JPH0511249B2 - - Google Patents

Info

Publication number
JPH0511249B2
JPH0511249B2 JP59145829A JP14582984A JPH0511249B2 JP H0511249 B2 JPH0511249 B2 JP H0511249B2 JP 59145829 A JP59145829 A JP 59145829A JP 14582984 A JP14582984 A JP 14582984A JP H0511249 B2 JPH0511249 B2 JP H0511249B2
Authority
JP
Japan
Prior art keywords
circuit
flow rate
fluid
switching
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59145829A
Other languages
Japanese (ja)
Other versions
JPS6123922A (en
Inventor
Masaki Teshigahara
Yasutaka Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP14582984A priority Critical patent/JPS6123922A/en
Publication of JPS6123922A publication Critical patent/JPS6123922A/en
Publication of JPH0511249B2 publication Critical patent/JPH0511249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は、例えば超音波を利用して、流体の流
速ないしは流量を測定する相関型の流速・流量測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a correlation type flow rate/flow rate measuring device that measures the flow rate or flow rate of a fluid using, for example, ultrasonic waves.

〈発明の背景〉 従来超音波を利用したこの種装置には、伝幡時
間差方式およびドツプラー方式の2種類が実用化
されている。前者の方式は、流体の流れに沿う方
向と、流れに反する方向とに超音波を発すると
き、超音波の伝幡時間に差が生ずるのを利用し
て、流速や流量を求める方式であり、また後者の
方式は、流体中のごみ、泡等の混在物に超音波を
発するとき、その反射波との間にドツプラー効果
が生ずるのを利用して、流速や流量を求める方式
である。ところが前者の伝幡時間差方式の場合、
流体中にごみ等の混入物が存在すると、超音波の
径路が妨害されるため、流速・流量の測定が困難
となり、一方後者のドツプラー方式の場合、流体
中に混入物が混在しないと、反射波が得られず、
同様に流速・流量測定が困難となる。従つてこれ
らの各方式は、流体中の混入物の有無によつて、
流速・流量の測定可否やその精度が左右される。
そこで近年、混入物の有無とは無関係に流速・流
量の測定が可能な相関型の流速・流量測定装置が
提案された。この相関型の装置は、被測定流体中
を伝幡する超音波が流体中の微粒子の存在や、流
体の渦更には振動等により変調を受けることに着
目したものであり、この変調成分を復調し、その
流体の状態を一種の雑音性の信号として抽出する
方式である。
<Background of the Invention> Conventionally, two types of devices of this type using ultrasonic waves have been put into practical use: a propagation time difference method and a Doppler method. The former method uses the difference in propagation time of ultrasonic waves when emitting ultrasonic waves in the direction along the flow of the fluid and in the direction against the flow to determine the flow velocity and flow rate. The latter method uses the Doppler effect that occurs between ultrasonic waves and reflected waves when emitting ultrasonic waves to contaminants such as dust and bubbles in the fluid to determine the flow velocity and flow rate. However, in the case of the former transmission time difference method,
If there are contaminants such as dust in the fluid, the ultrasonic path will be obstructed, making it difficult to measure the flow velocity and flow rate.On the other hand, in the case of the latter Doppler method, if there are no contaminants in the fluid, the ultrasonic wave path will be obstructed, making it difficult to measure the flow rate. I can't get waves,
Similarly, it becomes difficult to measure flow velocity and flow rate. Therefore, each of these methods depends on the presence or absence of contaminants in the fluid.
The ability to measure flow velocity and flow rate and its accuracy are affected.
Therefore, in recent years, a correlation-type flow velocity/flow rate measuring device has been proposed that can measure flow velocity/flow rate regardless of the presence or absence of contaminants. This correlation type device focuses on the fact that ultrasonic waves propagating through the fluid to be measured are modulated by the presence of particles in the fluid, fluid vortices, vibrations, etc., and demodulates this modulated component. This method extracts the state of the fluid as a kind of noisy signal.

