JPH05109695A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05109695A
JPH05109695A JP27115091A JP27115091A JPH05109695A JP H05109695 A JPH05109695 A JP H05109695A JP 27115091 A JP27115091 A JP 27115091A JP 27115091 A JP27115091 A JP 27115091A JP H05109695 A JPH05109695 A JP H05109695A
Authority
JP
Japan
Prior art keywords
reaction gas
film
gas
plasma cvd
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27115091A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP27115091A priority Critical patent/JPH05109695A/en
Publication of JPH05109695A publication Critical patent/JPH05109695A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve yield and reliability of a semiconductor device by eliminating generation of a film containing an unstable composition to be formed at an initial reaction and providing a plasma CVD thin film having excellent close contact and moisture resistance and small generation of particles in the device using the thin film as an insulating film or a protective film. CONSTITUTION:In the step of forming a plasma CVD film on a semiconductor substrate after a wiring layer is formed, nondirect reaction gas initially flows, an RF is once, after reaching predetermined pressure and flow rate (t13), applied, it is held for a predetermined time, and cut (t14). Then, main reaction gas flows, the RF is again, after reaching predetermined pressure and flow rate, applied (t15), it is held for a predetermined time, thereby forming a plasma CVD thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特にCVD薄膜の形成方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a CVD thin film.

【0002】[0002]

【従来の技術】従来の半導体装置の層間絶縁膜における
プラズマCVD酸化シリコン膜の製造方法を、平行平板
式のプラズマCVD装置を例にとり説明する。まず、図
3に示すように表面を絶縁した電極32及び33を平行
に配置し、一定温度に保たれた真空容器34内にCVD
膜を堆積する基板37等を搬送する。続いて、容器内を
真空に引いた後、電極を所定の位置に移動する。続いて
主反応ガスであるモノシランガス(SiH4)と副反応
ガスである亜酸化窒素ガス(N2O)を流す。ガスの流
量と圧力が所定値に達した後(図2中のt22)、前記電
極に高周波(RF)を印加し(t23)、一定時間保持し
酸化シリコン膜を所望する膜厚が得られるまで気相成長
した後、高周波(RF)を停止する(t24)。容器内の
ガスを真空引きすることよって排出した後、真空容器を
大気圧に戻し、基板37を搬出する。
2. Description of the Related Art A method of manufacturing a plasma CVD silicon oxide film in an interlayer insulating film of a conventional semiconductor device will be described by taking a parallel plate type plasma CVD device as an example. First, as shown in FIG. 3, electrodes 32 and 33 having insulated surfaces are arranged in parallel, and CVD is performed in a vacuum chamber 34 kept at a constant temperature.
The substrate 37 or the like on which the film is to be deposited is transported. Then, after the inside of the container is evacuated, the electrode is moved to a predetermined position. Then, monosilane gas (SiH 4 ) which is the main reaction gas and nitrous oxide gas (N 2 O) which is the side reaction gas are flown. After the gas flow rate and pressure have reached a predetermined value (t 22 in FIG. 2), a high frequency (RF) is applied to the electrode (t 23 ) and the electrode is held for a certain period of time to obtain a desired thickness of the silicon oxide film. After vapor phase growth until the temperature is reached, the high frequency (RF) is stopped (t 24 ). After the gas inside the container is exhausted by vacuuming, the vacuum container is returned to atmospheric pressure, and the substrate 37 is unloaded.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術では、図2のグラフに示すように主反応ガスと副反応
ガスを同時に流し出し始めているが、流量制御系の応答
速度の差によってガス比が一定とならない。特に、モノ
シランガスの流量やガス比が所定量よりも多くなると、
場合によっては、RFの印加前にSiの組成比の多い膜
や比較的大きな堆積物の塊を形成する。また、圧力が設
定値に到達し、高周波(RF)の印加開始後も、最適な
混合比とはならず、目的とする膜質とは異なった膜が形
成されたりする。この膜は、膜質がポーラス気味で、絶
縁膜として使用した場合、電流リークの原因となること
がある。また、耐湿性の点や、下地との密着性の点でし
ばしば問題となっている。
However, in the prior art, as shown in the graph of FIG. 2, the main reaction gas and the auxiliary reaction gas are started to flow out at the same time, but the gas ratio varies due to the difference in response speed of the flow rate control system. It is not constant. In particular, when the flow rate or gas ratio of monosilane gas exceeds a predetermined amount,
In some cases, a film having a high Si composition ratio or a lump of a relatively large deposit is formed before the application of RF. Further, even after the pressure reaches the set value and the application of the high frequency (RF) is started, the optimum mixing ratio is not obtained, and a film different from the target film quality is formed. The film quality is porous, and when used as an insulating film, it may cause current leakage. Further, it is often a problem in terms of moisture resistance and adhesiveness with a base.

