immediately after the initiation of polymerization,
The same operation as in Example 1 was carried out except that it was lowered from the completely closed position to a position lifted by 20 mm. The polymerization started 3 minutes after the addition of the polymerization initiator, and reached the polymerization peak temperature of 86 ° C. 12 minutes later. Further, stirring was continued at 30 rpm, and 40 minutes after initiation of the polymerization, a particulate hydrogel polymer (3) at 60 ° C. was obtained. From the viewpoint of heat generated by the heat of polymerization, pressure started to be applied to the hydrogel polymer at a polymerization rate of about 60%, and the surface pressure was adjusted to 0.12 kg / cm 2 . Finally, the pressure lid (5) is stabilized at a position 73 mm above the completely closed position, and the gel stirring space (14) at that time is stabilized.
/ Effective volume of shear = 1.57, and the gel stirring space (1
4) / Prepared gel volume = 1.59. The obtained hydrogel polymer (3) was dried with hot air and pulverized in the same manner as in Example 1 to obtain a dry pulverized product (3). The obtained hydrogel polymer and dried and pulverized product were evaluated by the same test method as in Example 1, and the results are shown in Tables 1 to 4.

【0068】実施例4 実施例1において、単量体成分の水溶液を36kg(単
量体成分37重量%)、架橋剤としてのトリメチロール
プロパントリアクリレートを22.3g(0.05mo
l%対単量体成分)とし、重合開始直後から加圧蓋
(5)を、完全密閉の位置から35mm浮き上がった位
置に下ろした以外は実施例1と同様の操作を行った。重
合開始剤を添加して3分後に重合が開始し、12分後に
94℃の重合ピーク温度に到達した。さらに30rpm
で攪拌を続け、重合開始後25分で70℃の粒子状の含
水ゲル状重合体(4)を得た。重合熱による発熱から見
て、重合率約60%あたりから含水ゲル状重合体に圧力
が加わり始め、その面圧は0.40kg/cm2 に調整
した。最終的に加圧蓋(5)は、完全密閉の位置から6
3mm浮き上がった位置で安定し、その際のゲル攪拌空
間(14)/剪断有効体積=1.49であり、ゲル攪拌
空間(14)/仕込みゲル体積=1.25であった。得
られた含水ゲル状重合体(4)を実施例1と同様にして
熱風乾燥、粉砕し、乾燥粉砕物(4)を得た。得られた
含水ゲル状重合体および乾燥粉砕物を実施例1と同様の
試験方法によって評価し、結果を表1〜表4に示した。
Example 4 In Example 1, 36 kg of an aqueous solution of a monomer component (37% by weight of a monomer component) and 22.3 g (0.05 mo of trimethylolpropane triacrylate as a crosslinking agent) were used.
1% relative to the monomer component) and the same operation as in Example 1 was carried out except that the pressure lid (5) was lowered to a position 35 mm above the completely closed position immediately after the initiation of polymerization. The polymerization started 3 minutes after the addition of the polymerization initiator, and reached the polymerization peak temperature of 94 ° C. 12 minutes later. Further 30 rpm
Stirring was continued for 25 minutes after initiation of polymerization to obtain a particulate hydrogel polymer (4) at 70 ° C. From the viewpoint of heat generated by the heat of polymerization, pressure started to be applied to the hydrogel polymer at a polymerization rate of about 60%, and the surface pressure was adjusted to 0.40 kg / cm 2 . Finally, the pressure lid (5) is 6
It was stable at a position where it was lifted by 3 mm, and the gel agitation space (14) / effective shearing volume = 1.49 at that time, and the gel agitation space (14) / charged gel volume = 1.25. The resulting hydrogel polymer (4) was dried with hot air and pulverized in the same manner as in Example 1 to obtain a dry pulverized product (4). The obtained hydrogel polymer and dried and pulverized product were evaluated by the same test method as in Example 1, and the results are shown in Tables 1 to 4.

【0069】実施例5 実施例1と同様の方法で重合を行い、実施例1で得られ
たものと同様の含水ゲル状重合体(A)を得た。この含
水ゲル状重合体(A)を約50℃に調整し、羽根を20
rpmで回転させながら、油圧装置により加圧蓋(5)
を下ろした。0.12kg/cm2 の面圧が含水ゲル状
重合体(A)にかかるようにシリンダー(8)の油圧を
調整し、窒素雰囲気下で15分間、含水ゲル状重合体
(A)に剪断力を加え、粒子状に細分化された含水ゲル
状重合体(5)を得た。この時、加圧蓋(5)は完全密
閉の位置から73mm浮き上がっており、ゲル攪拌空間
/剪断有効体積=1.57であり、ゲル攪拌空間/仕込
みゲル体積=1.59であった。得られた含水ゲル状重
合体(5)を実施例1と同様にして熱風乾燥、粉砕し、
乾燥粉砕物(5)を得た。得られた含水ゲル状重合体お
よび乾燥粉砕物を実施例1と同様の試験方法によって評
価し、結果を表1〜表4に示した。
Example 5 Polymerization was carried out in the same manner as in Example 1 to obtain a hydrogel polymer (A) similar to that obtained in Example 1. The water-containing gel polymer (A) was adjusted to about 50 ° C. and the blade was adjusted to 20.
While rotating at rpm, pressurizing lid (5) by hydraulic system
Lowered. The hydraulic pressure of the cylinder (8) was adjusted so that the surface pressure of 0.12 kg / cm 2 was applied to the hydrous gel polymer (A), and the hydrous gel polymer (A) was sheared for 15 minutes under a nitrogen atmosphere. Was added to obtain a hydrogel polymer (5) finely divided into particles. At this time, the pressure lid (5) was lifted up 73 mm from the completely closed position, and the gel stirring space / effective shear volume = 1.57 and the gel stirring space / charged gel volume = 1.59. The obtained hydrogel polymer (5) was dried with hot air and pulverized in the same manner as in Example 1.
A dry ground product (5) was obtained. The obtained hydrogel polymer and dried and pulverized product were evaluated by the same test method as in Example 1, and the results are shown in Tables 1 to 4.