第5図に示す従来の相関型流速・流量測定装置
は、流体の流れ(図中、矢印で示す)と直交する
方向に、超音波を発する送信体1Aと、これを受
信する受信体2Aとを対向配備し、更に一定距離
L下流位置の同様の送信体1Bおよび受信体2B
を配備したものであり、これら2地点において前
記雑音性の信号を抽出し、両信号の相関から流体
の流速や流量を測定している。すなわち第2図に
おいて、流体の流速をV、2組の送受信体間の距
離をL、相関が最大となる時間をγとすると、流
速Vはつぎの式で求めることができる。
The conventional correlation type flow velocity/flow rate measuring device shown in Fig. 5 includes a transmitting body 1A that emits ultrasonic waves in a direction perpendicular to the fluid flow (indicated by an arrow in the figure), and a receiving body 2A that receives the ultrasonic waves. are arranged opposite to each other, and a similar transmitter 1B and receiver 2B located a certain distance L downstream
The noisy signals are extracted at these two points, and the flow velocity and flow rate of the fluid are measured from the correlation between both signals. That is, in FIG. 2, if the flow velocity of the fluid is V, the distance between the two pairs of transmitting and receiving bodies is L, and the time at which the correlation is maximum is γ, then the flow velocity V can be determined by the following equation.

V=L/γ …… ところが上記の相関型装置においては、前記雑
音性信号の保存性が乏しく、流体が距離Lを移動
する間に流体の状態がくずれ、信号パターンが変
化するという問題がある。このため一致しない信
号相互間につき相関をとる結果となり、十分な測
定精度を得るのに、測定時間を長く設定してデー
タを平均化する等の処置が必要である。
V=L/γ... However, in the above-mentioned correlation type device, there is a problem that the noisy signal is not well preserved, and the state of the fluid deteriorates while the fluid moves the distance L, causing the signal pattern to change. . This results in a correlation being taken between signals that do not match, and in order to obtain sufficient measurement accuracy, it is necessary to take measures such as setting a long measurement time and averaging the data.

〈発明の目的〉 本発明は、伝幡時間差方式やドツプラー方式の
ように液体中の混入物の有無とは無関係に流速や
流量の測定が可能であり、かつ従来の相関型のも
のの欠点を改善した新規な流速・流量測定装置を
提供することを目的とする。
<Objective of the Invention> The present invention is capable of measuring flow velocity and flow rate regardless of the presence or absence of contaminants in a liquid, such as the propagation time difference method or the Doppler method, and improves the drawbacks of conventional correlation methods. The purpose of this study is to provide a new flow velocity/flow rate measuring device.

〈発明の構成および効果〉 上記目的を達成するため、本発明では、例えば
複数の受信子を整列配置した状態の受信体を送信
体に対向配備し、各受信子を流速に比べて十分に
速く切り換えることにより、前記雑音性の信号を
送受波を行なうと共に、受信波の復調出力とこれ
を遅延させた信号とにつき電圧制御発振器や用い
た波形判別回路にて相関をとり、電圧制御発振器
の発振周波数に基づき流体の流速や流量を算出す
るよう構成した。
<Structure and Effects of the Invention> In order to achieve the above object, in the present invention, for example, a receiver in which a plurality of receivers are arranged in a line is placed opposite to a transmitter, and each receiver is moved at a speed sufficiently high compared to the flow velocity. By switching, the noisy signal is transmitted and received, and the demodulated output of the received wave and the delayed signal are correlated in the voltage controlled oscillator and the waveform discrimination circuit used, and the voltage controlled oscillator oscillates. The system was configured to calculate the fluid flow velocity and flow rate based on the frequency.

本発明によれば、高速切換えで得た雑音性信号
をもつて相関をとるから、相関されるべき信号の
保存性が高く、流速・流量測定を短時間かつ高精
度で実施可能となつた。而も本発明の方式の場
合、従前の伝幡時間差方式やドツプラー方式のよ
うに流体中の混入物の有無により測定の可否やそ
の精度が左右されることが全くない等、発明目的
を達成した顕著な効果を奏する。
According to the present invention, since correlation is performed using noisy signals obtained by high-speed switching, the preservation of the signals to be correlated is high, and flow rate and flow rate measurements can be carried out in a short time and with high accuracy. Moreover, in the case of the method of the present invention, unlike the conventional propagation time difference method and Doppler method, the possibility of measurement and its accuracy are not affected by the presence or absence of contaminants in the fluid, and the purpose of the invention has been achieved. It has a remarkable effect.