【0004】配線形成時のレジストの残りや有機溶剤が
局所的に残った場合は、表面の状態が不安定であり、プ
ラズマCVD膜の膜厚分布の変動が大きくなったり、密
着性の悪化を生じ、半導体装置の歩留りの低下を引き起
こす。
If the resist remains or the organic solvent locally remains during the wiring formation, the surface condition becomes unstable, and the fluctuation of the film thickness distribution of the plasma CVD film becomes large, or the adhesion is deteriorated. Occurs, causing a decrease in the yield of semiconductor devices.

【0005】しかるに本発明は、かかる課題を解決する
ものであり、その目的とするところは、形成開始時に堆
積物(パーティクル)の発生がなく、膜質の安定したプ
ラズマCVD膜を形成し、高品質で歩留りの高い半導体
装置を提供することである。
However, the present invention is intended to solve such a problem, and an object of the present invention is to form a plasma CVD film having stable film quality without the generation of deposits (particles) at the start of formation, thereby providing high quality. It is to provide a semiconductor device with high yield.

【0006】[0006]

【課題を解決するための手段】本発明による半導体装置
の製造方法は、絶縁膜または、保護膜として一層以上の
プラズマCVD薄膜を用いている半導体装置において、
該プラズマCVD薄膜の形成方法が、a)プラズマや温
度によって反応しないガス(副反応ガス)を流し、ガス
流量、圧力、電極間隔等を設定値に制御する工程と、
b)高周波(RF)を印加する工程とc)一定時間保持
後、高周波(RF)を停止する工程とd)プラズマや温
度によって反応するガス(主反応ガス)を流し、ガス流
量と圧力を設定値に制御する工程と、e)高周波(R
F)印加し、所定の時間保持する工程とからなることを
特徴とする。
A method of manufacturing a semiconductor device according to the present invention provides a semiconductor device using one or more plasma CVD thin films as an insulating film or a protective film,
In the method for forming the plasma CVD thin film, a) a step of flowing a gas (secondary reaction gas) that does not react with plasma or temperature and controlling the gas flow rate, pressure, electrode interval, etc. to set values,
b) a step of applying a high frequency (RF), c) a step of stopping the high frequency (RF) after holding for a certain period of time, and d) flowing a gas (main reaction gas) that reacts with plasma or temperature to set the gas flow rate and pressure. Step of controlling to a value, e) High frequency (R
F) Applying and holding for a predetermined time.

【0007】また、上記主反応ガスがモノシラン(Si
4)で、副反応ガスが亜酸化窒素(N2O)であること
を特徴とする。
The main reaction gas is monosilane (Si
H 4 ), the side reaction gas is nitrous oxide (N 2 O).

【0008】また、上記主反応ガスがモノシラン(Si
4)で、副反応ガスがアンモニア(NH3)および窒素
(N2)であることを特徴とする。
The main reaction gas is monosilane (Si
H 4 ), wherein the side reaction gases are ammonia (NH 3 ) and nitrogen (N 2 ).

【0009】また、上記主反応ガスがTEOS[Si
(OC254]等の有機シラン類で、副反応ガスが酸
素(O2)であることを特徴とする。
The main reaction gas is TEOS [Si
(OC 2 H 5 ) 4 ] and the like, and is characterized in that the side reaction gas is oxygen (O 2 ).

【0010】[0010]

【実施例】以下本発明の実施例における工程を、図3お
よび図1に示すタイミングチャート基づいて詳細に説明
する。
EXAMPLES The steps in the examples of the present invention will be described in detail below with reference to the timing charts shown in FIGS.