【0070】実施例6 実施例5において、含水ゲル状重合体(A)の温度を7
0℃、羽根の回転数を10rpm、含水ゲル状重合体
(A)にかかる面圧を1.0kg/cm2 とした以外
は、実施例5と同様の操作を行い、含水ゲル状重合体
(6)を得た。この時、加圧蓋(5)は完全密閉の位置
から15mm浮き上がっており、ゲル攪拌空間/剪断有
効体積=1.12であり、ゲル攪拌空間/仕込みゲル体
積=1.13であった。得られた含水ゲル状重合体
(6)を実施例5と同様にして熱風乾燥、粉砕し、乾燥
粉砕物(6)を得た。得られた含水ゲル状重合体および
乾燥粉砕物を実施例5と同様の試験方法によって評価
し、結果を表1〜表4に示した。
Example 6 In Example 5, the temperature of the hydrogel polymer (A) was adjusted to 7
The same procedure as in Example 5 was carried out except that the temperature was 0 ° C., the rotation speed of the blades was 10 rpm, and the surface pressure applied to the hydrous gel polymer (A) was 1.0 kg / cm 2. 6) was obtained. At this time, the pressure lid (5) was lifted by 15 mm from the completely closed position, and the gel stirring space / effective shear volume = 1.12 and the gel stirring space / charged gel volume = 1.13. The obtained hydrogel polymer (6) was dried with hot air and pulverized in the same manner as in Example 5 to obtain a dry pulverized product (6). The obtained hydrogel polymer and dried pulverized product were evaluated by the same test method as in Example 5, and the results are shown in Tables 1 to 4.

【0071】比較例2 実施例1と同様の方法で重合を行い、実施例1で得られ
たものと同様の含水ゲル状重合体(A)を得た。この含
水ゲル状重合体(A)を37℃に調整し、以後の操作は
実施例1と同様に行った。含水ゲル状重合体(A)は、
混練状態となり粒子状の含水ゲル状重合体は得られなか
った。
Comparative Example 2 Polymerization was carried out in the same manner as in Example 1 to obtain a hydrogel polymer (A) similar to that obtained in Example 1. The hydrogel polymer (A) was adjusted to 37 ° C., and the subsequent operations were performed in the same manner as in Example 1. The hydrous gel polymer (A) is
A kneaded state was not obtained and a particulate hydrogel polymer was not obtained.

【0072】比較例3 実施例1において、1.52kg/cm2 の面圧が含水
ゲル状重合体(A)にかかるように調整した以外は、実
施例1と同様の操作を行ったところ、羽根の駆動モータ
ーのアンメーターが定格値を大きく越え、ニーダーの運
転が不可能であった。
Comparative Example 3 The same operation as in Example 1 was conducted except that the surface pressure of 1.52 kg / cm 2 was applied to the hydrous gel polymer (A) in Comparative Example 3. The ammeter of the blade drive motor greatly exceeded the rated value, making it impossible to operate the kneader.

【0073】比較例4 実施例1において、重合開始直後から加圧蓋(5)を、
完全密閉の位置から115mm浮き上がった位置に下ろ
した以外は、実施例1と同様の操作を行ったところ、重
合開始剤を添加して3分後に重合が開始し、12分後に
88℃の重合ピーク温度に到達した。さらに30rpm
で攪拌を続け、重合開始後25分で62℃の比較含水ゲ
ル状重合体(4a)を得た。加圧蓋(5)の動き、およ
び羽根の駆動モーターのアンメーターからみて、加圧蓋
(5)は含水ゲル状重合体と接触はしているが、含水ゲ
ル状重合体にはほとんど荷重がかかっていないと思われ
た。この時、ゲル攪拌空間/剪断有効体積=1.89で
あり、ゲル攪拌空間/仕込みゲル体積=1.91であっ
た。得られた比較含水ゲル状重合体(4a)を実施例1
と同様にして160℃で30分間熱風乾燥した。しかし
乾燥状態が不均一で、未乾燥部分があり、粉砕不可能で
あった。そこで、比較含水ゲル状重合体(4a)をさら
に30分間乾燥し、得られた比較乾燥物を実施例1と同
様に粉砕して比較乾燥粉砕物(4a)を得た。得られた
比較含水ゲル状重合体および比較乾燥粉砕物を実施例1
と同様の試験方法によって評価し、結果を表1〜表4に
示した。
Comparative Example 4 In Example 1, immediately after the initiation of polymerization, the pressure lid (5) was
The same operation as in Example 1 was carried out except that it was lifted to a position where it was lifted 115 mm from the completely closed position. Polymerization started 3 minutes after the addition of the polymerization initiator, and after 12 minutes the polymerization peak at 88 ° C. Reached temperature. Further 30 rpm
The stirring was continued at 25 ° C., and a comparative hydrogel polymer (4a) having a temperature of 62 ° C. was obtained 25 minutes after the initiation of the polymerization. As seen from the movement of the pressure lid (5) and the ammeter of the blade drive motor, the pressure lid (5) is in contact with the hydrogel polymer, but the hydrogel polymer is almost loaded. It didn't seem to depend. At this time, the gel stirring space / effective shear volume = 1.89 and the gel stirring space / charged gel volume = 1.91. The obtained comparative hydrogel polymer (4a) was used in Example 1
In the same manner as above, hot air drying was performed at 160 ° C. for 30 minutes. However, the dry state was non-uniform, there were undried portions, and crushing was impossible. Therefore, the comparative hydrogel polymer (4a) was further dried for 30 minutes, and the obtained comparative dried product was pulverized in the same manner as in Example 1 to obtain a comparative dried pulverized product (4a). The obtained comparative hydrogel polymer and comparative dry ground product were used in Example 1.
Evaluation was carried out by the same test method as described in Table 1 and the results are shown in Tables 1 to 4.