〈実施例の説明〉 第4図は、本発明にかかる流速・流量測定装置
の基本原理並びに基本構成を示すものである。図
示例の装置は、超音波を利用して、管9内を流れ
る流体の流速や流量を測定するものであり、管9
の外面には流れと直交する方向に一対の超音波送
信体1および受信体2が対向配備されている。送
信体1は超音波発振器10が出力する高周波信号
を超音波に変換し、これを管9内の流体中へ投射
する。この超音波は、流体中の微粒子の存在や、
流体の渦更には振動等によつて振幅変調或いは位
相変調を受けつつ伝幡され、前記受信体2に到達
して受波される。本発明の受信体2は、複数の受
信子20,20を流れの方向に沿い整列配置して
構成されており、各受信子20を切換回路3を用
いて流れ方向へ順次切り換えて、変調を受けた超
音波を受信する。この切換操作はスキヤニングと
称され、その切換え速度は流速に比べて十分に速
い値に設定する。ここで受信体2の長さをL、受
信体2を構成する受信子20の数をN、発振器3
0が出力する切換回路3の切換信号の周波数を1
とすると、切換え速度Vsは、つぎの式で与え
られる。
<Description of Examples> FIG. 4 shows the basic principle and basic configuration of the flow rate/flow rate measuring device according to the present invention. The illustrated device uses ultrasonic waves to measure the flow rate and flow rate of fluid flowing inside the tube 9.
A pair of ultrasonic transmitter 1 and receiver 2 are disposed facing each other on the outer surface of the ultrasonic wave in a direction perpendicular to the flow. The transmitter 1 converts the high frequency signal outputted by the ultrasonic oscillator 10 into ultrasonic waves, and projects the ultrasonic waves into the fluid within the tube 9 . This ultrasonic wave detects the presence of fine particles in the fluid,
The waves are propagated while undergoing amplitude modulation or phase modulation due to fluid vortices, vibrations, etc., and reach the receiver 2 where they are received. The receiver 2 of the present invention is constructed by arranging a plurality of receivers 20, 20 in the flow direction, and each receiver 20 is sequentially switched in the flow direction using a switching circuit 3 to perform modulation. Receive the received ultrasound waves. This switching operation is called scanning, and the switching speed is set to a value that is sufficiently faster than the flow velocity. Here, the length of the receiver 2 is L, the number of receivers 20 constituting the receiver 2 is N, and the oscillator 3
The frequency of the switching signal of switching circuit 3 outputted by 0 is set to 1.
Then, the switching speed V s is given by the following equation.

Vs=L1/N …… 前記の切換回路3は受信体2より取り込んだ超
音波信号を増幅回路31を介して復調回路4へ出
力する。この復調回路4は前記変調成分を復調
し、これを流体中の雑音性信号として検出するも
のである。この雑音性信号は、波形判別回路5お
よび可変遅延回路6へ夫々送られ、波形判別回路
5は雑音性信号と遅延出力信号との位相差をチエ
ツクする。
V s =L 1 /N... The switching circuit 3 outputs the ultrasonic signal taken in from the receiver 2 to the demodulation circuit 4 via the amplifier circuit 31. This demodulation circuit 4 demodulates the modulated component and detects it as a noisy signal in the fluid. This noisy signal is sent to a waveform discrimination circuit 5 and a variable delay circuit 6, respectively, and the waveform discrimination circuit 5 checks the phase difference between the noisy signal and the delayed output signal.

前記可変遅延回路6は、例えばBBD(Bucket
Brigade Device),CCD(Charge Coupled
Device)等をもつて形成され、その段数を前記
受信子数と同じNとし、また遅延量制御用のクロ
ツク周波数を2とすれば、遅延量γはつぎの式
で表わされる。
The variable delay circuit 6 is, for example, a BBD (Bucket
Brigade Device)、CCD(Charge Coupled
If the number of stages is N, which is the same as the number of receivers, and the clock frequency for controlling the delay amount is 2 , then the delay amount γ is expressed by the following equation.