【0011】まず、トランジスタや抵抗等の半導体素子
及びアルミニウム配線の形成された半導体基板37を約
400℃に保たれ、絶縁された電極32、33が平行に配
置された真空容器34内に搬送する。この容器内を一旦
真空に引いた後、副反応ガスである亜酸化窒素ガス(N
2O)を約1500SCCM流し流量を安定させる(t11)、続
いて排気系を制御して圧力を約5Torrに安定させた後
(t12)、13.56MHz,200Wの高周波(RF)を印加
する(t13)。5秒間保持した後、一旦RFを停止する
(t14)。主反応ガスであるモノシラン(SiH4)を
約100SCCM流し、圧力を再度5Torrに制御し安定した後
(t15)、RFを印加することでプラズマCVD酸化シ
リコン膜を形成する。所望の膜厚に達するか、所望の時
間経過した後、RFを停止すると同時にガスを停止し、
圧力を下げる(t16)。終了後、半導体基板37を真空
容器34から搬出する。
First, the semiconductor substrate 37 on which semiconductor elements such as transistors and resistors and aluminum wiring are formed is approximately
The temperature is kept at 400 ° C., and the electrodes 32, 33 insulated are transferred into a vacuum container 34 arranged in parallel. After the inside of this container is evacuated, nitrous oxide gas (N
2 O) to flow about 1500 SCCM to stabilize the flow rate (t 11 ), then control the exhaust system to stabilize the pressure to about 5 Torr (t 12 ), and then apply a radio frequency (RF) of 13.56 MHz, 200 W. (T 13 ). After holding for 5 seconds, RF is once stopped (t 14 ). About 100 SCCM of monosilane (SiH 4 ) which is the main reaction gas is flowed, the pressure is controlled again at 5 Torr and stabilized (t 15 ), and then RF is applied to form a plasma CVD silicon oxide film. After the desired film thickness is reached or the desired time has passed, the RF is stopped and the gas is stopped at the same time.
Reduce the pressure (t 16 ). After the end, the semiconductor substrate 37 is unloaded from the vacuum container 34.

【0012】プラズマや温度によって反応物を形成しな
い亜酸化窒素を流し、ガス流量と圧力を安定させた後、
一旦RFを印加することで、基板及び配線の表面の有機
成分やレジスト残りが除去される。その後、主反応ガス
を導入することによって、主反応ガスがRF印加前に分
解して、堆積物の塊が形成されることもなくなった。ま
た、圧力安定後に一定時間保持したことによって反応ガ
スの分圧が毎回同じとなり、組成の一定した膜を再現性
良く形成することが可能となった。
After nitrous oxide, which does not form a reactant due to plasma or temperature, is flowed to stabilize the gas flow rate and pressure,
By once applying RF, organic components and resist residues on the surfaces of the substrate and wiring are removed. After that, by introducing the main reaction gas, the main reaction gas was decomposed before the RF was applied, and the lump of the deposit was not formed. Further, by maintaining the pressure for a certain period of time after the pressure was stabilized, the partial pressure of the reaction gas became the same every time, and it became possible to form a film having a constant composition with good reproducibility.

【0013】ここでは、モノシラン/亜酸化窒素系の酸
化シリコン膜について説明したが、TEOS/酸素系の
プラズマCVD酸化シリコン膜でも、酸素を最初に流
し、RFを一旦印加することによって、同様の結果が得
られた。この場合、レジストのアッシングに用いられる
酸素プラズマと同様の効果によってレジストや有機成分
が除去される。
Although the monosilane / nitrous oxide-based silicon oxide film has been described here, the same result can be obtained by applying oxygen to the TEOS / oxygen-based plasma CVD silicon oxide film by first flowing oxygen and once applying RF. was gotten. In this case, the resist and organic components are removed by the same effect as the oxygen plasma used for ashing the resist.

【0014】また、2種類の反応ガスからなるCVD膜
の形成のみならず、保護膜(ファイナルパッシベーショ
ン膜)等に用いられる、モノシラン/アンモニア/窒素
系の窒化シリコン膜等の3種類以上の反応ガスによるプ
ラズマCVD膜の製造方法としても最初にアンモニアと
窒素を流し、一旦RFを印加することによって同様に適
用でき、良好な結果が得られた。この場合、半導体基板
外周部に発生していた組成の異常な膜がなくなるととも
に、パーティクルが減少し、半導体基板全体に渡って安
定した品質の窒化シリコン膜が得られた。さらに、配線
間のリークについても1/2程度に減少し<半導体基板
内のバラツキも小さくなった。
Further, not only the formation of a CVD film composed of two kinds of reaction gases, but also three or more kinds of reaction gases such as monosilane / ammonia / nitrogen based silicon nitride film used for a protective film (final passivation film) or the like. The method of producing a plasma CVD film according to the above can be similarly applied by first flowing ammonia and nitrogen and once applying RF, and good results were obtained. In this case, the abnormal film having the composition that was generated on the outer peripheral portion of the semiconductor substrate was eliminated, and the particles were reduced, and a silicon nitride film of stable quality was obtained over the entire semiconductor substrate. Further, the leak between wirings was reduced to about 1/2, and the variation in the semiconductor substrate was reduced.