【0074】実施例7 全容量10リットル、剪断有効体積5.5リットルの双
腕型シグマ翼をもち、温度計を備えたジャケット付きス
テンレス製ニーダーに、アクリル酸ナトリウム75mo
l%および2−アクリルアミド−2−メチルプロパンス
ルホン酸25mol%からなる単量体成分の水溶液6.
6kg(単量体成分35重量%)と、架橋剤としての
N,N′−メチレンビスアクリルアミド2.3g(0.
08mol%対単量体成分)とを入れ、窒素ガスを吹き
込み反応系内を窒素置換した。次いで、2本のニーダー
の羽根を45rpmで回転させ、ジャケットに35℃の
温水を通して加熱しながら、重合開始剤として過硫酸ナ
トリウム2.3gとL−アスコルビン酸0.1gを添加
した。重合開始剤を添加して2分後に重合が開始し、1
0分後に89℃の重合ピーク温度に到達した。さらに4
5rpmで攪拌を続け、重合開始後25分で粒子状の含
水ゲル状重合体(B)を得た。この時、ゲル状重合体
(B)のうち、約15重量%が10mm以上のサイズの
含水ゲル状重合体であった。ジャケットの温水温度を7
5℃に上げ、約70℃に調整された含水ゲル状重合体
(B)に、羽根を45rpmで回転させながら、加圧蓋
を下ろした。約0.06kg/cm2 の面圧が含水ゲル
状重合体(B)にかかるように調整し、窒素雰囲気下で
15分間含水ゲル状重合体(B)に剪断力を加え、粒子
状に細分化された含水ゲル状重合体(7)を得た。この
時、加圧蓋は完全密閉の位置(すなわちゲル攪拌空間/
剪断有効体積=1)から25mm浮き上がっており、ゲ
ル攪拌空間/剪断有効体積=1.25であり、ゲル攪拌
空間/仕込みゲル体積=1.25であった。得られた含
水ゲル状重合体(7)を実施例1と同様にして熱風乾
燥、粉砕し、乾燥粉砕物(7)を得た。得られた含水ゲ
ル状重合体および乾燥粉砕物を実施例1と同様の試験方
法によって評価し、結果を表1〜表4に示した。
Example 7 A stainless steel kneader equipped with a thermometer and equipped with a double-armed sigma blade having a total volume of 10 liters and an effective shearing volume of 5.5 liters, and 75 mo of sodium acrylate.
1. Aqueous solution of monomer component consisting of 1% and 2-acrylamido-2-methylpropanesulfonic acid 25 mol% 6.
6 kg (35% by weight of the monomer component) and 2.3 g of N, N'-methylenebisacrylamide as a crosslinking agent (0.
(08 mol% relative to the monomer component), and nitrogen gas was blown into the reaction system to replace the atmosphere in the reaction system with nitrogen. Then, while rotating the blades of the two kneaders at 45 rpm and heating the jacket with warm water of 35 ° C., 2.3 g of sodium persulfate and 0.1 g of L-ascorbic acid were added as polymerization initiators. Polymerization started 2 minutes after the polymerization initiator was added, and
A polymerization peak temperature of 89 ° C. was reached after 0 minutes. 4 more
Stirring was continued at 5 rpm, and 25 minutes after the initiation of polymerization, a particulate hydrogel polymer (B) was obtained. At this time, about 15% by weight of the gel polymer (B) was a hydrous gel polymer having a size of 10 mm or more. Set the hot water temperature of the jacket to 7
The temperature was raised to 5 ° C., and the hydrogel polymer (B) adjusted to about 70 ° C. was loaded with a pressure lid while rotating the blade at 45 rpm. It was adjusted so that a surface pressure of about 0.06 kg / cm 2 was applied to the hydrogel polymer (B), and shearing force was applied to the hydrogel polymer (B) for 15 minutes in a nitrogen atmosphere to subdivide it into particles. A hydrated gel polymer (7) was obtained. At this time, the pressure lid should be in a completely closed position (ie gel stirring space /
It was lifted by 25 mm from the effective shear volume = 1), the gel stirring space / effective shear volume = 1.25, and the gel stirring space / charged gel volume = 1.25. The obtained hydrogel polymer (7) was dried with hot air and pulverized in the same manner as in Example 1 to obtain a dry pulverized product (7). The obtained hydrogel polymer and dried and pulverized product were evaluated by the same test method as in Example 1, and the results are shown in Tables 1 to 4.

【0075】実施例8 実施例7において、加圧蓋の底部がメッシュ状になって
おり、反応系内を減圧にすることのできる加圧蓋を用い
る以外は実施例7と同じニーダーに、実施例7と同じ単
量体成分の水溶液を入れ、窒素ガスを吹き込み反応系内
を窒素置換した。次いで、2本のニーダーの羽根を45
rpmで回転させ、ジャケットに35℃の温水を通して
加熱しながら、重合開始剤として過硫酸ナトリウム2.
3gとL−アスコルビン酸0.1gを添加した。重合開
始直後から加圧蓋を、完全密閉の位置から10mm浮き
上がった位置に下ろした。この時、反応系内の気圧を1
00mmHgまで減圧した。重合開始剤を添加して2分
後に重合が開始し、10分後に70℃の重合ピーク温度
に到達した。さらに、含水ゲル状重合体の温度が約70
℃に保持されるようにジャケットの温水温度を75℃に
上げ、減圧下に攪拌を続けた。この時、加圧蓋は完全密
閉の位置から25mm浮き上がっており、ゲル攪拌空間
/剪断有効体積=1.25であり、ゲル攪拌空間/仕込
みゲル体積=1.25であった。重合開始後20分後に
反応系内を常圧(760mmHg)にもどし、さらに2
0rpmで攪拌を続け、重合開始後50分で、粒子状に
細分化された含水ゲル状重合体(8)を得た。得られた
含水ゲル状重合体(8)を実施例7と同様にして熱風乾
燥、粉砕し、乾燥粉砕物(8)を得た。得られた含水ゲ
ル状重合体および乾燥粉砕物を実施例7と同様の試験方
法によって評価し、結果を表1〜表4に示した。
Example 8 In Example 7, the same kneader as in Example 7 was used except that the bottom of the pressure lid had a mesh shape and the pressure inside the reaction system could be reduced. An aqueous solution of the same monomer component as in Example 7 was charged, and nitrogen gas was blown into the reaction system to replace it with nitrogen. Then 45 kneader blades
1. Rotate at rpm and heat the jacket with hot water of 35 ° C., while heating, sodium persulfate as a polymerization initiator 2.
3 g and L-ascorbic acid 0.1 g were added. Immediately after the start of polymerization, the pressure lid was lowered to a position 10 mm above the completely closed position. At this time, the atmospheric pressure in the reaction system is set to 1
The pressure was reduced to 00 mmHg. The polymerization started 2 minutes after the addition of the polymerization initiator, and reached the polymerization peak temperature of 70 ° C. 10 minutes later. Furthermore, the temperature of the hydrogel polymer is about 70.
The temperature of the hot water in the jacket was raised to 75 ° C so that the temperature was maintained at 0 ° C, and stirring was continued under reduced pressure. At this time, the pressure lid was lifted by 25 mm from the completely closed position, gel stirring space / effective shear volume = 1.25, and gel stirring space / charged gel volume = 1.25. After 20 minutes from the start of polymerization, the reaction system is returned to normal pressure (760 mmHg), and further 2
Stirring was continued at 0 rpm, and 50 minutes after the initiation of polymerization, a hydrogel polymer (8) finely divided into particles was obtained. The obtained hydrogel polymer (8) was dried with hot air and pulverized in the same manner as in Example 7 to obtain a dry pulverized product (8). The obtained hydrogel polymer and dried pulverized product were evaluated by the same test method as in Example 7, and the results are shown in Tables 1 to 4.