γ=N/2 …… 波形判別回路5は、雑音性信号をスキヤニング
周期毎に観測し、前回のスキヤンにかかる雑音性
信号(可変遅延回路6の出力に相当する)と今回
のスキヤンにかかる雑音性信号(復調回路4の出
力に相当する)とを比較し、両者の波形が一致す
るか否かを判別する。尚スキヤニング周期とは、
全ての受信子20の切換えに要する時間を指す。
γ=N/ 2 ... The waveform discrimination circuit 5 observes the noisy signal at each scanning period, and distinguishes between the noisy signal (corresponding to the output of the variable delay circuit 6) caused by the previous scan and the noise caused by the current scan. and a signal (corresponding to the output of the demodulation circuit 4) to determine whether the two waveforms match. What is the scanning period?
This refers to the time required to switch all the receivers 20.

今復調回路4が出力する雑音性信号の波形をS
(t)とすると、波形判別回路5において波形の一致
が認められる場合には、照合される信号波形間に
はつぎの式が成立する。
The waveform of the noisy signal now output by the demodulation circuit 4 is S
(t), when the waveform discrimination circuit 5 recognizes that the waveforms match, the following equation holds between the signal waveforms to be compared.

S(t−L/Vs+V)=S(t−N/2)……
そして前記式および式から、流速Vはつぎ
の式で与えられる。但しΔ=21である。
S(t-L/ Vs +V)=S(t-N/ 2 )...
From the above equations and equations, the flow velocity V is given by the following equation. However , Δ= 2−1 .

V=L/N(21)=L/NΔ …… かくて波形判別回路5は2つの信号入力波形に
位相差が生じているとき、可変遅延回路6の遅延
量を制御するクロツク周波数2を変化させて、両
波形を一致させる。尚この場合、切換周波数1
変化させても、波形の一致を得ることができる。
そして波形判別回路5が一致判別を行なつたと
き、演算回路7において、切換回路3の切換え周
波数1およびクロツク周波数2をデータ入力し
て、前記式により流速Vを求め、更に流速Vに
流体の断面積を乗じて流量を算出する。
V=L/N( 2-1 )=L/NΔ...Thus, when there is a phase difference between the two signal input waveforms, the waveform discrimination circuit 5 adjusts the clock frequency 2 to control the delay amount of the variable delay circuit 6. to match both waveforms. In this case, even if the switching frequency 1 is changed, matching of the waveforms can be obtained.
When the waveform discrimination circuit 5 makes a match discrimination, the switching frequency 1 and the clock frequency 2 of the switching circuit 3 are input to the calculation circuit 7, and the flow velocity V is determined by the above formula. Calculate the flow rate by multiplying by the cross-sectional area.

第1図は本発明にかかる装置の具体構成例を示
し、図中、受信体2、切換回路3、増幅回路3
1、復調回路4および、可変遅延回路6は、前記
第1図と同様の構成である。復調回路4は流体中
の雑音性信号を取り出し、これを微分回路8およ
び可変遅延回路6へ夫々出力する。微分回路8は
雑音性信号に90度の位相ずれを付与するための回
路であり、その微分出力および可変遅延回路6の
遅延出力は波形判別回路5へ送られる。図示例の
波形判別回路5は、乗算回路51、ローパスフイ
ルタ52および、電圧制御発振器53より成り、
前記微分出力および遅延出力にかかる両信号波形
が一致するか否かを判別する。乗算回路51は2
入力を乗算するものであり、両信号波形が一致す
るときは、前記微分回路8の導入によつて、その
乗算出力は最小(ゼロ)となる。乗算出力は、ロ
ーパスフイルタ52によつてその高調波成分が除
去された後、電圧制御発振器53は、ローパスフ
イルタ52を通過した信号の大きさに応じて自己
の発振周波数2を変化させるものであり、その発
振出力は遅延量制御用のクロツク信号として可変
遅延回路6へ送られる。
FIG. 1 shows a specific example of the configuration of the device according to the present invention. In the figure, a receiver 2, a switching circuit 3, an amplifier circuit 3,
1. The demodulation circuit 4 and the variable delay circuit 6 have the same configuration as in FIG. 1 above. The demodulation circuit 4 extracts a noisy signal in the fluid and outputs it to the differentiating circuit 8 and the variable delay circuit 6, respectively. The differentiating circuit 8 is a circuit for imparting a 90 degree phase shift to the noisy signal, and its differentiating output and the delayed output of the variable delay circuit 6 are sent to the waveform discrimination circuit 5. The illustrated waveform discrimination circuit 5 includes a multiplication circuit 51, a low-pass filter 52, and a voltage-controlled oscillator 53.
It is determined whether the signal waveforms of the differential output and the delayed output match. The multiplication circuit 51 has 2
The input is multiplied, and when both signal waveforms match, the multiplication output becomes minimum (zero) by introducing the differentiating circuit 8. After the harmonic components of the multiplication output are removed by the low-pass filter 52, the voltage-controlled oscillator 53 changes its own oscillation frequency 2 according to the magnitude of the signal that has passed through the low-pass filter 52. , the oscillation output thereof is sent to the variable delay circuit 6 as a clock signal for controlling the amount of delay.