【0015】1回目にRFを印加する時間については、
有機物の除去を目的とした場合に長くする必要がある
が、表面状態の安定とガス比の安定を目的として場合は
2秒程度でも効果が認められた。
Regarding the time for applying RF for the first time,
It is necessary to increase the length for the purpose of removing organic substances, but for the purpose of stabilizing the surface state and stabilizing the gas ratio, the effect was recognized even in about 2 seconds.

【0016】RFのパワーについても、大小により特に
有為差は認められなかったが、プラズマダメージを抑え
るという点からプラズマCVD膜の堆積に要するパワー
と同じかより低い方が望ましい。
Regarding the RF power, no significant difference was observed depending on the magnitude, but from the viewpoint of suppressing plasma damage, it is desirable that the power be the same as or lower than the power required to deposit the plasma CVD film.

【0017】[0017]

【発明の効果】以上の如く本発明によれば、プラズマC
VD膜の形成時に、プラズマや温度によって反応しない
副反応ガスを先に流して圧力、ガス流量を安定させた
後、一旦RFを印加することによって、基板表面の有機
物やの除去が行われ、かつ表面状態が改善される。さら
に、この後に主反応ガスを流し、流量と圧力を安定させ
てからRFを印加することによって、RF印加前に主反
応ガスが分解して、堆積物の塊が形成されることがな
く、組成の一定した膜を再現性良く形成することが可能
となり、耐湿性や膜のリーク電流の点で問題がなくな
り、半導体装置の歩留りと信頼性が向上した。
As described above, according to the present invention, the plasma C
At the time of forming the VD film, a side reaction gas that does not react with plasma or temperature is first flowed to stabilize the pressure and gas flow rate, and then RF is once applied to remove organic substances and the like on the substrate surface, and The surface condition is improved. Further, after this, the main reaction gas is caused to flow to stabilize the flow rate and the pressure, and then RF is applied, so that the main reaction gas is not decomposed before the RF application and a lump of the deposit is not formed. It is possible to form a film having a constant value with good reproducibility, there is no problem in terms of moisture resistance and film leakage current, and the yield and reliability of the semiconductor device are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における半導体装置の製造方
法を示すタイミングチャートである。
FIG. 1 is a timing chart showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】従来の半導体装置の製造方法を示すタイミング
チャートである。
FIG. 2 is a timing chart showing a conventional semiconductor device manufacturing method.

【図3】プラズマCVD薄膜形成装置の概略断面図であ
る。
FIG. 3 is a schematic sectional view of a plasma CVD thin film forming apparatus.

【符号の説明】[Explanation of symbols]