【0076】比較例5 実施例7において、加圧蓋を下ろさず、窒素雰囲気下で
15分間、無荷重下に含水ゲル状重合体(B)に剪断力
を加えた以外は、実施例7と同様の操作を行い、比較含
水ゲル状重合体(5a)を得た。得られた比較含水ゲル
状重合体(5a)を実施例7と同様にして160℃で3
0分間熱風乾燥した。しかし乾燥状態が不均一で、未乾
燥部分があり、粉砕不可能であった。そこで、比較含水
ゲル状重合体(5a)をさらに30分間乾燥し、得られ
た乾燥物を実施例7と同様に粉砕して比較乾燥粉砕物
(5a)を得た。得られた比較含水ゲル状重合体および
比較乾燥粉砕物を実施例7と同様の試験方法によって評
価し、結果を表1〜表4に示した。
Comparative Example 5 The same as Example 7 except that the hydrogel polymer (B) was subjected to shearing force under a load for 15 minutes in a nitrogen atmosphere without lowering the pressure lid. The same operation was performed to obtain a comparative hydrogel polymer (5a). The obtained comparative hydrous gel polymer (5a) was treated in the same manner as in Example 7 at 160 ° C. for 3 times.
It was dried with hot air for 0 minutes. However, the dry state was non-uniform, there were undried portions, and crushing was impossible. Therefore, the comparative hydrogel polymer (5a) was further dried for 30 minutes, and the dried product obtained was pulverized in the same manner as in Example 7 to obtain a comparative dry pulverized product (5a). The obtained comparative hydrogel polymer and the comparative dry pulverized product were evaluated by the same test method as in Example 7, and the results are shown in Tables 1 to 4.

【0077】実施例9 実施例1において、重合開始剤として過硫酸ナトリウム
を37.5g用いる以外は実施例1と同様の操作を行
い、含水ゲル状重合体(9)を得た。得られた含水ゲル
状重合体(9)を、熱風乾燥機(通気式乾燥機、図6参
照)中に厚さ35mmに展開した。ついで、フレッシュ
空気導入管および水蒸気導入管からの気体を熱交換器に
導入し、熱媒導入管から導入される伝熱媒体により加熱
して温度105℃、露点85℃の水蒸気−空気混合気体
からなる熱風を0.8m/sec.の風速で吹き付けた
ところ、50分で含水率8%程度まで乾燥した乾燥物を
得た。該混合気体の一部を排出管より排気し、ブロワに
より熱交換器に循環した。得られた乾燥物を実施例1と
同様に粉砕して乾燥粉砕物(9)を得た。得られた含水
ゲル状重合体および乾燥粉砕物を実施例1と同様の試験
方法によって評価し、結果を表1〜表4に示した。また
以下の方法で乾燥粉砕物の残存単量体量を定量したとこ
ろ、20ppmであった。
Example 9 A hydrogel polymer (9) was obtained in the same manner as in Example 1 except that 37.5 g of sodium persulfate was used as a polymerization initiator. The obtained hydrogel polymer (9) was spread in a hot air drier (aeration type drier, see FIG. 6) to a thickness of 35 mm. Then, the gas from the fresh air introduction pipe and the steam introduction pipe is introduced into the heat exchanger, and heated by the heat transfer medium introduced from the heat medium introduction pipe to change the temperature from 105 ° C. and the dew point 85 ° C. from the steam-air mixed gas. Hot air of 0.8 m / sec. When sprayed at a wind speed of, a dried product was obtained in which the water content was dried to about 8% in 50 minutes. A part of the mixed gas was exhausted from an exhaust pipe and circulated in a heat exchanger by a blower. The dried product thus obtained was pulverized in the same manner as in Example 1 to obtain a dry pulverized product (9). The obtained hydrogel polymer and dried and pulverized product were evaluated by the same test method as in Example 1, and the results are shown in Tables 1 to 4. The amount of residual monomer in the dried and pulverized product was quantified by the following method and found to be 20 ppm.

【0078】残存単量体量の定量方法 乾燥粉砕物0.50gを1000mlの脱イオン水中に
分散し、2時間攪拌後、ワットマンろ紙GF/F(粒子
保持能0.7ミクロン)でろ過し、液体クロマトグラフ
で測定した。
Method for Quantifying Residual Monomer Amount 0.50 g of the dried and ground product was dispersed in 1000 ml of deionized water, stirred for 2 hours, and then filtered through Whatman filter paper GF / F (particle retention capacity 0.7 micron), It was measured by liquid chromatography.