しかして上記の構成は、一種のPLL(Phased
Lock Loop)の帰還ループを形成しており、微
分回路8の微分出力と可変遅延回路6の遅延出力
との位相差がゼロとなるように、可変遅延回路6
の遅延量を電圧制御発振器53の出力信号をもつ
て制御するものである。従つてこの帰還ループが
ロツクした状態にある場合には、前記の式が
成立し、演算回路7において式の計算を実施す
ることによつて、流速V更には流量を求めること
ができる。
However, the above configuration is a type of PLL (Phased
The variable delay circuit 6 forms a feedback loop (Lock Loop), and the variable delay circuit 8
The amount of delay is controlled using the output signal of the voltage controlled oscillator 53. Therefore, when this feedback loop is in a locked state, the above equation is established, and by calculating the equation in the arithmetic circuit 7, the flow velocity V and further the flow rate can be determined.

第2図は本発明の他の実施例を示し、電圧制御
発振器53の出力信号(周波数1)を切換回路3
へ送つて切換周波数を制御するものであり、この
場合、可変遅延回路6にはクロツク発生器60か
ら一定周波数2のクロツク信号を送つて一定の遅
延量を設定する。
FIG. 2 shows another embodiment of the present invention, in which the output signal (frequency 1 ) of the voltage controlled oscillator 53 is transferred to the switching circuit 3.
In this case, a clock signal of a constant frequency 2 is sent from the clock generator 60 to the variable delay circuit 6 to set a constant delay amount.

尚上記第1図および第2図の実施例では、微分
回路8は可変遅延回路6と別の径路の方に設けた
が、第3図に示す如く、可変遅延回路6と同じ経
路側に設けても可い。
In the embodiments shown in FIGS. 1 and 2 above, the differentiating circuit 8 is provided on a different path from the variable delay circuit 6, but as shown in FIG. 3, it is provided on the same path as the variable delay circuit 6. It is possible.