11・・・副反応ガスの流量が安定した時間 t12・・・反応室内の圧力が安定した時間 t13・・・RFを印加し始めた時間 t14・・・RFを停止した時間 t15・・・主反応ガスの流量と反応室の圧力が安定し、
RFを印加し始めた時間 t16・・・RF、ガスを停止し、圧力を下げた時間 t21・・・主反応ガスおよび副反応ガスの流量が安定し
た時間 t22・・・反応室内の圧力が安定した時間 t23・・・RFを印加し始めた時間 t24・・・RFを停止した時間 31・・・RF発振器 32・・・上部電極 33・・・下部電極 34・・・真空容器 35・・・ガス入口 36・・・ガス出口 37・・・半導体基板 38・・・絶縁物
t 11 ... Time when flow rate of side reaction gas is stable t 12 ... Time when pressure in reaction chamber is stable t 13 ... Time when RF is started t 14 ... Time when RF is stopped t 15: The flow rate of the main reaction gas and the pressure in the reaction chamber stabilize,
Time when RF is started to be applied t 16 ... Time when RF is stopped and pressure is reduced t 21 ... Time when flow rates of main reaction gas and sub-reaction gas are stable t 22 ... In reaction chamber time 31 ... RF oscillator 32 ... upper electrode 33 ... lower electrode 34 ... vacuum pressure has stopped stable time t 24 ... RF began to apply a time t 23 ... RF Container 35 ... Gas inlet 36 ... Gas outlet 37 ... Semiconductor substrate 38 ... Insulator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁膜または、保護膜として一層以上のプ
ラズマCVD薄膜を用いている半導体装置において、該
プラズマCVD薄膜の形成方法が、 a)プラズマや温度によって反応しないガス(副反応ガ
ス)を流し、ガス流量、圧力、電極間隔等を設定値に制
御する工程と、 b)高周波(RF)を印加する工程と c)一定時間保持後、高周波(RF)を停止する工程と d)プラズマや温度によって反応するガス(主反応ガ
ス)を流し、ガス流量と圧力を設定値に制御する工程
と、 e)高周波(RF)印加し、所定の時間保持する工程 とからなることを特徴とする半導体装置の製造方法。
1. In a semiconductor device using one or more plasma CVD thin films as an insulating film or a protective film, the method of forming the plasma CVD thin film includes: a) a gas that does not react with plasma or temperature (a secondary reaction gas). Flow, control of gas flow rate, pressure, electrode spacing, etc. to set values; b) applying high frequency (RF); c) stopping high frequency (RF) after holding for a certain period of time; d) plasma or A semiconductor characterized by comprising the steps of flowing a gas (main reaction gas) that reacts depending on temperature, controlling the gas flow rate and pressure to set values, and e) applying a high frequency (RF) and holding for a predetermined time. Device manufacturing method.
【請求項2】請求項1記載の主反応ガスがモノシラン
(SiH4)で、副反応ガスが亜酸化窒素(N2O)であ
ることを特徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device according to claim 1, wherein the main reaction gas is monosilane (SiH 4 ) and the side reaction gas is nitrous oxide (N 2 O).
【請求項3】請求項1記載の主反応ガスがモノシラン
(SiH4)で、副反応ガスがアンモニア(NH3)およ
び窒素(N2)であることを特徴とする半導体装置の製
造方法。
3. A method of manufacturing a semiconductor device according to claim 1, wherein the main reaction gas is monosilane (SiH 4 ) and the side reaction gases are ammonia (NH 3 ) and nitrogen (N 2 ).
【請求項4】請求項1記載の主反応ガスがTEOS[S
i(OC254]等の有機シラン類で、副反応ガスが
酸素(O2)であることを特徴とする半導体装置の製造
方法。
4. The main reaction gas according to claim 1 is TEOS [S
i (OC 2 H 5 ) 4 ] and other organosilanes, and the side reaction gas is oxygen (O 2 ).
JP27115091A 1991-10-18 1991-10-18 Manufacture of semiconductor device Pending JPH05109695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27115091A JPH05109695A (en) 1991-10-18 1991-10-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27115091A JPH05109695A (en) 1991-10-18 1991-10-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05109695A true JPH05109695A (en) 1993-04-30

Family

ID=17496030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27115091A Pending JPH05109695A (en) 1991-10-18 1991-10-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05109695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007895A1 (en) * 1996-08-19 1998-02-26 Citizen Watch Co., Ltd. Method of forming hard carbon film on inner circumferential surface of guide bush

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007895A1 (en) * 1996-08-19 1998-02-26 Citizen Watch Co., Ltd. Method of forming hard carbon film on inner circumferential surface of guide bush
US6020036A (en) * 1996-08-19 2000-02-01 Citizen Watch Co., Ltd. Method of forming hard carbon film over the inner surface of guide bush

Similar Documents

Publication Publication Date Title
JPH03155625A (en) Manufacture of plasma cvd film
US7094708B2 (en) Method of CVD for forming silicon nitride film on substrate
US7462571B2 (en) Film formation method and apparatus for semiconductor process for forming a silicon nitride film
US5643838A (en) Low temperature deposition of silicon oxides for device fabrication
EP0572704B1 (en) Method for manufacturing a semiconductor device including method of reforming an insulating film formed by low temperature CVD
EP0661732A2 (en) A method of forming silicon oxy-nitride films by plasma-enhanced chemical vapor deposition
JPH0684888A (en) Formation of insulation film
JPH10212583A (en) Utilization of sih4 soak and purge in deposition process
JP2789587B2 (en) Manufacturing method of insulating thin film
KR100232664B1 (en) Method and appartus for manufacturing a semiconductor device
US5045346A (en) Method of depositing fluorinated silicon nitride
JPH0766186A (en) Anisotropic depositing method of dielectric
JP3112880B2 (en) Cleaning method for CVD equipment
US20120322222A1 (en) Method for improving capacitance uniformity in a mim device
JPH05109695A (en) Manufacture of semiconductor device
JPH07201738A (en) Pretreatment method for thin-film formation, and formation method for thin film
JPH03237715A (en) Etching method
JPH0574763A (en) Formation of gate insulating film
JPH09320963A (en) Adjusting method after cleaning of cvd chamber
JP3820212B2 (en) Method for conditioning a CVD chamber after CVD chamber cleaning
JP2742381B2 (en) Method of forming insulating film
JP3243816B2 (en) Method of forming insulating film
JPH0625859A (en) Cvd film forming device and plasma cleaning method
JP2579166B2 (en) Plasma CVD apparatus and film forming method
JPH10256183A (en) Manufacture of semiconductor device