【0079】比較例6 比較例1において、重合開始剤として過硫酸ナトリウム
を37.5g用いる以外は比較例1と同様の操作を行
い、比較含水ゲル状重合体(6a)を得た。得られた比
較含水ゲル状重合体(6a)を実施例9と同様にして乾
燥した。しかし乾燥状態が不均一で、未乾燥部分があ
り、粉砕不可能であった。そこで、比較含水ゲル状重合
体(6a)をさらに70分間乾燥し、得られた乾燥物を
実施例9と同様に粉砕して比較乾燥粉砕物(6a)を得
た。得られた比較含水ゲル状重合体および比較乾燥粉砕
物を実施例9と同様の試験方法によって評価し、結果を
表1〜表4に示した。また乾燥粉砕物の残存単量体量を
実施例9と同様の試験方法によって定量したところ、2
0ppmであった。
Comparative Example 6 The procedure of Comparative Example 1 was repeated except that 37.5 g of sodium persulfate was used as the polymerization initiator to obtain a comparative hydrogel polymer (6a). The obtained comparative hydrogel polymer (6a) was dried in the same manner as in Example 9. However, the dry state was non-uniform, there were undried portions, and crushing was impossible. Therefore, the comparative hydrogel polymer (6a) was further dried for 70 minutes, and the obtained dried product was pulverized in the same manner as in Example 9 to obtain a comparative dried pulverized product (6a). The obtained comparative hydrogel polymer and the comparative dry pulverized product were evaluated by the same test method as in Example 9, and the results are shown in Tables 1 to 4. Further, the amount of residual monomer of the dried pulverized product was quantified by the same test method as in Example 9, and it was 2
It was 0 ppm.

【0080】実施例10 実施例1において得られた乾燥粉砕物(1)100重量
部を、グリセリン1重量部、水2重量部およびイソプロ
パノール8重量部からなる水性混合物と混合した。得ら
れた混合物を、オイルバス(195℃)に漬けられたボ
ウルに投入し、攪拌下で45分間熱処理し、吸水剤(1
0)を得た。得られた吸水剤を実施例1と同様の試験方
法によって評価し、結果を表1〜表4に示した。また以
下の方法で加圧下吸水性能を評価した。5分および30
分の加圧下吸水倍率はそれぞれ17ml/gおよび26
ml/gであった。
Example 10 100 parts by weight of the dry ground product (1) obtained in Example 1 were mixed with an aqueous mixture consisting of 1 part by weight of glycerin, 2 parts by weight of water and 8 parts by weight of isopropanol. The resulting mixture was placed in a bowl immersed in an oil bath (195 ° C.) and heat-treated for 45 minutes under stirring to give a water-absorbing agent (1
0) was obtained. The water absorbent obtained was evaluated by the same test method as in Example 1, and the results are shown in Tables 1 to 4. The water absorption performance under pressure was evaluated by the following method. 5 minutes and 30
Water absorption capacity under pressure is 17 ml / g and 26
It was ml / g.

【0081】加圧下吸水性能の評価方法 図7に示す装置を用いて、5分間および30分間の加圧
下吸水量を測定し、加圧下吸水速度および加圧下吸水倍
率の評価をした。ビュレット31の上口32に栓33を
し、測定台34と空気口35を等高位にセットする。測
定台34中の直径70mmのガラスフィルター36上に
ろ紙37、吸水剤39を0.2gおよびろ紙37を載
せ、さらに20g/cm2 の重り38を載せ、所定時間
に吸収した人工尿(組成:尿素 1.9%、NaCl
0.8%、CaCl2 0.1%およびMgSO4
0.1%)の値を加圧下吸水倍率(ml/g)とした。
Evaluation Method of Water Absorption Under Pressurization The water absorption under pressure for 5 minutes and 30 minutes was measured using the apparatus shown in FIG. 7, and the water absorption rate under pressure and the water absorption capacity under pressure were evaluated. The upper port 32 of the buret 31 is capped with a plug 33, and the measuring table 34 and the air port 35 are set at a constant height. The filter paper 37, 0.2 g of the water absorbing agent 39 and the filter paper 37 were placed on the glass filter 36 having a diameter of 70 mm in the measuring table 34, and further the weight 38 of 20 g / cm 2 was placed thereon, and artificial urine absorbed in a predetermined time (composition: Urea 1.9%, NaCl
0.8%, CaCl 2 0.1% and MgSO 4
The value of 0.1%) was taken as the water absorption capacity under pressure (ml / g).

【0082】比較例7 実施例10において、乾燥粉砕物(1)にかえて比較例
1において得られた比較乾燥粉砕物(1a)を用いるこ
と以外は、実施例10と同様の操作を行い比較吸水剤
(7a)を得た。得られた吸水剤を実施例1と同様の試
験方法によって評価し、結果を表1〜表4に示した。ま
た、実施例10と同様の方法で加圧下吸水性能を評価し
たところ、5分および30分の加圧下吸水倍率はそれぞ
れ11ml/gおよび25ml/gであった。
Comparative Example 7 Comparative Example 7 was carried out in the same manner as in Example 10, except that the comparative dry crushed product (1a) obtained in Comparative Example 1 was used in place of the dry crushed product (1). A water absorbing agent (7a) was obtained. The water absorbent obtained was evaluated by the same test method as in Example 1, and the results are shown in Tables 1 to 4. When the water absorption performance under pressure was evaluated by the same method as in Example 10, the water absorption capacity under pressure for 5 minutes and 30 minutes were 11 ml / g and 25 ml / g, respectively.

【0083】[0083]

【表1】 [Table 1]

【0084】[0084]

【表2】 [Table 2]

【0085】[0085]

【表3】 [Table 3]

【0086】[0086]

【表4】 [Table 4]

【0087】[0087]

【発明の効果】以上に述べたように、本発明の方法を実
施することによって、吸水倍率が高く、水可溶分の少な
い粒子状含水ゲル状重合体および吸水性樹脂を生産性よ
く製造することが可能となる。また潤滑剤等の添加物を
含有せず、しかも粒度分布の狭い、乾燥効率の良好な粒
子状含水ゲル状重合体を、生産性高く得ることが可能と
なる。さらに、吸水速度が大きく、微粉末含有量の小さ
い吸水性樹脂を得ることが可能となる。また、加圧下吸
水速度の大きい吸水性樹脂を得ることが可能となる。さ
らにまた、残存単量体量が著しく小さい吸水性樹脂を高
い生産性で得ることが可能となる。
INDUSTRIAL APPLICABILITY As described above, by carrying out the method of the present invention, a particulate hydrogel polymer and a water absorbent resin having a high water absorption capacity and a low water-soluble content are produced with high productivity. It becomes possible. Further, it becomes possible to obtain a particulate hydrogel polymer which does not contain additives such as a lubricant and has a narrow particle size distribution and good drying efficiency with high productivity. Further, it becomes possible to obtain a water absorbent resin having a high water absorption rate and a small content of fine powder. Further, it becomes possible to obtain a water absorbent resin having a high water absorption rate under pressure. Furthermore, it becomes possible to obtain a water absorbent resin having a remarkably small amount of residual monomer with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明において含水ゲル状重合体に剪
断力をかけるために使用する容器の一実施態様を概略的
に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing an embodiment of a container used for applying a shearing force to a hydrogel polymer according to the present invention.