また上記の各実施例は、超音波を利用した流
速・流量測定装置であるが、本発明は超音波に限
らず、電磁波を用いる装置にも適用実施できる。
Furthermore, although each of the above embodiments is a flow velocity/flow measuring device that uses ultrasonic waves, the present invention is not limited to ultrasonic waves, and can be applied to devices that use electromagnetic waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる流速・流量測定装置の
基本原理および基本構成を示すブロツク図、第2
図は本発明の装置の具体構成例を示すブロツク
図、第3図および第4図は他の実施例を示すブロ
ツク図、第5図は従来例の構成を示す説明図であ
る。 1……送信体、2……受信体、20……受信
子、3……切換回路、4……復調回路、5……波
形判別回路、6……可変遅延回路、7……演算回
路、51……乗算回路、53……電圧制御発振
器。
Fig. 1 is a block diagram showing the basic principle and basic configuration of the flow rate/flow measuring device according to the present invention, and Fig. 2
The figure is a block diagram showing a specific example of the structure of the apparatus of the present invention, FIGS. 3 and 4 are block diagrams showing other embodiments, and FIG. 5 is an explanatory diagram showing the structure of a conventional example. DESCRIPTION OF SYMBOLS 1... Transmitter, 2... Receiver, 20... Receiver, 3... Switching circuit, 4... Demodulation circuit, 5... Waveform discrimination circuit, 6... Variable delay circuit, 7... Arithmetic circuit, 51... Multiplier circuit, 53... Voltage controlled oscillator.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波等の検出波を被測定流体中へ発して、
流体より雑音性の信号を検出すると共に、雑音性
の信号の移動速度に基づき、流体の流速、流量を
測定する装置において、被測定流体の流れと直交
する方向に対向配備され少なくとも一方は複数の
送信若しくは受信子を整列配置して構成された検
出波の送信手段および受信手段と、送信若しくは
受信子を順次切り換えて検出波の送受波を行なう
切換回路と、受信波より前記雑音性の信号を取り
出す復調回路と、雑音性信号を遅延させた信号を
形成する遅延回路と、復調回路および遅延回路の
各出力を乗算する乗算回路と、乗算回路の出力に
応じて発振周波数を変化させて前記切換回路の切
換速度若しくは遅延回路の遅延量を制御する電圧
制御発振器と、電圧制御発振器の発振周波数に基
づき流速・流量を算出する演算回路とから成る流
速・流量測定装置。
1 Emit a detection wave such as an ultrasonic wave into the fluid to be measured,
In a device that detects a noisy signal from a fluid and measures the flow velocity and flow rate of the fluid based on the moving speed of the noisy signal, at least one of the plurality of A detection wave transmitting means and a receiving means configured by aligning transmitting or receiving elements, a switching circuit that sequentially switches the transmitting or receiving elements to transmit and receive the detected wave, and a switching circuit that transmits and receives the detected wave from the received wave. a demodulation circuit for extracting, a delay circuit for forming a signal obtained by delaying the noisy signal, a multiplication circuit for multiplying each output of the demodulation circuit and the delay circuit, and changing the oscillation frequency according to the output of the multiplication circuit to perform the switching. A flow rate/flow measurement device consisting of a voltage controlled oscillator that controls the switching speed of the circuit or the amount of delay of the delay circuit, and an arithmetic circuit that calculates the flow rate/flow rate based on the oscillation frequency of the voltage controlled oscillator.
JP14582984A 1984-07-12 1984-07-12 Flow velocity and flow rate measuring device Granted JPS6123922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14582984A JPS6123922A (en) 1984-07-12 1984-07-12 Flow velocity and flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14582984A JPS6123922A (en) 1984-07-12 1984-07-12 Flow velocity and flow rate measuring device

Publications (2)

Publication Number Publication Date
JPS6123922A JPS6123922A (en) 1986-02-01
JPH0511249B2 true JPH0511249B2 (en) 1993-02-15

Family

ID=15394079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14582984A Granted JPS6123922A (en) 1984-07-12 1984-07-12 Flow velocity and flow rate measuring device

Country Status (1)

Country Link
JP (1) JPS6123922A (en)

Also Published As

Publication number Publication date
JPS6123922A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
EP0441531B1 (en) Method and system for digital measurement of acoustic burst travel time in a fluid medium
KR100349504B1 (en) Ultrasonic flow velocity measuring apparatus
JP3016511B1 (en) Ultrasonic flow velocity measuring method and device
RU2186399C2 (en) Ultrasonic device measuring flow velocity
US4616510A (en) Fluid velocity measuring method and apparatus
JPS6480351A (en) Ultrasonic doppler meter
JPH0511249B2 (en)
JP2553635B2 (en) Ultrasonic Doppler blood flow meter
JPS61209382A (en) Range finder
JPH1090396A (en) Method and apparatus for measurement of distance
JPS6123920A (en) Flow velocity and flow rate measuring device
JPS586156B2 (en) distance measuring device
JPH0547212B2 (en)
JPH06317677A (en) Ultrasonic snow depth measuring method and ultrasonic snow depth measuring device
JP2723291B2 (en) Ultrasonic sensor
EP0250660B1 (en) Fluid velocity measuring method and apparatus
JP3024312B2 (en) Vortex flow meter
JPS6123924A (en) Flow velocity and flow rate measuring device
JPS5852487Y2 (en) Flow rate measurement device using correlation technology
JPS6123923A (en) Flow velocity and flow rate measuring device
JPH0643909B2 (en) Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device
JP3465100B2 (en) Vortex flow meter
JPS5832121A (en) Ultrasonic flow meter on phase difference system
JP2760079B2 (en) Ultrasonic sensor
JP2674375B2 (en) Stationary underwater acoustic simulation target device