【図2】図2は、図1のa−a線に沿う概略断面図であ
る。
FIG. 2 is a schematic cross-sectional view taken along the line aa of FIG.

【図3】図3は、本発明において含水ゲル状重合体に剪
断力をかけるために使用する容器の他の実施態様を概略
的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing another embodiment of the container used to apply the shearing force to the hydrogel polymer according to the present invention.

【図4】図4(a)および(b)は、本発明において使
用される容器の他の実施態様を概略的に示す断面図であ
る。
4 (a) and 4 (b) are cross-sectional views schematically showing another embodiment of the container used in the present invention.

【図5】図5は、本発明において含水ゲル状重合体に剪
断力をかけるために使用する容器の他の実施態様を概略
的に示す断面図である。
FIG. 5 is a cross-sectional view schematically showing another embodiment of the container used for applying a shearing force to the hydrogel polymer according to the present invention.

【図6】図6は、本発明により得られた粒子状含水ゲル
状重合体を乾燥するために使用する装置の概略図であ
る。
FIG. 6 is a schematic view of an apparatus used for drying the particulate hydrous gel polymer obtained according to the present invention.

【図7】図7は、本発明により得られた粒子状含水ゲル
状重合体の加圧下吸水量を測定するために使用する装置
の概略図である。
FIG. 7 is a schematic view of an apparatus used for measuring the water absorption under pressure of the particulate hydrous gel polymer obtained according to the present invention.

【符号の説明】[Explanation of symbols]

1…液供給口 2,3…ガス供給
口 1′,3′…ガス排出口 2′…ノズル 4…カバー 5…加圧蓋 5′,6…ジャケット 7…容器(加圧ニ
ーダー) 8…シリンダー 9…シール材 10,11…回転腕 12,12′,13
…回転攪拌軸 14…ゲル撹拌空間 15…温度計 16…加圧蓋の底部 17…加圧蓋の上
部 18…チューブ 21…含水ゲル状重合体 22…フレッシュ
空気導入管 23…水蒸気導入管 24…排気排出管 25…ブロワ 26…熱交換器 27…熱媒導入管 31…ビュレット 32…ビュレット
上口 33…栓 34…測定台 35…空気口 36…ガラスフィ
ルター 37…濾紙 38…重り 39…吸水剤
1 ... Liquid supply port 2, 3 ... Gas supply port 1 ', 3' ... Gas discharge port 2 '... Nozzle 4 ... Cover 5 ... Pressurizing lid 5', 6 ... Jacket 7 ... Container (pressurizing kneader) 8 ... Cylinder 9 ... Sealing material 10, 11 ... Rotating arm 12, 12 ', 13
... Rotating stirring shaft 14 ... Gel stirring space 15 ... Thermometer 16 ... Pressure lid bottom 17 ... Pressure lid top 18 ... Tube 21 ... Hydrogel polymer 22 ... Fresh air introduction pipe 23 ... Steam introduction pipe 24 ... Exhaust exhaust pipe 25 ... Blower 26 ... Heat exchanger 27 ... Heat medium introduction pipe 31 ... Burette 32 ... Burette upper port 33 ... Plug 34 ... Measuring stand 35 ... Air port 36 ... Glass filter 37 ... Filter paper 38 ... Weight 39 ... Water absorbent

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08L 33/02 LHR (72)発明者 木村 和正 大阪府吹田市西御旅町5番8号 株式会社 日本触媒中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C08L 33/02 LHR (72) Inventor Kazumasa Kimura 5-8 Nishimitabicho Suita City Osaka Prefecture Co., Ltd. Central Research Institute of Nippon Shokubai

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 容器内で、架橋構造を有する含水ゲル状
重合体に、剪断力をかけて粒子状に細分化する粒子状含
水ゲル状重合体の製造方法において、40〜110℃の
温度に加温した含水ゲル状重合体に0.01〜1.5k
g/cm2の荷重をかけながら繰り返し剪断力をかける
ことを特徴とする粒子状含水ゲル状重合体の製造方法。
1. A method for producing a particulate hydrogel polymer in which a hydrogel polymer having a crosslinked structure is subjected to shearing force to be subdivided into particles in a container, at a temperature of 40 to 110 ° C. 0.01-1.5k to warm hydrogel polymer
A method for producing a particulate hydrogel polymer, which comprises repeatedly applying a shearing force while applying a load of g / cm 2 .
【請求項2】 該容器が、複数の回転攪拌軸を有するニ
ーダーである請求項1記載の粒子状含水ゲル状重合体の
製造方法。
2. The method for producing a particulate hydrogel polymer according to claim 1, wherein the container is a kneader having a plurality of rotary stirring shafts.
【請求項3】 該容器が、該容器内の体積が回転攪拌軸
の回転腕の回転により形成される空間体積から回転攪拌
軸および回転腕の体積を差し引いた残りの空間体積(剪
断有効体積)V1の1.0〜2.0倍であり、かつ含水
ゲル状重合体の体積V0の1.1〜1.8倍である請求
項1記載の粒子状含水ゲル状重合体の製造方法。
3. The remaining space volume (shear effective volume) of the container, wherein the volume inside the container is formed by subtracting the volumes of the rotary stirring shaft and the rotary arm from the space volume formed by the rotation of the rotary arm of the rotary stirring shaft. The method for producing a particulate hydrogel polymer according to claim 1, which is 1.0 to 2.0 times V 1 and 1.1 to 1.8 times the volume V 0 of the hydrogel polymer. ..
【請求項4】 該含水ゲル状重合体が、重合により含水
ゲル状となるエチレン性不飽和単量体と架橋剤を含んで
なる単量体成分の重合を進行させながら形成された含水
ゲル状重合体である請求項1記載の粒子状含水ゲル状重
合体の製造方法。
4. A hydrated gel-like polymer formed by advancing the polymerization of a monomer component containing an ethylenically unsaturated monomer which becomes a hydrated gel by polymerization and a crosslinking agent. The method for producing a particulate hydrogel polymer according to claim 1, which is a polymer.
【請求項5】 該含水ゲル状重合体が、単量体成分の重
合率が10〜100%の含水ゲル状重合体である請求項
4記載の粒子状含水ゲル状重合体の製造方法。
5. The method for producing a particulate hydrogel polymer according to claim 4, wherein the hydrogel polymer is a hydrogel polymer having a polymerization rate of a monomer component of 10 to 100%.
【請求項6】 該単量体成分の重合が、減圧下で進行さ
せられる請求項4記載の粒子状含水ゲル状重合体の製造
方法。
6. The method for producing a particulate hydrogel polymer according to claim 4, wherein the polymerization of the monomer component is allowed to proceed under reduced pressure.
【請求項7】 減圧度が1〜500mmHgである請求
項6記載の粒子状含水ゲル状重合体の製造方法。
7. The method for producing a particulate hydrogel polymer according to claim 6, wherein the degree of reduced pressure is 1 to 500 mmHg.
【請求項8】 請求項1に記載の粒子状含水ゲル状重合
体を、乾燥することを特徴とする吸水性樹脂の製造方
法。
8. A method for producing a water absorbent resin, which comprises drying the particulate hydrogel polymer according to claim 1.
【請求項9】 請求項1に記載の粒子状含水ゲル状重合
体を、乾燥し、粉砕および/または解砕することを特徴
とする吸水性樹脂の製造方法。
9. A method for producing a water-absorbent resin, which comprises drying, crushing and / or crushing the particulate hydrogel polymer according to claim 1.
【請求項10】 乾燥が、少なくとも水蒸気を含有しか
つ50〜100℃の露点を有する気体と、80〜250
℃の温度で接触させることによって行われる請求項8な
いし9いずれかに記載の吸水性樹脂の製造方法。
10. Drying gas containing at least water vapor and having a dew point of 50 to 100 ° C., 80 to 250
The method for producing a water absorbent resin according to any one of claims 8 to 9, which is carried out by contacting at a temperature of ° C.
【請求項11】 粉砕および/または解砕が、ロールミ
ル(ロール回転形粉砕機)で行われる請求項9記載の吸
水性樹脂の製造方法。
11. The method for producing a water absorbent resin according to claim 9, wherein the crushing and / or crushing is performed by a roll mill (roll rotary crusher).
【請求項12】 請求項8ないし9いずれかに記載の吸
水性樹脂を、該吸水性樹脂の有する官能基と反応し得る
少なくとも2個の官能基を有する架橋剤と混合、反応
し、吸水性樹脂の表面近傍の架橋密度を高くすることを
特徴とする吸水剤の製造方法。
12. The water-absorbent resin according to claim 8, which is mixed with a cross-linking agent having at least two functional groups capable of reacting with the functional group of the water-absorbent resin, to react with the water-absorbent resin. A method for producing a water absorbing agent, which comprises increasing the crosslink density in the vicinity of the surface of a resin.
JP09078092A 1991-04-10 1992-04-10 Method for producing particulate hydrogel polymer and water absorbent resin Expired - Fee Related JP3175790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09078092A JP3175790B2 (en) 1991-04-10 1992-04-10 Method for producing particulate hydrogel polymer and water absorbent resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-77921 1991-04-10
JP03077921 1991-04-10
JP09078092A JP3175790B2 (en) 1991-04-10 1992-04-10 Method for producing particulate hydrogel polymer and water absorbent resin

Publications (2)

Publication Number Publication Date
JPH05112654A true JPH05112654A (en) 1993-05-07
JP3175790B2 JP3175790B2 (en) 2001-06-11

Family

ID=26418972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09078092A Expired - Fee Related JP3175790B2 (en) 1991-04-10 1992-04-10 Method for producing particulate hydrogel polymer and water absorbent resin

Country Status (1)

Country Link
JP (1) JP3175790B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126400A (en) * 1993-11-01 1995-05-16 Nippon Shokubai Co Ltd Production of heat-treated methacrylic acid (salt) polymer
JP2008255366A (en) * 2001-09-12 2008-10-23 Stockhausen Gmbh Continuous polymerization process for production of superabsorbent polymer
WO2011024974A1 (en) * 2009-08-27 2011-03-03 株式会社日本触媒 Water-absorbing resin based on polyacrylic acid (salt) and process for producing same
EP2338590A1 (en) 2009-12-22 2011-06-29 Nitto Denko Corporation Resin production apparatus and resin production method
JP2011518929A (en) * 2008-04-30 2011-06-30 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles
WO2011111657A1 (en) * 2010-03-08 2011-09-15 株式会社日本触媒 Drying method for granular water-containing gel-like cross-linked polymer
JP2011195780A (en) * 2010-03-23 2011-10-06 Sumitomo Seika Chem Co Ltd Method for producing granular carboxyl group-containing polymer particles, and granular carboxyl group-containing polymer particle
WO2015041432A1 (en) * 2013-09-17 2015-03-26 주식회사 엘지화학 Superabsorbent resin preparation method
WO2016158976A1 (en) * 2015-03-30 2016-10-06 株式会社日本触媒 Particulate water-absorbing agent
WO2017002972A1 (en) * 2015-07-01 2017-01-05 株式会社日本触媒 Particulate water absorbing agent
US10150829B2 (en) 2013-05-13 2018-12-11 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
WO2022065365A1 (en) 2020-09-25 2022-03-31 株式会社日本触媒 Method for producing water-absorbing resin powder
US11712678B2 (en) 2017-01-24 2023-08-01 Lg Chem, Ltd. Preparation method of super absorbent polymer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102341435B (en) 2009-03-04 2016-04-20 株式会社日本触媒 The manufacture method of absorbent resin
US9175143B2 (en) 2009-03-31 2015-11-03 Nippon Shokubai Co., Ltd. Method for producing particulate water-absorbent resin

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126400A (en) * 1993-11-01 1995-05-16 Nippon Shokubai Co Ltd Production of heat-treated methacrylic acid (salt) polymer
JP2008255366A (en) * 2001-09-12 2008-10-23 Stockhausen Gmbh Continuous polymerization process for production of superabsorbent polymer
JP2013241623A (en) * 2001-09-12 2013-12-05 Evonik Degussa Gmbh Continuous polymerization process for manufacture of superabsorbent polymer
JP2011518929A (en) * 2008-04-30 2011-06-30 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles
JP5619011B2 (en) * 2009-08-27 2014-11-05 株式会社日本触媒 Polyacrylic acid (salt) water-absorbing resin and method for producing the same
WO2011024971A1 (en) * 2009-08-27 2011-03-03 株式会社日本触媒 Polyacrylic acid (salt) water absorbent resin and method for producing same
WO2011024974A1 (en) * 2009-08-27 2011-03-03 株式会社日本触媒 Water-absorbing resin based on polyacrylic acid (salt) and process for producing same
US8859685B2 (en) 2009-08-27 2014-10-14 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
US9023951B2 (en) 2009-08-27 2015-05-05 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
JP5619010B2 (en) * 2009-08-27 2014-11-05 株式会社日本触媒 Polyacrylic acid (salt) water-absorbing resin and method for producing the same
US8907021B2 (en) 2009-08-27 2014-12-09 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
US9138505B2 (en) 2009-08-27 2015-09-22 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
EP2338590A1 (en) 2009-12-22 2011-06-29 Nitto Denko Corporation Resin production apparatus and resin production method
US8771602B2 (en) 2009-12-22 2014-07-08 Nitto Denko Corporation Resin production apparatus and resin production method
WO2011111657A1 (en) * 2010-03-08 2011-09-15 株式会社日本触媒 Drying method for granular water-containing gel-like cross-linked polymer
US8875415B2 (en) 2010-03-08 2014-11-04 Nippon Shokubai, Co., Ltd. Method for drying granular water-containing gel-like cross-linked polymer
JP5658229B2 (en) * 2010-03-08 2015-01-21 株式会社日本触媒 Method for drying particulate hydrogel crosslinked polymer
JP2011195780A (en) * 2010-03-23 2011-10-06 Sumitomo Seika Chem Co Ltd Method for producing granular carboxyl group-containing polymer particles, and granular carboxyl group-containing polymer particle
US10889673B2 (en) 2013-05-13 2021-01-12 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
US10150829B2 (en) 2013-05-13 2018-12-11 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
US9808786B2 (en) 2013-09-17 2017-11-07 Lg Chem, Ltd. Preparation method of superabsorbent polymer
WO2015041432A1 (en) * 2013-09-17 2015-03-26 주식회사 엘지화학 Superabsorbent resin preparation method
WO2016158976A1 (en) * 2015-03-30 2016-10-06 株式会社日本触媒 Particulate water-absorbing agent
JPWO2016158976A1 (en) * 2015-03-30 2018-03-01 株式会社日本触媒 Particulate water absorbent
US10280297B2 (en) 2015-03-30 2019-05-07 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent
WO2017002972A1 (en) * 2015-07-01 2017-01-05 株式会社日本触媒 Particulate water absorbing agent
JPWO2017002972A1 (en) * 2015-07-01 2018-04-12 株式会社日本触媒 Particulate water absorbent
US10532341B2 (en) 2015-07-01 2020-01-14 Nippon Shokubai Co., Ltd. Particulate water absorbing agent
US11712678B2 (en) 2017-01-24 2023-08-01 Lg Chem, Ltd. Preparation method of super absorbent polymer
WO2022065365A1 (en) 2020-09-25 2022-03-31 株式会社日本触媒 Method for producing water-absorbing resin powder
KR20230057408A (en) 2020-09-25 2023-04-28 가부시키가이샤 닛폰 쇼쿠바이 Method for producing water absorbent resin powder

Also Published As

Publication number Publication date
JP3175790B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
KR940008994B1 (en) Method for production of particulate hydrogel polymer and absorbent resin
JP2539956B2 (en) Method for producing fluid-stable granules
JP5430620B2 (en) Method for producing water absorbent resin
US5026800A (en) Water-absorbent resin and production process
JP3175791B2 (en) Manufacturing method of water absorbing agent
KR940006901B1 (en) Method for production of particulate hydrated gel polymer and absorbent resin
JP4676625B2 (en) Method for producing water absorbent resin powder
EP0937739B1 (en) Surface-crosslinking process for water-absorbent resin
EP0496594B1 (en) Method for production of absorbent resin
EP1838766B1 (en) Method for surface-treatment of water absorbent resin
JP2675729B2 (en) Method for producing water absorbent resin
JP5591448B2 (en) Water absorbing agent and method for producing the same
JPH05112654A (en) Producti0n of water-containing gelatinous polymer particle and water-absorbing resin
JP4879423B2 (en) Method for producing water absorbent resin
JP4132592B2 (en) Water absorbent resin and method for producing the same
WO1998005420A1 (en) Water-absorbent and process for preparing the same
JP3979724B2 (en) Method for producing dried product of water absorbent resin granulated product
JPH0625209B2 (en) Water absorbent resin and method for producing the same
JP2993801B2 (en) Process for producing particulate hydrogel polymer and water absorbent resin
JP3389130B2 (en) Surface cross-linking method for water absorbent resin
JP2001096151A (en) Water absorbent and its preparing method
JPH0641319A (en) Production of granular hydrous gelatinous polymer and water absorbing resin
JP3145459B2 (en) Method for producing water absorbent resin
CN108026195B (en) Method for preparing superabsorbent polymer
JPH0570597A (en) Manufacture of particulate hydrous gel polymer and water-absorbent resin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees